JPS6017017B2 - Tungsten carbide-based sintered cemented carbide - Google Patents
Tungsten carbide-based sintered cemented carbideInfo
- Publication number
- JPS6017017B2 JPS6017017B2 JP1005081A JP1005081A JPS6017017B2 JP S6017017 B2 JPS6017017 B2 JP S6017017B2 JP 1005081 A JP1005081 A JP 1005081A JP 1005081 A JP1005081 A JP 1005081A JP S6017017 B2 JPS6017017 B2 JP S6017017B2
- Authority
- JP
- Japan
- Prior art keywords
- cutting
- resistance
- powder
- phase forming
- content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Description
【発明の詳細な説明】
この発明は、すぐれた耐摩耗性,耐熱性,および耐塑性
変形性を有するほか、特にすぐれた耐欠損性を有し、し
かも切削工具として使用した場合、従来の炭化タングス
テン(以下WCで示す)基焼給超硬合金が不得意として
いた高速切削,高硬度材切削,さらに難削材切削などで
著しくすぐれた切削性能を示すWC基焼結超硬合金に関
するものである。Detailed Description of the Invention The present invention has excellent wear resistance, heat resistance, and plastic deformation resistance, as well as particularly excellent fracture resistance. This article relates to WC-based sintered cemented carbide, which exhibits outstanding cutting performance in high-speed cutting, cutting of high-hardness materials, and cutting of difficult-to-cut materials, which are disadvantages of tungsten (hereinafter referred to as WC)-based sintered cemented carbide. be.
従釆より切削工具用WC基焼縞超硬合金は、JIS分類
のK系列に属するWC−Co系暁緒超硬合金と、同Pお
よびM系列に属するWC−(W,Ti)C−(Ta,N
b)C−Co系暁給超硬合金とに大別されてきており、
一般に、高速切削用には、WC−(W,Ti)C−(T
a,Nb)C一Co系暁結超硬合金のうちで、(W,T
i)Cおよび(Ta,Nb)Cを多量に含有し、耐摩耗
性および耐熱性にすぐれたPIOグレートのものが使用
されている。The WC-based hardened carbide for cutting tools is classified into WC-Co based carbide, which belongs to the K series of the JIS classification, and WC-(W,Ti)C-(Ta), which belongs to the P and M series of the JIS classification. ,N
b) It has been broadly classified into C-Co based cemented carbide.
Generally, for high-speed cutting, WC-(W,Ti)C-(T
a, Nb) Among C-Co type cemented carbides, (W, T
i) A PIO grade material containing a large amount of C and (Ta,Nb)C and having excellent wear resistance and heat resistance is used.
しかし、この合金は、切削速度が200肌/minを越
える高速切削では摩耗が著しく実用に供し得ないもので
ある。また、大きな熱発生を伴うと共に、切刃に大きな
応力がかかるロックウェル硬さ(Cスケール)で50以
上を有する高硬度材の切削には、刃先強度が高く、かつ
耐熱性および耐塑性変形性に富んだ合金の使用が望まれ
ているが、前記のWC−(W,Ti)C−(Ta,Nb
)C−Co系齢結超硬合金では十分満足する切削性能を
発揮しない。さらに、Ni基あるいはCo基の耐熱合金
等の麓削材を、上記のWC基競結超硬合金製切削工具を
用いて切削することは、耐塑性変形性および耐欠損性の
不足が原因でほとんどの場合不可能な状態である。そこ
で、本発明者等は、上述のような観点から、切削工具用
材料として使用されている上記の従来WC基焼結超硬合
金に着目し、これに高速切削,高硬度材切削,並びに鍵
削材切削などの切削を可能とするすぐれた耐摩耗性,耐
熱性,耐塑性変形性,および耐欠損性を付与すべ〈研究
を行なった結果、上記の従来WC基焼結超硬合金に、分
散相形成成分として平均粒蓬:0.5〜10一肌を有す
る立方晶筆化ほう素(以下CBNで示す)を2〜20%
含有させると共に、このCBN粒の周囲を0.05〜3
り仇の平均層厚で取囲んだ包囲相を形成した状態、Ti
の炭化物,窒化物,および酸化物,さらにこれらの固溶
体からなる群のうちの1種または2種以上(以下これら
を総称してCBNの包囲相形成成分という)を0.1〜
20%(以上重量%,以下%の表示はすべて重量%)含
有させると、この結果のWC基焼結超硬合金はすぐれた
耐摩耗性,耐熱性,および耐塑性変形性を有するほか、
特にすぐれた耐欠損性をもったものになるという知見を
得たのである。However, this alloy suffers from severe wear during high-speed cutting at a cutting speed of over 200 cuts/min, making it impractical for practical use. In addition, when cutting high-hardness materials with a Rockwell hardness (C scale) of 50 or higher, which generates a large amount of heat and places large stress on the cutting edge, it is necessary to have high cutting edge strength, heat resistance, and plastic deformation resistance. Although it is desired to use an alloy rich in WC-(W,Ti)C-(Ta,Nb
