JPS6241306B2 - - Google Patents

Info

Publication number
JPS6241306B2
JPS6241306B2 JP55075336A JP7533680A JPS6241306B2 JP S6241306 B2 JPS6241306 B2 JP S6241306B2 JP 55075336 A JP55075336 A JP 55075336A JP 7533680 A JP7533680 A JP 7533680A JP S6241306 B2 JPS6241306 B2 JP S6241306B2
Authority
JP
Japan
Prior art keywords
sintered body
powder
boron nitride
binder
cbn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55075336A
Other languages
Japanese (ja)
Other versions
JPS56169748A (en
Inventor
Tetsuo Nakai
Shuji Yatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP7533680A priority Critical patent/JPS56169748A/en
Publication of JPS56169748A publication Critical patent/JPS56169748A/en
Publication of JPS6241306B2 publication Critical patent/JPS6241306B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

立方晶型窒化硼素(Cubic BN、以下CBNと略
す)はダイヤモンドに次ぐ高硬度の物質であり、
超高圧高温下で合成される。現在既に研削用砥粒
として使用されており、また切削用途にはCBN
を金属Coなどで結合した焼結体が一部に使用さ
れている。このCBNを金属で結合した焼結体は
切削工具として使用した場合、結合金属相の高温
での軟化による耐摩耗性の低下や、被削材金属が
溶着し易すい為に工具が損傷するといつた欠点が
ある。本発明は、このような金属で結合した焼結
体でなく、高強度で耐熱性に優れた硬質金属化合
物を結合相とした切削工具等の工具用途に適した
新らしいCBN焼結体に関するものである。 発明者等は先に高硬度で且つ熱伝導率が極めて
高いというCBNの特徴を生かした工具用焼結体
として、CBNを周期律表第4a、5a、6a族金属の
炭化物、窒化物、硼化物、珪化物からなる化合物
で結合した高硬度の工具用焼結体を開発し特許出
願している(特開昭53−77811号、同53−139609
号)。 発明者等は更に工具用焼結体に要求される耐摩
耗性、強靭性の面から広範囲な検討を行い、特に
切削工具材料に適した本発明に到達したものであ
る。 CBNは前記した如く高硬度であり耐熱性、耐
摩耗性に優れた物質である。このCBNのみを焼
結する試みは種々なされているが、これには例え
ば特公昭39−8948号に記されている如く、約
70kb以上、1900℃以上の超高圧、高温下で焼結
する必要がある。現状の超高圧・高温装置ではこ
のような高圧、高温条件を発生させることはでき
るが、工業的規模に装置を大型化した場合、高
圧、高温発生部の耐用回数が制約され実用的でな
い。またCBNのみの焼結体は硬度は高いが、工
具として使用した場合の靭性が劣る。 発明者等はCBNの結合材として周期率表第
4a、5a、6a族の炭化物、窒化物、炭窒化物と、
Alを含有する化合物及びCuを主体としたものを
用い更に適切な製造条件を見出すことによつて、
従来にない耐摩耗性、靭性を有するCBNの焼結
体を得ることができた。また高圧相型窒化硼素の
別の形態であるウルツ鉱型窒化硼素についても同
様の検討を行い、CBNを用いた場合と類似した
結果を得た。 以下CBNを硬質耐摩耗成分として使用した焼
結体について詳細を述べるが、ウルツ鉱型もしく
はCBNとウルツ鉱型窒化硼素の混合物を用いた
場合も同様のことが言える。 CBN焼結体の切削工具としての用途は鋼や鋳
鉄の高硬度材(例えば焼入れ鋼や高硬度のロール
等)の切削加工やスーパーアロイ等の難削材の加
工等が考えられる。一般の鋼や鋳鉄等を切削する
場合も同様であるが、特にこのような用途に対し
ては工具材料が高硬度で耐摩耗性に優れているの
みでなく強靭性にも優れていることが要求され
る。 前述したCBNを金属Coで結合した焼結体では
耐摩耗性や耐熱性の点でも実用的に充分な性能を
有しているとは言えないが、特に断続的に衝撃が
加わるような切削加工用途に対しては強靭性が不
足しており、殆んど使用できなかつた。発明者等
の先願(特願昭52−113987号)に述べたように、
結合材として周期律表第4a,5a,6a金属の
炭化物、窒化物、炭窒化物を用い、CBNの粒度
及び組成と結合相の分布状態を適切に制御すれ
ば、このような断続切削等の用途にも適用できる
高性能の焼結体が得られる。 しかしながら、例えば複雑な形状の高硬度の焼
入れ鋼をフライス切削するといつたような場合に
はやはり工具刃先の欠損が生じ問題であつた。 本発明者等は、焼結体の靭性を向上させるため
にはCBN−CBN及びCBN−結合材の接合強度を
高める必要がありと考え鋭意研究を重ねた。その
結果、CBNの結合相が周期律表第4a、5a、6a族
金属の窒化物、炭化物、炭窒化物にAlの化合物
と、Cuより成るものを用いればCBNの低含有領
域(30容積%)のみならず高CBN含有領域(80
容積%)の焼結体の靭性をも向上させることが可
能であることを発見した。 さらに発明者等は上記結合材を主成分とする
CBN焼結体について性能を改良する方法を種々
検討した。その結果、焼結体製造時に使用する周
期律表第4a、5a、6a族の炭化物、窒化物、炭窒化
物をそれぞれMCx、MNx、M(C、N)xと表
わしたとき、x≦0.95のものを用いると焼結性は
改善されることがわかつた。 特に周期率表第4a族の炭化物、窒化物を用いた
場合焼結性の改善は著しいものであつた。本発明
においてはCuを焼結体中に含有させることによ
り優れた工具性能を持つた焼結体を得ることが可
能になつた。この理由を調べるためにCuを含有
していない焼結体のX線回折像を調らべたとこ
ろ、結合材中のMC、MN、M(C・N)とCBN
の界面にMB、MB2等のボライドが多量に形成さ
れていた。さらにこの焼結体の破面を観察したと
ころ、特にCBNの含有量が多い場合などCBN粒
子が脱落したりしている箇所が認められた。一
方、このCBN焼結体の組成にCuを添加した焼結
体を作成した生成物と破面を調べた結果、MB、
MB2等のボライドの生成は抑制されており、破面
では、CBN粒子の大部分が粒内破壊し、CBN粒
子の脱落は認められなかつた。通常MB、MB2
のボライドは硬度は高いが、脆い材料であるた
め、多量にCBN粒子や結合材界面に存在すると
破壊の起源になり易いものと考えられる。したが
つて本発明焼結体はCuを含有させて、ボライド
の発生を抑制することによりCBNや結合材の界
面での接合強度を向上させることができたのであ
ろう。またMとして周期律表第4aの遷移金属を用
いた場合、さらに良好な性能になるが、これは、
次の如く推測される。Cuは、焼結体中MCx、
MNx、M(C・N)xの余剰の第4a族遷移金属
のMと反応し低融点の液相が生じCBNとMC、
MN、M(C・N)等の結合材との界面に均一に
侵入する。この界面に侵入したM−CuはCBNや
結合相であるMC、MN、M(C・N)との親和
性が良好なためCBN−CBNあるいはCBN−MC、
MN、M(C・N)との接合強度を高めるためと
考えられる。また本発明焼結体は前述した如く焼
結時に低融点の液相が出現するため低温焼結が可
能である。 本発明焼結体においてはこれらのCuは鈍金属
として存在するものでなく、MC、MN、M
(C・N)等の結合相中に固溶したりあるいは
MCx、MNx、M(C・N)xの余剰のMやAlと
反応し金属間化合物の形で存在するため高温での
強度低下は生じない。しかしCuの含有量が結合
材中の重量で50%を超えると、Cu及び鉄族金属
がMC、MN、M(C・N)の結合相中に固溶し
たり余剰のMやAlと反応して金属間化合物を形
成したりしきれず純金属の状態で焼結体中に存在
するため焼結体の硬度は低下し工具性能は悪くな
る。また、1%未満ではCu添加の効果が現れな
い。 また、本発明焼結体の性能を向上させている他
の要因としては結合材中にAl化合物を用いてい
ることが考えられる。例えばWC−Co超硬合金の
液相焼結の如く硬質粒子の結合相への溶解と再析
出現象があれば結合相と硬質粒子、又は硬質粒子
相互の結合強度の高いものが得られよう。本発明
焼結体では結合材中にAl化合物を存在させるこ
とによつて、これと類似した現象が生じることを
見出したものである。結合材としてMCx、
MNx、M(C・N)xにAl化合物を添加してい
くと、その量が増すに従つて焼結性が改善され、
低温で焼結しても高硬度の焼結体が得られる。 Al含有の効果が充分表われるのは、添加Al量
が結合材中の重量で5%以上の場合である。また
Alの含有量が結合材中の重量で50%を越えると
結合材の強度が低下するため好ましくなく最適合
含有量は5%〜50%である。 また本発明焼結体のCBNの含有量は体積で30
〜80%である。CBNの含有量が体積で30%未満
であると、焼結体の硬度は低くCBN含有の効果
があまりない。さらにCBNの含有量が体積で80
%以下特に70%以下の場合、靭性のある結合相が
連結した相をなしているため焼結体の靭性は非常
に優れている。特にこの焼結体はダイス鋼、一般
焼入鋼などの高硬度被削材の断続切削に適してい
る。 AlあるいはCuを添加する方法は種々考えられ
る。焼結前のCBNとの混合粉末中にAlあるいは
Cuを添加する方法は最も簡単であるが、これら
の金属の1μ以下の微粉末は得難く、粗い粒子で
は焼結体の組織が不均一になり易い。最も好まし
い方法はAlの場合焼結材のMCx、MNx、M
(C・N)xの過剰なMと予め金属Alを反応せし
めておき、M−Alの金属間化合物を形成させ
て、これを粉砕使用する方法である。この場合は
結合材MCx、MNx、M(C・N)xとAlの金属
間化合物からなる極めて微細な1μ以下の結合材
粉末が容易に得られる。この他予め金属Mと金属
Alを反応せしめて合成したM−Al金属間化合物
の粉砕し易い粉末を用いても良い。また別の形の
