JPS6246510B2 - - Google Patents

Info

Publication number
JPS6246510B2
JPS6246510B2 JP52113987A JP11398777A JPS6246510B2 JP S6246510 B2 JPS6246510 B2 JP S6246510B2 JP 52113987 A JP52113987 A JP 52113987A JP 11398777 A JP11398777 A JP 11398777A JP S6246510 B2 JPS6246510 B2 JP S6246510B2
Authority
JP
Japan
Prior art keywords
sintered body
powder
cbn
compound
nitrides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52113987A
Other languages
Japanese (ja)
Other versions
JPS5446211A (en
Inventor
Akio Hara
Shuji Yatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP11398777A priority Critical patent/JPS5446211A/en
Priority to AU31520/77A priority patent/AU512633B2/en
Priority to DE2756512A priority patent/DE2756512C3/en
Priority to FR7738377A priority patent/FR2375155B1/fr
Priority to GB53344/77A priority patent/GB1593770A/en
Priority to CA293,584A priority patent/CA1090062A/en
Publication of JPS5446211A publication Critical patent/JPS5446211A/en
Priority to US06/119,771 priority patent/US4334928A/en
Publication of JPS6246510B2 publication Critical patent/JPS6246510B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

立方晶型窒化硼素(Cubic BN以下CBNと略
す)はダイヤモンドに次ぐ高硬度の物質であり、
超高圧高温下で合成される。現在既に研削用砥粒
として使用されており、また切削用途にはCBN
を金属Co等で結合した焼結体が一部に使用され
ている。このCBNを金属で結合した焼結体は切
削工具として使用した場合、結合金属相の高温で
の軟化による耐摩耗性の低下や、被削材金属が溶
着し易すい為に工具が損傷するといつた欠点があ
る。 本発明は、このような金属で結合した焼結体で
なく、高強度で耐熱性に優れた硬質金属化合物を
結合相とした切削工具用途に適した新らしい
CBN焼結体に関するものである。 発明者等は先に高硬度で且つ熱伝導率が極めて
高いというCBNの特徴を生かした工具用焼結体
として、CBNを周期律表第4a,5a,6a族金属の
炭化物、窒化物、硼化物、硅化物からなる化合物
で結合した高硬度の工具用焼結体を開発し特許出
願している(特願昭51―154570号、特願昭52―
54666号)。 発明者等は、更にこの工具用焼結体の用途の中
で特に高硬度の鋼や鋳鉄の切削加工に適した工具
材について広範囲な組成の焼結体を試作し、性能
試験を行なつた結果、本発明に到達したものであ
る。 従来は硬度がHRc45以上の焼入れ処理した高硬
度の鋼等の加工には主にAl2O3やSiC系の砥粒を
使用した砥石による切削加工が行なわれていた。
CBNはこのような高硬度材の切削加工用砥粒と
して開発されたものであり、既に焼入れした工具
鋼等の研削加工に使用されている。研削加工は一
般に切削加工に比較して単位時間当りの被加工物
の除去量が少なく、加工能率は低い。また加工機
械も例えば旋盤と研削盤とを比較すると一般に研
削盤の方が高価であり、加工能率が低いことと合
せて総合した加工コストが高くなる。しかし、今
までは硬度がHRc45以上の被加工物を実用的な条
件で切削加工できるような工具はなかつた。 前述した市販されているCBNをCo等の金属で
結合した焼結体はこのような従来切削加工に頼つ
ていた高硬度材を一応切削加工することは出来る
が実際にテストしてみると、未だ耐熱性や耐摩耗
性が不足しており、高硬度の鋼、鋳鉄の切削加工
用工具としては実用的に充分な性能を有するもの
とは言えない。 発明者等はこのような高硬度の鋼や鋳鉄の切削
加工用工具として先願(特願昭51―154570号)に
開示したCBNを周期律表第4a,5a,6a族金属の
各種化合物で結合した焼結体を試作して性能テス
トを行なつた結果、結合材としてはこれ等化合物