) C-Co aged cemented carbide does not exhibit sufficiently satisfactory cutting performance. Furthermore, cutting materials such as Ni-based or Co-based heat-resistant alloys using the above-mentioned WC-based competitive cemented carbide cutting tools is difficult due to the lack of plastic deformation resistance and chipping resistance. In most cases this is not possible. Therefore, from the above-mentioned viewpoint, the present inventors focused on the above-mentioned conventional WC-based sintered cemented carbide used as a material for cutting tools, and applied it to high-speed cutting, high-hardness material cutting, and key cutting. As a result of our research, we found that the conventional WC-based sintered cemented carbide mentioned above should have excellent wear resistance, heat resistance, plastic deformation resistance, and chipping resistance to enable cutting of cutting materials. 2 to 20% of cubic boron (hereinafter referred to as CBN) having an average grain size of 0.5 to 10 as a dispersed phase forming component.
In addition, the surrounding area of the CBN grains is 0.05 to 3
Ti forms an enclosing phase surrounded by the average layer thickness of the enemy.
of carbides, nitrides, and oxides, as well as solid solutions thereof (hereinafter collectively referred to as CBN surrounding phase-forming components), in an amount of 0.1 to
When containing 20% (all percentages are by weight), the resulting WC-based sintered cemented carbide has excellent wear resistance, heat resistance, and plastic deformation resistance.
They found that it has particularly excellent fracture resistance.
したがって、この発明は上記の知見にもとづいてなされ
たものであって、分散相形成成分としてCBN:2〜2
0%、CBNの包囲相形成成分:0.1〜20%、分散
相形成成分としてのTj,Ta,およびNbの炭化物,
窒化物からなる群のうちの1種または2種以上(以下こ
れらを総称して金属の炭・窒化物という):1〜30%
、結合相形成成分としての鉄族金属のうちの1種または
2種以上:5〜25%、分散相形成成分としてのWCお
よび不可避不純物:残り(ただしWC:50%以上含有
)、からなる組成を有し、かつCBNの平均粒径が0.
5〜10仏のにして、その包囲相の平均層厚が0.05
〜3山肌である組織を有するWC基焼結超硬合金に特徴
を有するものである。Therefore, this invention was made based on the above findings, and CBN: 2 to 2 as a dispersed phase forming component.
0%, surrounding phase forming component of CBN: 0.1 to 20%, carbides of Tj, Ta, and Nb as dispersed phase forming components,
One or more of the group consisting of nitrides (hereinafter collectively referred to as metal carbon/nitrides): 1 to 30%
, one or more iron group metals as a binder phase forming component: 5 to 25%, WC as a dispersed phase forming component and unavoidable impurities: the remainder (WC: 50% or more content). and the average particle size of CBN is 0.
5 to 10 Buddhas, and the average layer thickness of the surrounding phase is 0.05
This is a characteristic feature of a WC-based sintered cemented carbide having a structure with ~3 peaks.
つぎに、この発明のWC基競結超硬合金において、成分
組成,CBNの平均粒径,および包囲相の層厚を上記の
通りに限定した理由を説明する。Next, the reason why the component composition, average grain size of CBN, and layer thickness of the surrounding phase are limited as described above in the WC-based competitively bonded cemented carbide of the present invention will be explained.
‘a} CBN含有量およびその平均粒径その含有量が
2%末流にして平均粒径が0.5rm未満では、所望の
耐摩耗性,耐熱性,および耐塑性変形性を確保すること
ができず、一方その含有量が20%を越えても、またそ
の平均粒径が10r仇を越えても、嫌結性が劣化し、合
金組織中に巣ができやすくなって耐衝撃性が低下するよ
うになることから、その含有量を2〜20%と定めた。'a} CBN content and its average particle size When the content is 2% end flow and the average particle size is less than 0.5rm, the desired wear resistance, heat resistance, and plastic deformation resistance cannot be secured. On the other hand, even if its content exceeds 20% or its average particle size exceeds 10 mm, the anti-setting property deteriorates, and cavities are more likely to form in the alloy structure, resulting in a decrease in impact resistance. Therefore, the content was set at 2 to 20%.