Al化合物であるAlN、Ti3AlN、Zr2AlN等の窒素
を含む化合物の形で加えても良い。 またCuの場合、最も好ましい方法は、焼結時
に、焼結体外部から拡散により浸入させたりある
いは、上記Alを添加する場合と同様に結合材と
反応させて添加することである。 本発明で用いるCBN結晶の粒度は焼結体の工
具としての性能からみて10μ以下とする必要があ
る。結晶粒子が粗いと焼結体の強度が低下し、ま
た特に切削工具として使用する場合は結晶粒子の
細いものが良い加工面が得られる。 本発明のもう一つの特徴である結合相の粒度は
1μ以下の極めて微細な結晶粒子からなる。この
ことにより焼結体は、結合相が均一にCBN粒子
間に分散した組織となり高強度の焼結体が得られ
る。 焼結体の製造に当つてはダイヤモンド合成に用
いられる超高圧高温装置を使用して圧力20kb以
上、温度900℃以上で行なう。特に好ましい焼結
圧力、温度条件は圧力30kb〜70kb、温度1100℃
〜1500℃である。この圧力、温度条件の上限はい
ずれも工業的規模の超高圧、高温装置の実用的な
運転条件の範囲内である。更に圧力、温度条件は
第1図に示した高圧相型窒化硼素の安定域内で行
なう必要がある。このような優れた焼結体を切削
工具として使用する場合、高硬度焼結体は切れ刃
となる部分にのみあれば良く、この高硬度焼結体
を強度、靭性、熱伝導に優れた超硬合金に接合し
て使用すればその性能を十分発揮することができ
る。しかし超硬合金に直接接合すればCBNの含
有量が多い場合などは接合強度が弱く断続切削な
どには使用できないこともある。十分な接合強度
を得るにはCBNを容積で70%未満含有し、残部
がTi、Zr、Hfの炭化物、窒化物、炭窒化物の1
種もしくはこれらの混合物や相互固体化合物から
なる中間層を用いて接合すればよい。 以下実施例により更に具体的に説明する。 実施例 1 平均粒度3μのCBN粒子を体積%で65%と結
合材粉末からなる混合粉末を作成した。結合材粉
末はTiN0.55粉末とAl粉末を重量%で各々70%、
30%の割合に混合したものを真空炉中で1000℃、
30分間加熱后粉砕して平均粒度0.3μの微粉末と
したものである。この結合材粉末をX線回折によ
つて調べたところTiN以外にTi2AlN、TiAl3
TiAl等のTiNとAlの反応によつて生じた化合物が
検出され、金属Alは検出されなかつた。これは
TiN0.55のNに対して相対的に過剰なTiが加えた
Alと反応して生じたものである。 このCBNと結合材の混合粉末を、外径14mm、
内径10mmのMo製の容器にCBNを容積で60%含有
し残部がTiNとAlを重量で3:1含む混合粉末を
塗布したWC−6%Co組成の超硬合金(外径10
mm、高さ2mm)を置いた後、0.30g充填した。こ
の上に厚さ2μのCuを蒸着した超硬合金(外径
10mm、高さ2mm)を置き、Mo製の栓をしてこの
容器全体をダイヤモンド合成に用いる超高圧装置
に入れた。圧力50kbに加圧し次いで温度1250℃
まで加熱し20分間保持した。取り出した焼結体を
ダイヤモンド砥石を用いてCuを蒸着した超硬合
金を高硬度焼結体が現われるまで研削加工し更に
ダイヤモンドペーストを用いて研摩した。光学顕
微鏡で観察したところ気孔もなく緻密な焼結体で
あつた。この焼結体はCBN含有の接合層を介し
て超硬合金に強固に接合していた。ビツカース硬
度計を用いて荷重5Kgで硬度を測定した結果約
3500の値を示した。またX線マイクロアナライザ
を用いて焼結体中の含有元素を調べたところ、
Cuが均一に含まれており、その量は結合材中の
重量の約3%であつた。さらにこの焼結体の生成
物をX線回折により調査した結果CBN、TiN、
AlN等があつたがTiB2等のボライドはごくわずか
しか検出されなかつた。なおCuを含有しない焼
結体を同様にして製造し、生成物をX線回折によ
り調べたがこの生成物はCBN、TiN、AlNの他に
多量のTiB2とAlB2が存在していた。これら2種
類の焼結体を用いて切削加工用のチツプを作成し
た。被削材としてはHRC60のSKD11ダイス鋼丸
棒を用いた。切削条件は速度100m/min切り込
み0.2mm送り0.15mm/rev.で逃げ面摩耗巾が0.2mm
になるまで切削したところ、本発明焼結体は40分
切削りできたのに対し、Cuを含有しない焼結体
は23分であつた。比較の為市販の体積%で約90%
のCBNをCoを主成分とする金属で結合した焼結
体で作成したチツプを用いて同一条件でテストし
た。その結果切削可能時間は15分であつた。 実施例 2 第1表に示した結合材粉末を作成した。
Cubic boron nitride (Cubic BN, hereinafter abbreviated as CBN) is a material with the second highest hardness after diamond.
Synthesized under ultra-high pressure and high temperature. Currently, CBN is already used as an abrasive grain for grinding, and CBN is also used for cutting purposes.
Sintered bodies made by bonding metals with metal such as Co are used in some cases. When this sintered body of CBN bonded with metal is used as a cutting tool, the wear resistance decreases due to the softening of the bonded metal phase at high temperatures, and the workpiece metal easily adheres to the tool, resulting in damage to the tool. There are some drawbacks. The present invention relates to a new CBN sintered body suitable for tool applications such as cutting tools, which has a binder phase of a hard metal compound with high strength and excellent heat resistance, rather than a sintered body bonded with such metals. It is. The inventors first developed CBN into carbides, nitrides, and borons of group 4a, 5a, and 6a metals of the periodic table as sintered bodies for tools that take advantage of CBN's characteristics of high hardness and extremely high thermal conductivity. We have developed a highly hard sintered body for tools bonded with compounds consisting of oxides and silicides and have applied for patents (Japanese Patent Application Laid-open Nos. 53-77811 and 53-139609).
issue). The inventors further conducted extensive studies in terms of wear resistance and toughness required of sintered bodies for tools, and arrived at the present invention, which is particularly suitable for cutting tool materials. As mentioned above, CBN is a material with high hardness and excellent heat resistance and wear resistance. Various attempts have been made to sinter only this CBN, but for example, as described in Japanese Patent Publication No. 39-8948,
It is over 70kb and needs to be sintered under ultra-high pressure and high temperatures of over 1900℃. Current ultra-high pressure and high temperature equipment can generate such high pressure and high temperature conditions, but if the equipment is scaled up on an industrial scale, it is not practical because the number of lifetimes of the high pressure and high temperature generation parts is limited. Furthermore, although a sintered body made only of CBN has high hardness, it has poor toughness when used as a tool. The inventors used the periodic table as a binder for CBN.
4a, 5a, 6a group carbides, nitrides, carbonitrides,
By finding more suitable manufacturing conditions using Al-containing compounds and Cu-based compounds,
We were able to obtain a CBN sintered body with unprecedented wear resistance and toughness. A similar study was also conducted on wurtzite boron nitride, which is another form of high-pressure phase boron nitride, and results similar to those obtained using CBN were obtained. A sintered body using CBN as a hard wear-resistant component will be described in detail below, but the same can be said when using a wurtzite type or a mixture of CBN and wurtzite type boron nitride. Possible uses of CBN sintered bodies as cutting tools include cutting high-hardness materials such as steel and cast iron (for example, hardened steel and high-hardness rolls), and machining difficult-to-cut materials such as super alloys. The same is true when cutting general steel, cast iron, etc., but especially for such applications, it is important that the tool material not only has high hardness and excellent wear resistance, but also excellent toughness. required. Although it cannot be said that the above-mentioned sintered body made of CBN bonded with metal Co has sufficient performance in terms of wear resistance and heat resistance, it is particularly suitable for cutting processes where intermittent impact is applied. It lacked toughness for its intended purpose and could hardly be used. As stated in the inventors' earlier application (Japanese Patent Application No. 113987/1987),
If carbides, nitrides, and carbonitrides of metals 4a, 5a, and 6a of the periodic table are used as the binder, and the particle size and composition of CBN and the distribution state of the binder phase are appropriately controlled, it is possible to perform such interrupted cutting. A high-performance sintered body that can be used for various purposes can be obtained. However, when milling a highly hardened steel having a complex shape, chipping of the tool edge still occurs, which is a problem. The inventors of the present invention have carried out extensive research in the belief that it is necessary to increase the bonding strength of CBN-CBN and CBN-binder in order to improve the toughness of the sintered body. As a result, we found that if the binder phase of CBN is composed of nitrides, carbides, carbonitrides of metals of Groups 4a, 5a, and 6a of the periodic table, a compound of Al, and Cu, the CBN content is in the low content region (30% by volume). ) as well as high CBN content regions (80
It has been discovered that it is also possible to improve the toughness of the sintered body (volume %). Furthermore, the inventors have discovered that the above-mentioned binder is the main component.
Various methods to improve the performance of CBN sintered bodies were investigated. As a result, when the carbides, nitrides, and carbonitrides of Groups 4a, 5a, and 6a of the periodic table used in the production of sintered bodies are expressed as MCx, MNx, and M(C,N)x, respectively, x≦0.95 It was found that the sinterability was improved by using the following. In particular, when carbides and nitrides of Group 4a of the periodic table were used, the improvement in sinterability was remarkable. In the present invention, by incorporating Cu into the sintered body, it has become possible to obtain a sintered body with excellent tool performance. In order to investigate the reason for this, we examined the X-ray diffraction image of a sintered body that does not contain Cu, and found that MC, MN, M (C/N) and CBN in the binder.
A large amount of borides such as MB and MB 2 were formed at the interface. Furthermore, when the fracture surface of this sintered body was observed, it was found that there were places where CBN particles had fallen off, especially when the CBN content was high. On the other hand, as a result of examining the product and fracture surface of a sintered body created by adding Cu to the composition of this CBN sintered body, it was found that MB,
The generation of borides such as MB 2 was suppressed, and at the fracture surface, most of the CBN particles were intragranularly fractured, and no CBN particles were observed to fall off. Borides such as MB and MB 2 usually have high hardness, but are brittle materials, so if they are present in large quantities at the interface of CBN particles or binder, they are likely to become the source of fracture. Therefore, the sintered body of the present invention may have been able to improve the bonding strength at the interface between CBN and the binder by containing Cu and suppressing the generation of boride. In addition, when a transition metal from periodic table 4a is used as M, even better performance is obtained;
It is estimated as follows. Cu is MCx in the sintered body,