‘b} CBNの包囲相形成成分含有量およびその平均
層厚その含有量が0.1%未満では、CBN粒の表面を
その平均粒径との関係において0.05〆机以上の平均
層厚で完全に包囲することができないので、所望のすぐ
れた耐欠損性を確保することができず、一方20%を越
えて含有させると、包囲相の平均層厚が3ム机を越えて
厚くなりすぎ、CBNのもつすぐれた特性の十分な発揮
が抑制されるようになることから、その含有量を0.1
〜20%とすると共に、平均層厚を0.05〜3ム肌と
定めた。'b} CBN surrounding phase forming component content and its average layer thickness When the content is less than 0.1%, the surface of the CBN grains has an average layer thickness of 0.05 degrees or more in relation to its average grain size. Since the desired excellent fracture resistance cannot be ensured, on the other hand, if the content exceeds 20%, the average layer thickness of the surrounding phase becomes thicker than 3 μm. If the content is too high, CBN will be inhibited from fully demonstrating its excellent properties, so the content should be reduced to 0.1.
~20%, and the average layer thickness was determined to be 0.05 to 3 mm.
‘c} 金属の炭・窒化物含有量
その含有量が1%未満では、所望の耐摩耗性を確保する
ことができず、一方30%を越えて含有させると、耐欠
損性が低下するようになることから、その含有量を1〜
30%と定めた。'c} Carbon/nitride content of metal If the content is less than 1%, the desired wear resistance cannot be secured, while if the content exceeds 30%, the fracture resistance will decrease. Therefore, the content is 1~
It was set at 30%.
なお、これらの成分は単体の形で含有させても、複合化
合物の形で含有させても同等の特性が得られるものであ
る。{d} 鉄族金属含有量
その含有量が5%未満では、所望のすぐぜれた耐欠損性
を確保することが困難であり、一方25%を越えて含有
させると、耐摩耗性,耐熱性,および耐塑性変形性が劣
化するようになることから、その含有量を5〜25%と
定めた。Note that the same characteristics can be obtained whether these components are contained in the form of a single substance or in the form of a composite compound. {d} Iron group metal content If the content is less than 5%, it is difficult to secure the desired excellent fracture resistance, while if the content exceeds 25%, wear resistance and heat resistance The content was determined to be 5 to 25%, since the properties of aluminum and plastic deformation resistance deteriorate.
‘e’WC含有量その含有量が50%未満では、WCの
もつすぐれた耐欠損性を確保することができないことか
ら、WC含有量の下限値を50%と定めた。'e' WC Content If the content is less than 50%, the excellent fracture resistance of WC cannot be ensured, so the lower limit of the WC content was set at 50%.
なお、この発明のWC基焼結超硬合金は、必須原料粉末
のうちの1つとして、通常の物理蒸着法あるいは化学蒸
着法により包囲相形成成分で表面被覆されたCBN粉末
を使用し、超高圧(20Kb以上)を用いずに、通常の
粉末冶金法、すなわち原料粉末を粉砕混合し、この結果
の混合粉末より圧粉体をプレス成形し、ついでこの圧粉
体を真空中あるいは200気圧以下の非酸化性雰囲気中
で鱗結することによって製造することができる。つぎに
、この発明のWC基焼結超硬合金を実施例により比較例
と対比しながら説明する。The WC-based sintered cemented carbide of the present invention uses, as one of the essential raw material powders, CBN powder whose surface is coated with an surrounding phase forming component by a normal physical vapor deposition method or chemical vapor deposition method. Instead of using high pressure (20Kb or more), we use the normal powder metallurgy method, that is, we grind and mix raw material powders, press-form a compact from the resulting mixed powder, and then press-form the compact in a vacuum or under 200 atm. It can be produced by scaling in a non-oxidizing atmosphere. Next, the WC-based sintered cemented carbide of the present invention will be explained using examples and comparing with comparative examples.