MNx, M(C/N)x reacts with excess M of group 4a transition metal to form a low melting point liquid phase, resulting in CBN and MC,
It penetrates uniformly into the interface with binders such as MN and M(C/N). M-Cu that has entered this interface has good affinity with CBN and the binder phases MC, MN, and M(C/N), so it
This is thought to be to increase the bonding strength with MN and M(C/N). Furthermore, as described above, the sintered body of the present invention can be sintered at a low temperature because a liquid phase with a low melting point appears during sintering. In the sintered body of the present invention, Cu does not exist as a blunt metal, but as MC, MN, M
(C/N), etc. as a solid solution in the binder phase, or
Because it reacts with excess M and Al in MCx, MNx, and M(C/N)x and exists in the form of intermetallic compounds, no strength decrease occurs at high temperatures. However, if the Cu content exceeds 50% by weight in the binder, Cu and iron group metals may dissolve in the binder phase of MC, MN, and M (C/N) or react with excess M and Al. Since the metal does not completely form intermetallic compounds and exists in the sintered body in a pure metal state, the hardness of the sintered body decreases and tool performance deteriorates. Furthermore, if the content is less than 1%, the effect of adding Cu will not be apparent. Another factor that improves the performance of the sintered body of the present invention is the use of an Al compound in the binder. For example, if there is a phenomenon in which hard particles are dissolved in a binder phase and reprecipitated, such as in liquid phase sintering of WC-Co cemented carbide, a product with high bonding strength between the binder phase and the hard particles, or between the hard particles can be obtained. In the sintered body of the present invention, it has been found that a phenomenon similar to this occurs when an Al compound is present in the binder. MCx as a bonding material,
As Al compounds are added to MNx and M(C/N)x, the sinterability improves as the amount increases.
A highly hard sintered body can be obtained even when sintered at low temperatures. The effect of Al content is fully exhibited when the amount of Al added is 5% or more by weight in the binder. Also
If the content of Al exceeds 50% by weight in the binder, the strength of the binder decreases, which is not preferable, and the optimum content is 5% to 50%. In addition, the CBN content of the sintered body of the present invention is 30% by volume.
~80%. When the CBN content is less than 30% by volume, the hardness of the sintered body is low and the effect of CBN inclusion is not so great. Furthermore, the CBN content is 80% by volume.
% or less, especially 70% or less, the toughness of the sintered body is very good because the tough binder phase forms a connected phase. In particular, this sintered body is suitable for interrupted cutting of high-hardness work materials such as die steel and general hardened steel. Various methods of adding Al or Cu can be considered. Al or Al in the mixed powder with CBN before sintering
The method of adding Cu is the simplest, but it is difficult to obtain fine powders of these metals with a size of 1 μm or less, and coarse particles tend to make the structure of the sintered body non-uniform. The most preferable method is to use sintered materials MCx, MNx, and M for Al.
This is a method in which the excess M of (C.N)x is reacted with metal Al in advance to form an intermetallic compound of M-Al, which is then pulverized and used. In this case, extremely fine binder powder of 1 μm or less, which is made of an intermetallic compound of binders MCx, MNx, M(C·N)x, and Al, can be easily obtained. In addition, metal M and metal
An easily pulverized powder of an M-Al intermetallic compound synthesized by reacting Al may also be used. yet another form
It may be added in the form of a nitrogen-containing compound such as AlN, Ti 3 AlN, Zr 2 AlN, which is an Al compound. In the case of Cu, the most preferable method is to infiltrate Cu from the outside of the sintered body by diffusion during sintering, or to add it by reacting with a binder in the same way as when adding Al. The grain size of the CBN crystal used in the present invention needs to be 10 μm or less in view of the performance of the sintered body as a tool. If the crystal grains are coarse, the strength of the sintered body will decrease, and especially when used as a cutting tool, a finer crystal grain will give a better machined surface. Another feature of the present invention is that the particle size of the binder phase consists of extremely fine crystal grains of 1 μm or less. As a result, the sintered body has a structure in which the binder phase is uniformly dispersed between the CBN particles, and a high-strength sintered body can be obtained. The production of the sintered body is carried out at a pressure of 20 kb or more and a temperature of 900°C or more using an ultra-high pressure and high temperature equipment used for diamond synthesis. Particularly preferred sintering pressure and temperature conditions are pressure 30kb to 70kb and temperature 1100℃.
~1500℃. The upper limits of these pressure and temperature conditions are all within the range of practical operating conditions for industrial scale ultra-high pressure, high temperature equipment. Further, the pressure and temperature conditions must be within the stable range of high-pressure phase type boron nitride shown in FIG. When using such an excellent sintered body as a cutting tool, the high hardness sintered body only needs to be used in the part that will become the cutting edge. Its performance can be fully demonstrated by bonding it to hard metal. However, if it is directly bonded to cemented carbide, the bond strength may be weak and it may not be possible to use it for interrupted cutting, etc. if the CBN content is high. To obtain sufficient bonding strength, CBN should be contained less than 70% by volume, and the remainder should be one of carbides, nitrides, and carbonitrides of Ti, Zr, and Hf.
The bonding may be performed using an intermediate layer consisting of a seed, a mixture thereof, or a mutually solid compound. This will be explained in more detail below with reference to Examples. Example 1 A mixed powder consisting of 65% by volume CBN particles with an average particle size of 3 μm and binder powder was prepared. The binder powder consists of TiN 0.55 powder and Al powder at 70% by weight each .
The mixture at a ratio of 30% was heated to 1000℃ in a vacuum furnace.
It was heated for 30 minutes and then ground to a fine powder with an average particle size of 0.3μ. When this binder powder was examined by X-ray diffraction, it was found that in addition to TiN, Ti 2 AlN, TiAl 3 ,
Compounds generated by the reaction of TiN and Al, such as TiAl, were detected, but metallic Al was not detected. this is
TiN 0. Relative excess Ti added to N in 55
It is produced by reaction with Al. This mixed powder of CBN and binder was mixed with an outer diameter of 14 mm.
A cemented carbide with a WC-6% Co composition (outer diameter 10
mm, height 2 mm), and then filled with 0.30 g. Cemented carbide (outer diameter
10 mm, height 2 mm), a Mo stopper was placed, and the entire container was placed in an ultra-high pressure device used for diamond synthesis. Pressure is increased to 50kb and then temperature is increased to 1250℃.
and held for 20 minutes. The removed sintered body was ground using a diamond grindstone to grind the Cu-deposited cemented carbide until a high-hardness sintered body appeared, and then polished using diamond paste. When observed with an optical microscope, it was found to be a dense sintered body with no pores. This sintered body was firmly bonded to the cemented carbide via the CBN-containing bonding layer. The hardness was measured using a Bitkers hardness tester with a load of 5 kg, and the result was approx.
It showed a value of 3500. In addition, when we investigated the elements contained in the sintered body using an X-ray microanalyzer, we found that
Cu was uniformly contained, and the amount was approximately 3% of the weight of the binder. Furthermore, the products of this sintered body were investigated by X-ray diffraction, and the results showed that CBN, TiN,
AlN etc. were present, but only a small amount of borides such as TiB 2 were detected. A sintered body containing no Cu was produced in the same manner, and the product was examined by X-ray diffraction. It was found that in addition to CBN, TiN, and AlN, large amounts of TiB 2 and AlB 2 were present in the product. Chips for cutting were made using these two types of sintered bodies. A SKD11 die steel round bar with H RC 60 was used as the work material. Cutting conditions are speed 100m/min, depth of cut 0.2mm, feed 0.15mm/rev., and flank wear width 0.2mm.
The sintered body of the present invention could be cut for 40 minutes, while the sintered body containing no Cu could be cut for 23 minutes. For comparison, commercially available volume% is approximately 90%.
A chip made of a sintered body of CBN bonded with a metal mainly composed of Co was tested under the same conditions. As a result, the machining time was 15 minutes. Example 2 A binder powder shown in Table 1 was prepared.