実施例 1
原料粉末として、それぞれ平均粒度2.2ム肌を有する
WC粉末,同1.5仏のの(W,Ti)C粉末(WC/
TIC=70%/30%),同1.2山肌のくTa,N
b)C粉末(TaC/N比=90%/10%),同1.
2r肌のCo粉末,および包囲相形成成分としてィオン
プレーティング法により表面に平均層厚:0.3ム仇の
TICNを被覆した同2.5山肌のCBN粉末を使用し
、これら原料粉末を第1表に示される配合組成に配合し
、ボールミル中で粉砕混合し、この結果の混合粉末より
庄粉体を成形し、ついでこの圧粉体を真空中、温度:1
450℃に1時間保持して競結することによって、実質
的に配合組成と同一の成分組成をもった本発明合金1〜
4および比較合金1〜4をそれぞれ製造した。Example 1 As raw material powders, WC powder with an average particle size of 2.2mm and (W,Ti)C powder (WC/
TIC=70%/30%), same 1.2 mountain surface Ta,N
b) C powder (TaC/N ratio = 90%/10%), same as 1.
Using Co powder with a 2R surface and CBN powder with a 2.5-layer surface coated with TICN with an average layer thickness of 0.3 μm on the surface by the ion plating method as the surrounding phase forming component, these raw material powders were The composition shown in Table 1 was blended, pulverized and mixed in a ball mill, the resulting mixed powder was molded into a sho powder, and then this green compact was heated in a vacuum at a temperature of 1
Alloys 1 to 1 of the present invention having substantially the same composition as the blended composition were obtained by holding at 450°C for 1 hour and binding.
4 and Comparative Alloys 1 to 4 were manufactured, respectively.
なお、比較合金第1 表
第 2 表
1〜4は、いずれも合金構成成分のうちのいずれかの成
分(第1表には※印を付して表示)がこの発明の範囲か
ら外れた組成をもつものである。Comparative alloys Table 1, Table 2, Tables 1 to 4 all contain compositions in which one of the alloy constituents (indicated with an asterisk in Table 1) is outside the scope of the present invention. It is something that has.
つぎに、この結果得られた本発明合金1〜4および比較
合金1〜4、並びに従来切削工具用材料として知られて
いるPI川合金より、CIS(超硬工具規格)・SNP
432に則した形状の切削試験用チツプをそれぞれ製作
し、それぞれ第2表に示されている切削条件にて連続お
よび断続切削試験を行ない、連続切削試験においてフラ
ンク摩耗とクレータ摩耗を測定し、また断続切削試験に
おいては6個の試験チップのうち何個に欠損が発生した
かを測定した。これらの測定結果を第3表に示した。第
3表に示されるように、比較合金1〜4および従釆PI
O合金は、耐摩耗性および耐欠損性のうちのいずれかの
性質が劣るのに対して、本発明合金1〜4は、いずれも
すぐれた耐摩耗性と耐欠損性を兼ね備え、きわめて良好
な切削性能が得られることが明らかである。Next, CIS (Cemented Carbide Tool Standard) and SNP were prepared from the resulting Invention Alloys 1 to 4 and Comparative Alloys 1 to 4, as well as PI River Alloy, which is conventionally known as a material for cutting tools.
432, and conducted continuous and interrupted cutting tests under the cutting conditions shown in Table 2. Flank wear and crater wear were measured in the continuous cutting tests. In the intermittent cutting test, it was determined how many of the six test chips had defects. The results of these measurements are shown in Table 3. As shown in Table 3, comparative alloys 1 to 4 and subordinate PI
O alloys have poor wear resistance and chipping resistance, whereas alloys 1 to 4 of the present invention all have excellent wear resistance and chipping resistance, and are extremely good. It is clear that cutting performance can be obtained.
第 3 表
実施例 2
原料粉末として、それぞれ平均粒度3.5一肌を有する
WC粉末,同1.5仏肌の(W,Ti)C粉末(WC/
TIC=70%/30%),同1.2〃肌の(Ta,N
b)C粉末(TaC/N比=60%/40%),同1.
5r肌のTIN粉第 4 表
末,同1.2umのCo粉末,同2.7ム肌のNi粉末
,およびイオンプレーティング法によりそれぞれ表面に
平均層厚:0.4仏机のTicおよびTINを包囲相形
成成分として被覆した同2.0ムmの2種のCBN粉末
を使用し、これらの原料粉末を第4表に示される配合組
成に配合し、ボールミル中にて粉砕混合し、この結果の
混合粉末より圧粉体を成形し、ついでこの圧粉体を圧力
:20トルのN2雰囲気中、温度:140000に1時
間保持して暁結することによって、実質的に配合組成と
同一の成分組成をもった本発明合金5〜8および比較合
金5,6をそれぞれ製造した。Table 3 Example 2 As raw material powders, WC powder with an average particle size of 3.5 grains and (W,Ti)C powder (WC/Ti) with an average particle size of 1.5 grains were used.
TIC=70%/30%), 1.2〃Skin (Ta, N
b) C powder (TaC/N ratio = 60%/40%), same as 1.
5R skin TIN powder No. 4 At the end of the table, 1.2 μm Co powder, 2.7 μm skin Ni powder, and average layer thickness: 0.4 Buddha TIC and TIN on the surface respectively by ion plating method. Using two types of CBN powders of the same 2.0 mm coated with CBN as an surrounding phase forming component, these raw powders were blended into the composition shown in Table 4, pulverized and mixed in a ball mill, and this A green compact is formed from the resulting mixed powder, and then this green compact is held at a temperature of 140,000 for 1 hour in an N2 atmosphere at a pressure of 20 Torr to form a green compact with substantially the same composition as the blended powder. Invention alloys 5 to 8 and comparative alloys 5 and 6 having the following compositions were manufactured, respectively.
なお、比較合金5はCo含有量がこの発明の範囲を外れ
て高いもの、比較合金6はCBNを含有しないものであ
る。つぎに、この結果得られた本発明合金5〜8および
比較合金5,6,並びに従来切削工具用材料として知ら
れるP3の合金より、CIS・SPP422に則した形
状の切削試験用チップをそれぞれ製作し、被削材:イン
コネル718 被削材形状:直径20比舷0×長さ50
0肋の寸法を有し、かつ長手方向相互反対側位置に深さ
15側×幅15側の縦溝を2本有するもの,切刃のホー
ニング:0.1肋×25o,横切刃角:75o,切削速
度:50の/min,送り:0.1肋/rev.,切込
み:1.仇舷,切削時間:1肌inの条件で麓削材連続
切削試験を行ない、フランク摩耗およびクレータ摩耗を
測定した。Note that Comparative Alloy 5 has a high Co content that is outside the range of the present invention, and Comparative Alloy 6 does not contain CBN. Next, from the resulting alloys of the present invention 5 to 8, comparative alloys 5 and 6, and alloy P3, which is conventionally known as a material for cutting tools, chips for cutting tests with shapes conforming to CIS/SPP422 were manufactured. Work material: Inconel 718 Work material shape: Diameter 20, Ratio 0 x Length 50
One with 0 rib dimensions and two longitudinal grooves of 15 depth x 15 width on opposite sides in the longitudinal direction, honing of cutting edge: 0.1 rib x 25o, transverse edge angle: 75o, cutting speed: 50/min, feed: 0.1 rib/rev. , Depth of cut: 1. Flank wear and crater wear were measured by conducting a continuous cutting test on the base cutting material under conditions of 1 skin inch cutting time.
これらの測定結果を摩耗状態と合せて第5表に示した。
第5表に示されるように、本発明合金5〜8は、第5表
いずれも比較合金5,6および従来P3川合金に比して
すぐれた耐摩耗性,耐塑性変形性,および耐欠損性を有
することが明らかである。These measurement results are shown in Table 5 together with the wear conditions.
As shown in Table 5, alloys 5 to 8 of the present invention have superior wear resistance, plastic deformation resistance, and chipping resistance compared to comparative alloys 5 and 6 and the conventional P3 alloy. It is clear that it has a sexual nature.
実施例 3
原料粉末として、それぞれ平均粒度4.0り肌のWC粉
末,同1.5仏のの(W,Ti)C粉末(WC/TIC
=70%/30%),同1.4仏肌のくW,Ti)CN
粉末(WC/TIC/TIN=50%/30%/20%
),同1.2〃仇の(Ta,Nb)C粉末(TaC/N
比=90%/10%),同1.5仏の第6表
のTaN粉末,同1.7〆mのNbN粉末,同1.2山
肌のCo粉末,および化学蒸着法によりそれぞれ平均層
厚:0.2rmのTIC○およびTICNOを包囲相形
成成分として表面被覆した同1.5〆肌を有する2種の
CBN粉末を使用し、これらの原料粉末を第6表に示さ
れる配合組成に配合し、ポールミル中で粉砕混合し、こ
れより圧粉体を成形し、この結果得られた圧粉体をそれ
ぞれ第6表に示される圧力の暁結雰囲気中で、温度14
50℃に1時間保持して焼結することによって、実質的
に配合組成と同一の成分組成を有する本発明合金9〜1
2,並びに合金成分としてCBNを含有しない比較合金
7をそれぞれ製造した。Example 3 As raw material powders, WC powder with an average particle size of 4.0 TIC and (W,Ti)C powder (WC/TIC with an average particle size of 1.5 TIC) were used as raw material powders.