【表】 これらの組成の結合材粉末を実施例1と同様に
して加熱処理を施し粉砕した。この結合材粉末と
平均粒度3μのCBN粉末とを混合して、第2表
の組成の混合粉末を作成した。
[Table] Binder powders having these compositions were heat treated and pulverized in the same manner as in Example 1. This binder powder and CBN powder having an average particle size of 3 μm were mixed to prepare a mixed powder having the composition shown in Table 2.

【表】【table】

【表】 実施例1と同様にしてMo製の容器にCBNを容
積で50%含有し、残部がTi(C・N)とAlを重
量で5:1含む混合粉末を塗布したWC−10%Co
組成の超硬合金を置き、その上に完粉とCuを
種々の膜厚で蒸着した超硬合金を置いてMo栓を
し、超高圧高温装置を用いて50kb、1250℃で20
分間保持した。各々の硬度測定結果を第2表に示
す。またこれらの焼結体は、中間接合層を介して
超硬合金母材に強固に接合していた。比較例とし
て挙げたJ、K、L、Mのうち、CBNの含有量
の少ないJは、耐摩耗性で劣る。一般的には、
CBNの含有量の増加に伴つて硬度は上昇するが
同じCBN含有量でもCuやAl量が多いK、L、は
Bよりかなり硬度が低い。さらに、Alの少ない
Mは、耐摩耗性で劣る。また本発明焼結体である
ABCDEFGHIの破面を観察したところこれらの
焼結体は全て、CBNが粒内破壊していた。 次にこれらの焼結体を切断し超硬合金のスロー
アウエイチツプの一角にロウ付け后、加工して切
削チツプを作成した。切削性能を評価する為に、
先ず正面フライス盤を用いて1枚刃で断続切削を
行つた。被削材は熱処理されたHRc62のSKD11
ダイス鋼である。 切削速度は200m/分、切込み0.5mmとし、送り
速度を0.07mm/刃、0.12mm/刃、0.19mm/刃と順
次厳しい条件に上げて行き、焼結体の欠損状態を
調べた。 なお比較のために市販の体積%で約90%の
CBNを含有しCoを主成分とする金属で結合した
焼結体と、焼結体Bと同じ組成でCuの含有しな
い焼結体Nの切削チツプも作成し、テストした。
本発明焼結体のABCDEFGHIは0.19mm/刃の送り
速度でも欠損しなかつた。一方市販のCoを結合
材とした焼結体は0.07mm/刃の送りでCuを含有
していない焼結体Nは0.19mm/刃の送り速度で欠
損してしまつた。 また、これらの切削り用のチツプを用いて熱処
理後のSNCM9種の鋼(HRc54)を用い切削速度
120m/min.、切込み0.2mm送り0.15mm/rev.で切
削テストした。工具の逃げ面摩耗巾が0.2mmに達
するまでの切削り時間を第2表に示した。 実施例 3
[Table] WC-10% in which a mixed powder containing 50% CBN by volume and the balance containing Ti (C/N) and Al at a ratio of 5:1 by weight was applied to a Mo container in the same manner as in Example 1. Co
A cemented carbide of the same composition is placed, and a cemented carbide on which finished powder and Cu have been vapor-deposited with various film thicknesses is placed, a Mo plug is placed, and 50kb is heated at 1250℃ for 20 minutes using an ultra-high pressure and high temperature device.
Hold for minutes. The hardness measurement results for each are shown in Table 2. Moreover, these sintered bodies were firmly bonded to the cemented carbide base material via the intermediate bonding layer. Among J, K, L, and M listed as comparative examples, J, which has a low CBN content, is inferior in wear resistance. In general,
The hardness increases as the CBN content increases, but even with the same CBN content, K and L, which have a large amount of Cu and Al, have significantly lower hardness than B. Furthermore, M with less Al has poor wear resistance. Also, the sintered body of the present invention
When the fracture surfaces of ABCDEFGHI were observed, CBN was found to have undergone intragranular fracture in all of these sintered bodies. Next, these sintered bodies were cut and brazed onto one corner of a cemented carbide throw-away chip, and then processed to create a cutting chip. In order to evaluate cutting performance,
First, interrupted cutting was performed with a single blade using a face milling machine. Work material is heat treated HRc62 SKD11
It is die steel. The cutting speed was 200 m/min, the depth of cut was 0.5 mm, and the feed rate was gradually increased to 0.07 mm/tooth, 0.12 mm/tooth, and 0.19 mm/tooth, and the defect state of the sintered body was examined. For comparison, commercially available volume% is about 90%.
Cutting chips of a sintered body containing CBN and bonded with a metal whose main component is Co, and a sintered body N that has the same composition as sintered body B but does not contain Cu were also prepared and tested.
ABCDEFGHI of the sintered body of the present invention did not break even at a feed rate of 0.19 mm/blade. On the other hand, the commercially available sintered body using Co as a binder broke at a feed rate of 0.07 mm/blade, and the sintered body N, which does not contain Cu, broke at a feed rate of 0.19 mm/blade. In addition, using these cutting chips, the cutting speed was increased using SNCM grade 9 steel (HRc 54 ) after heat treatment.
Cutting tests were conducted at 120 m/min., 0.2 mm depth of cut, and 0.15 mm/rev. Table 2 shows the cutting time until the flank wear width of the tool reaches 0.2 mm. Example 3

【表】 第3表の組成の結合材粉末を作成し、加熱処理
を施した。これらの結合材粉末と平均粒度5μの
CBN粉末を第4表に示したように配合した。次
にMo製容器に、上記完粉を充填し、この上に
WC−10%Co組成の超硬合金を置きMo製の栓を
してこの容器全体を超高圧装置に入れて焼結し
た。X線回折によりこれらの焼結体を調らべた
が、ボライドの発生は非常に少なかつた。さらに
これらの焼結体の硬度を測定した結果を第4表に
示す。これらの焼結体を用いてチツプを作成し、
チルド鋳鉄を用いて切削速度60m/min、切り込
み0.5mm送り0.20mm/rev.の条件で30分間切削し
た。比較のため市販の体積%で約90%のCBNを
Coを主成分とする金属で結合した焼結体で作成
したチツプを用いて同一条件でテストした。切削
後のチツプの摩耗を観察した結果も第4表に示
す。
[Table] A binder powder having the composition shown in Table 3 was prepared and subjected to heat treatment. These binder powders and an average particle size of 5μ
CBN powder was formulated as shown in Table 4. Next, fill the Mo container with the above finished powder and place it on top.
A cemented carbide with a WC-10% Co composition was placed, a Mo stopper was placed, and the entire container was placed in an ultra-high pressure device and sintered. When these sintered bodies were examined by X-ray diffraction, the occurrence of boride was extremely small. Furthermore, the results of measuring the hardness of these sintered bodies are shown in Table 4. Create chips using these sintered bodies,
Chilled cast iron was cut for 30 minutes at a cutting speed of 60 m/min, depth of cut of 0.5 mm, and feed of 0.20 mm/rev. For comparison, commercially available CBN with a volume percentage of approximately 90% is used.
Tests were conducted under the same conditions using a chip made of a sintered body bonded with Co-based metal. Table 4 also shows the results of observing the wear of the chips after cutting.

【表】【table】

【表】 実施例 4 第5表に示す結合材粉末を作成し、加熱処理を
施した。これらの結合材粉末に平均粒度1μの
CBN粉末を体積でそれぞれ第6表に示したよう
に配合、混合した。次にMo製容器に上記完粉を
充填し、その上にWC−6%Co組成の超硬合金を
置き、Mo製の栓をして超高圧装置に入れ、焼結
した。X線回折によりこれらの焼結体の生成物を
調べたがボライドの発生は少なかつた。またこれ
らの焼結体の破面を観察したところ、どの焼結体
ともCBN粒子内で破壊しており粒界破壊してい
る個所は認められなかつた。さらにこれらの焼結
体の硬度測定結果を第6表に示す。
[Table] Example 4 Binding material powders shown in Table 5 were prepared and subjected to heat treatment. These binder powders have an average particle size of 1μ.
The CBN powders were blended and mixed as shown in Table 6 by volume. Next, a container made of Mo was filled with the finished powder, a cemented carbide having a composition of WC-6% Co was placed on top of the container, a plug made of Mo was placed, the container was placed in an ultra-high pressure device, and the container was sintered. When the products of these sintered bodies were examined by X-ray diffraction, little boride was found. Furthermore, when the fracture surfaces of these sintered bodies were observed, the fracture occurred within the CBN grains in all of the sintered bodies, and no areas of intergranular fracture were observed. Furthermore, Table 6 shows the hardness measurement results of these sintered bodies.

【表】【table】

【表】 実施例 5 粒度1μ以下の衝撃波法によつて合成されたウ
ルツ鉱型窒化硼素粉末を用い、実施例2で使用し
た結合材粉末へとウルツ鉱型窒化硼素粉末75体積
%、結合材粉末25体積%の割合に混合した。Mo
製の容器に、この粉末を充てんした後、厚さ2μ
のCuを蒸着した超硬合金を置き、Mo製の栓をし
て、超高圧、高温装置を用いて焼結した。焼結体
の硬度はピツカース硬度で3600であつた。
[Table] Example 5 Using wurtzite-type boron nitride powder synthesized by the shock wave method with a particle size of 1 μ or less, 75% by volume of wurtzite-type boron nitride powder and binder were added to the binder powder used in Example 2. The powder was mixed in a proportion of 25% by volume. Mo
After filling this powder into a container made of
A cemented carbide on which Cu was deposited was placed, a Mo stopper was placed, and the material was sintered using ultra-high pressure and high temperature equipment. The hardness of the sintered body was 3600 on the Pickers scale.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明焼結体の製造条件を説明する為のも
ので高圧相型窒化硼素の圧力−温度相図上におけ
る熱力学的な安定領域を示したものである。
The figure is for explaining the manufacturing conditions of the sintered body of the present invention, and shows the thermodynamically stable region on the pressure-temperature phase diagram of high-pressure phase type boron nitride.

Claims (1)

【特許請求の範囲】 1 平均粒度が10μ以下の高圧相型窒化硼素を体
積で30%以上80%以下含有し、残部の結合相が周
期率表4a、5a、6a遷移金属の炭化物、窒化物、炭
窒化物の1種もしくはこれらの混合物、または相
互固溶体化合物及びAlの化合物より成り、結合
相中のAlの含有量が重量で5〜50%で、かつ結
合材の結合粒子の大部分が1μ以下の微細粒子よ
り成り、さらに該結合相中にCuを1〜50重量%
含有し、残部が前記遷移金属の炭化物、窒化物、
炭窒化物の1種もしくはこれらの混合物、または
相互固溶体化合物から成ることを特徴とする工具
用高硬度焼結体。 2 上記結合相残部が、Ti、Zr、Hfの炭化物、
窒化物、炭窒化物の1種もしくはこれらの混合
物、または相互固溶体化合物から成ることを特徴
とする特許請求の範囲第1項記載の工具用高硬度
焼結体。 3 前記高圧相型窒化硼素が立方晶型窒化硼素で
あることを特徴とする特許請求の範囲第1項記載
の工具用高硬度焼結体。 4 平均粒度が10μ以下の高圧相型窒化硼素粉末
と、周期率表4a、5a、6aの遷移金属の炭化物、窒
化物、炭窒化物をそれぞれ、MCx、MNx、M
(C・N)xで表わしたとき、xの値が0.95以下
の化合物粉末とAl又はAlを含む合金又は化合物
粉末を混合し、これを粉末状もしくは型押成型
後、超高圧高温装置を用いて圧力20kb以上、温
度900℃以上で焼結させるとともに焼結体外部よ
りCuを焼結体内に浸入させることを特徴とする
高圧相型窒化硼素の含有量が焼結体中の体積で30
%以上80%以下含有し、残部の結合相がAlを重
量で5〜50%、Cuを重量で1〜50%含有し、結
合相の残部が前記遷移金属の炭化物、窒化物、炭
窒化物の1種もしくはこれらの混合物、または相
互固溶体化合物より成る工具用高硬度焼結体の製
造方法。 5 上記遷移金属であるMがTi、Zr、Hfである
ことを特徴とする特許請求の範囲第4項記載の工
具用高硬度焼結体の製造方法。 6 上記高圧相型窒化硼素粉末として立方晶型窒
化硼素粉末を用いることを特徴とする特許請求の
範囲第4項記載の工具用高硬度焼結体の製造方
法。 7 平均粒度が10μ以下の高圧相型窒化硼素粉末
と、周期率表4a、5a、6aの遷移金属の炭化物、窒
化物、炭窒化物をそれぞれ、MCx、MNx、M
(C・N)xで表わしたとき、xの値が0.95以下
の化合物粉末とAl又はAlを含む合金又は化合物
粉末とCu粉末を混合し、これを粉末状もしくは
型押成型後、超高圧装置を用いて圧力20kb以
上、温度900℃以上で焼結することを特徴とする
高圧相型窒化硼素の含有量が焼結体中の体積%で
30%以上80%以下含有し、残部の結合相がAlを
重量で5〜50%、Cuを重量で1〜50%含有し、
結合相の残部が前記遷移金属の炭化物、窒化物、
炭窒化物の1種もしくはこれらの混合物、または
相互固溶体化合物より成る工具用高硬度焼結体の
製造方法。 8 上記遷移金属であるMがTi、Zr、Hfである
特許請求の範囲第7項記載の工具用高硬度焼結体
の製造方法。 9 上記高圧相型窒化硼素粉末として立方晶型窒
化硼素粉末を用いることを特徴とする特許請求の
範囲第7項記載の工具用高硬度焼結体の製造方
法。
[Scope of Claims] 1 Contains 30% to 80% by volume of high-pressure phase boron nitride with an average particle size of 10μ or less, and the remaining binder phase is a carbide or nitride of a periodic table 4a, 5a, or 6a transition metal. , one type of carbonitride or a mixture thereof, or a mutual solid solution compound and a compound of Al, the content of Al in the binder phase is 5 to 50% by weight, and most of the binder particles of the binder are It consists of fine particles of 1μ or less, and further contains 1 to 50% by weight of Cu in the binder phase.
containing a carbide or nitride of the transition metal, the remainder being a carbide or nitride of the transition metal,
A high-hardness sintered body for tools, characterized in that it is made of one type of carbonitride, a mixture thereof, or a mutual solid solution compound. 2 The remainder of the binder phase is carbides of Ti, Zr, and Hf,
The high-hardness sintered body for tools according to claim 1, characterized in that it is made of one type of nitride, carbonitride, or a mixture thereof, or a mutual solid solution compound. 3. The high-hardness sintered body for a tool according to claim 1, wherein the high-pressure phase type boron nitride is cubic boron nitride. 4 High-pressure phase type boron nitride powder with an average particle size of 10μ or less and carbides, nitrides, and carbonitrides of transition metals in the periodic table 4a, 5a, and 6a, respectively, as MCx, MNx, and M
When expressed as (C/N)x, a compound powder with a value of x of 0.95 or less is mixed with Al or an alloy or compound powder containing Al, and after molding into a powder form or molding, an ultra-high pressure and high temperature equipment is used. The content of high-pressure phase type boron nitride is 30% by volume in the sintered body.
% or more and 80% or less, the remainder of the binder phase contains 5 to 50% by weight of Al, 1 to 50% of Cu by weight, and the remainder of the binder phase is a carbide, nitride, or carbonitride of the transition metal. A method for producing a high-hardness sintered body for tools, which is made of one type or a mixture thereof, or a mutual solid solution compound. 5. The method for manufacturing a high-hardness sintered body for tools according to claim 4, wherein M, which is the transition metal, is Ti, Zr, or Hf. 6. The method of manufacturing a high-hardness sintered body for tools according to claim 4, characterized in that a cubic boron nitride powder is used as the high-pressure phase boron nitride powder. 7 High-pressure phase type boron nitride powder with an average particle size of 10 μ or less and carbides, nitrides, and carbonitrides of transition metals in the periodic table 4a, 5a, and 6a, respectively, as MCx, MNx, and M
When expressed as (C/N)x, a compound powder with a value of x of 0.95 or less, Al or an alloy or compound powder containing Al, and Cu powder are mixed, and after molding into powder or molding, ultra-high pressure equipment is used. The content of high-pressure phase type boron nitride, which is characterized by sintering at a pressure of 20 kb or more and a temperature of 900°C or more, is expressed as volume % in the sintered body.
30% to 80%, the remaining binder phase contains 5 to 50% by weight of Al and 1 to 50% by weight of Cu,
The remainder of the binder phase is a carbide or nitride of the transition metal,
A method for producing a high hardness sintered body for tools comprising one type of carbonitride, a mixture thereof, or a mutual solid solution compound. 8. The method for manufacturing a high-hardness sintered body for tools according to claim 7, wherein M, which is the transition metal, is Ti, Zr, or Hf. 9. The method for manufacturing a high-hardness sintered body for tools according to claim 7, characterized in that a cubic boron nitride powder is used as the high-pressure phase boron nitride powder.
JP7533680A 1980-06-03 1980-06-03 High hardness sintered body for tool and preparation thereof Granted JPS56169748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7533680A JPS56169748A (en) 1980-06-03 1980-06-03 High hardness sintered body for tool and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7533680A JPS56169748A (en) 1980-06-03 1980-06-03 High hardness sintered body for tool and preparation thereof