=70%/30%), same 1.4 Buddha skin W, Ti)CN
Powder (WC/TIC/TIN=50%/30%/20%
), (Ta,Nb)C powder (TaC/N
Ratio = 90%/10%), TaN powder of Table 6 of 1.5 m, NbN powder of 1.7 m, Co powder of 1.2 m, and average layer thickness by chemical vapor deposition, respectively. : Two types of CBN powders having the same 1.5 〆 skin coated with 0.2rm TIC○ and TICNO as surrounding phase forming components were used, and these raw material powders were blended into the composition shown in Table 6. The resulting green compacts were pulverized and mixed in a pole mill, and then molded into green compacts.
By holding at 50°C for 1 hour and sintering, alloys 9 to 1 of the present invention having substantially the same composition as the blended composition are obtained.
Comparative Alloy 2 and Comparative Alloy 7, which did not contain CBN as an alloy component, were manufactured.
つぎに、この結果得られた本発明合金9〜12および比
較合金7,並びに従来切削工具用材料として知られてい
るM2併合金より、実施例1におけると同一の条件でチ
ップを製作し、被削材:SKD一61(HRC53),
被削材寸法:幅5仇舷×長さ500肋,カッタ形状:正
面フライスカッタ(ダブルポジティブ,カツタ蚤:16
仇蛇◇,刃数:8枚),切削速度:100の/min,
一刃当り送り:0.15肌/刃,切込み:3.0肋,切
削時間:2仇hinの条件で高硬度材フライス切削試験
を行ない、フランク摩耗,切刃欠損の割合,さらに切刃
に発生した熱亀裂の本数をそれぞれ測定した。Next, chips were manufactured from the resulting alloys 9 to 12 of the present invention and comparative alloy 7, as well as an M2 alloy conventionally known as a material for cutting tools, under the same conditions as in Example 1. Cutting material: SKD-61 (HRC53),
Work material dimensions: width 5 broadside x length 500 ribs, cutter shape: face milling cutter (double positive, cut length: 16
◇, Number of blades: 8), Cutting speed: 100/min,
A milling test on hardened materials was conducted under the following conditions: feed per tooth: 0.15 skin/tooth, depth of cut: 3.0 ribs, and cutting time: 2 h. The number of thermal cracks that occurred was measured.
それらの測定結果を第7表に示した。第7表
第7表に示されるように、本発明合金9〜12は、いず
れも比較合金7および従来M2川合金に比して耐摩耗性
,耐欠損性,および耐熱亀裂性のすべての特性において
すぐれているのである。The measurement results are shown in Table 7. Table 7 As shown in Table 7, Alloys 9 to 12 of the present invention have better wear resistance, chipping resistance, and thermal cracking resistance than Comparative Alloy 7 and the conventional M2 alloy. It is excellent in
上述の結果から明らかなように、この発明のWC基焼結
超硬合金は、すぐれた耐摩耗性,耐熱性,耐塑性変形性
,および耐欠損性を兼ね備えているので、これを特に切
削工具として使用した場ム口、一般切削では勿論のこと
、従来WC基暁結超硬合金が不得意としていた高速切削
,高硬度材切削,および難削村切削においてもきわめて
すぐれた切削性能を発揮するものである。As is clear from the above results, the WC-based sintered cemented carbide of the present invention has excellent wear resistance, heat resistance, plastic deformation resistance, and chipping resistance, so it is particularly suitable for cutting tools. It exhibits excellent cutting performance not only in general cutting, but also in high-speed cutting, cutting of high-hardness materials, and difficult-to-cut machining, which conventional WC-based cemented carbides are weak at. It is something.
Claims (1)
0%、 立方晶窒化ほう素の包囲相形成成分としてのT
iの炭化物、窒化物、炭窒化物、炭酸化物、および炭窒
酸化物からなる群のうちの1種または2種以上:0.1
〜20%、 分散相形成成分としてのTi,Ta,およ
びNbの炭化物および窒化物からなる群のうちの1種ま
たは2種以上:1〜30%、 結合相形成成分としての
鉄族金属のうちの1種または2種以上:5〜25%、
分散相形成成分としての炭化タングステンおよび不可避
不純物:残り(ただし炭化タングステン:50%以上含
有)、からなる組成(以上重量%)を有し、しかも立方
晶窒化ほう素の平均粒径が0.5〜10μmにして、そ
の包囲相の平均層厚が0.05〜3μmである組織を有
することを特徴とする炭化タングステン基焼結超硬合金
。1 Cubic boron nitride as a dispersed phase forming component: 2-2
0%, T as an ambient phase forming component of cubic boron nitride
One or more of the group consisting of carbides, nitrides, carbonitrides, carbonates, and carbonitrides of i: 0.1
~20%, one or more of the group consisting of carbides and nitrides of Ti, Ta, and Nb as dispersed phase forming components: 1 to 30%, iron group metals as binder phase forming components One or more of: 5 to 25%,
It has a composition (more than 50% by weight) consisting of tungsten carbide as a dispersed phase forming component and unavoidable impurities (however, tungsten carbide: 50% or more content), and the average particle size of cubic boron nitride is 0.5 A tungsten carbide-based sintered cemented carbide having a structure in which the average layer thickness of the surrounding phase is 0.05 to 3 μm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1005081A JPS6017017B2 (en) | 1981-01-26 | 1981-01-26 | Tungsten carbide-based sintered cemented carbide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1005081A JPS6017017B2 (en) | 1981-01-26 | 1981-01-26 | Tungsten carbide-based sintered cemented carbide |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57123952A JPS57123952A (en) | 1982-08-02 |
JPS6017017B2 true JPS6017017B2 (en) | 1985-04-30 |
Family
ID=11739564
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1005081A Expired JPS6017017B2 (en) | 1981-01-26 | 1981-01-26 | Tungsten carbide-based sintered cemented carbide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6017017B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PT2433727E (en) | 2010-09-24 | 2015-07-02 | Sandvik Intellectual Property | Method for producing a sintered composite body |
-
1981
- 1981-01-26 JP JP1005081A patent/JPS6017017B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS57123952A (en) | 1982-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012105710A1 (en) | cBN SINTERED MATERIAL TOOL AND COATED cBN SINTERED MATERIAL TOOL | |
JP2010234519A (en) | Cermet and coated cermet | |
JPS5928628B2 (en) | Surface coated cemented carbide tools | |
JPH01183310A (en) | Surface covering carbonization tungsten group cemented carbide made throw away tip for milling cutter | |
JPS607022B2 (en) | Cubic boron nitride-based ultra-high pressure sintered material for cutting tools | |
JP4756445B2 (en) | Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys | |
JPS6017017B2 (en) | Tungsten carbide-based sintered cemented carbide | |
JPS6020456B2 (en) | High-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools | |
JPS61146763A (en) | Manufacture of sintered body for cutting tool | |
JPH0271906A (en) | Surface coated tungsten carbide base sintered hard alloy made cutting tool excellent in plastic deformation resistance | |
JPH04294907A (en) | Hard layer coated tungsten carbide group sintered hard alloy-made cutting tool | |
JPS597349B2 (en) | Coated cemented carbide tools | |
JPS605666B2 (en) | Ultra-high pressure sintered material for cutting tools | |
JP7400692B2 (en) | Cubic boron nitride sintered body and tool having cubic boron nitride sintered body | |
JPS6056783B2 (en) | Cubic boron nitride-based ultra-high pressure sintered material for cutting tools | |
JPS6067638A (en) | Cermet for cutting tool and hot processing tool | |
JPS6245290B2 (en) | ||
JPS6117899B2 (en) | ||
JPS6146542B2 (en) | ||
JP3358477B2 (en) | Cutting tool with excellent brazing joint strength with cutting edge piece | |
JPS6067637A (en) | Cermet for cutting tool or hot processing tool | |
JPS6245293B2 (en) | ||
JPS5852552B2 (en) | Tough cermet for cutting tools | |
JPS629551B2 (en) | ||
JPS602378B2 (en) | Cubic boron nitride-based ultra-high pressure sintered material for cutting tools |