Publications (2)

Publication Number Publication Date
JPS56169748A JPS56169748A (en) 1981-12-26
JPS6241306B2 true JPS6241306B2 (en) 1987-09-02

Family

ID=13573305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7533680A Granted JPS56169748A (en) 1980-06-03 1980-06-03 High hardness sintered body for tool and preparation thereof

Country Status (1)

Country Link
JP (1) JPS56169748A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0776404B2 (en) * 1985-06-27 1995-08-16 デ ビア−ズ インダストリアル ダイアモンド デイビジヨン(プロプライエタリイ) リミテツド Cutting tool material and manufacturing method thereof
GB2431166B (en) * 2005-10-12 2008-10-15 Hitachi Powdered Metals Manufacturing method for wear resistant sintered member, sintered valve seat, and manufacturing method therefor
CN102766793B (en) * 2012-07-31 2015-04-08 自贡硬质合金有限责任公司 Cermet material and preparation method thereof

Also Published As

Publication number Publication date
JPS56169748A (en) 1981-12-26

Similar Documents

Publication Publication Date Title
US4647546A (en) Polycrystalline cubic boron nitride compact
EP1313887B1 (en) Method of producing an abrasive product containing cubic boron nitride
EP1309732B1 (en) Method of producing an abrasive product containing diamond
EP0181258A2 (en) Improved cubic boron nitride compact and method of making
JPH0621314B2 (en) Sintered body for high hardness tool and manufacturing method thereof
CN101341268A (en) Cubic boron nitride compact
US5569862A (en) High-pressure phase boron nitride sintered body for cutting tools and method of producing the same
JPH0443874B2 (en)
JPS63145726A (en) Production of cubic boron nitride-base ultra-high pressure sintereo material for cutting tool
JPS6241306B2 (en)
JPS62983B2 (en)
JPS6251911B2 (en)
JPS6246510B2 (en)
EP1322793A2 (en) Abrasive and wear resistant material
JPH0215515B2 (en)
JPS627259B2 (en)
JPH06198504A (en) Cutting tool for high hardness sintered body
JPH0357171B2 (en)
JP2502362B2 (en) High hardness sintered body for tools
JPS6137221B2 (en)
KR860002131B1 (en) Sintered compact for use in a tool
JPS62247008A (en) High-hardness sintered body for tool and its production
JPH0377151B2 (en)
JPS6247940B2 (en)
JPS6242989B2 (en)