の中で炭化物、窒化物が適しており、特に周期律
表第4a族金属であるTi,Zr,Hfの炭化物、窒化
物もしくはこれ等の相互固溶体または混合物を主
体とするものが最も耐摩耗性に優れていることを
見出した。これ等の化合物は現在市販されている
切削工具用サーメツトの主要な耐摩耗性成分とし
て使用されているもので、本発明ではこれを更に
高硬度のCBNの結合材として使用するものであ
る。焼入れ鋼等の高硬度材を切削する場合工具刃
先に加わる応力は一般の鋼を同一条件で切削する
場合よりも高く、また工具刃先温度も高くなる。
WC基超硬合金やTiC基サーメツトの如くCo等の
金属結合相を有する工具材で切削すると、これ等
の工具材は高温硬度が不足しており、刃先が変形
して破壊してしまう。 結合金属を含まないAl2O3を主成分とするセラ
ミツク工具は比較的にこのような高硬度の鋼、鋳
鉄の切削に適しているが、靭性が不足しており、
切削時に刃先に加わる応力が変動すると工具が大
破してしまう。 また、焼入鋼等の切削加工する場合、一般に被
加工寸法精度、面粗度は切削加工に匹敵する精度
が要求される。特に加工面粗度を良くする為には
工具刃先角度を鋭くして切味の良い状態で加工す
る方が有利であるが、Al2O3系セラミツクでは靭
性が不足している為刃先を鋭くして使用すると欠
損してしまい、良い加工面粗度を得ることは困難
である。 本発明の焼結体はこのような従来の工具材の欠
点を改善したもので、高硬度の耐摩耗性成分であ
るCBNを耐熱性、耐摩耗性に富む化合物で結合
した強靭な工具用焼結体を提供するものである。 更に発明者等は焼結体中のCBNの含有量、粒
度と切削性能の関連について詳しく実験した結
果、高硬度の鋼、鋳鉄等を切削加工する場合
CBNの含有量、粒度が切削性能に大きく影響す
ることを見出した。 第1図は結合材としてTiNを用いた場合のCBN
の含有量と硬度HRc60の焼入れ鋼を切削した場合
の耐摩耗性の相関を示すものである。尚、焼結体
中のCBN粒度は平均粒度3μであり、結合材中
には後述する理由でAlを加え、Al―Ti系の金属
間化合物等のAlを含む化合物を形成せしめてあ
る。 CBNはTiNよりも高硬度であり、また耐摩耗性
に富んでいると考えられる。従つて、焼入れ鋼等
を切削する工具としてはCBNの含有量が多いほ
ど耐摩耗性は向上すると考えられるが、実際は第
1図に示した如くTiNを結合材とした場合はCBN
含有量が体積で60%のものが最も耐摩耗性に優れ
ており、それ以上では逆に耐摩耗性が悪くなつて
いる。この理由は未だ充分解明されていないが、
一つの理由としてはCBN含有量が体積で70%を
越えるとCBN粒相互が接触するようになり、こ
のときCBN粒界の接合強度が充分強ければ良い
が、そうでない場合は切削時に加わる剪断応力に
よりこの粒界に亀裂を生じてCBN粒子が脱落す
ることが考えられる。 本発明の焼結体では結合材となるTi,Zr,Hf
の炭化物、窒化物結晶とCBN粒子の結合強度は
CBN粒間の結合強度より強いものと考えられ、
これ等の結合材がCBN粒子間に連続した結合相
として存在し得る組成範囲で耐摩耗性の極大値が
生じるものと思われる。 尚、市販されているCoを主体とした金属を結
合材とするCBN焼結体は組織より推定して約85
体積%のCBNを含有しているが、本発明の焼結
体はこれよりも耐摩耗性が大巾に改善されてい
る。 尚、CBN含有量が30%未満では市販CBN焼結
体と同程度の耐摩耗性を示している。 第2図はCBN含有量を体積%で60%一定とし
てTiNを結合材とした焼結体で、CBNの粒度のみ
を変えた場合の耐摩耗性を評価したものである。 焼結体中のCBNの平均粒度が微細なほど摩耗
量は少なくなつている。CBNの粒度は耐摩耗性
のみでなく、被加工物の加工面粗度にも影響す
る。実験の結果、CBNの粒度が粗い場合には被
加工物の加工面粗度が粗くなることが判つた。現
在研削加工を行なつているような焼入鋼等の加工
を本発明の焼結体を用いて切削加工する場合、当
然この加工面粗度が問題になる。発明者等の実験
によればこの耐摩耗性と、被加工物の加工面粗度
の双方の要求性能からみてCBNの平均粒度が10
μm以下であれば実用上問題はないが、更に3μ
m以下であれば極めて優れた性能を発揮すること
が判つた。 さてこのようにして選択されたCBNと耐熱性
化合物の焼結体を製造する方法は、先ず、CBN
粉末と、この耐熱性化合物粉末の1種もしくは2
種以上をボールミル等の手段を用いて混合し、こ
れを粉状でもしくは常温下で所定の形状に型押成
型し、超高圧装置を用いて高圧、高温下で焼結す
る。用いる超高圧装置はダイヤモンド合成に使用
されるガードル型、ベルト型等の装置である。発
熱体には黒鉛円筒を用い、その中にタルク、
NaCl等の絶縁物をつめてCBNの混合粉末型押体
を包む。黒鉛発熱体の周囲にはパイロフイライト
等の圧力媒体を置く。焼結する圧力、温度条件は
第3図に示した立方晶型窒化硼素の安定領域内で
行なうことが望ましいが、この平衡線は必ずしも
正確には分つておらず、1つの目安にすぎない。
又、CBNと組合す耐熱性化合物の種類によつて
条件は変え得る。 本発明による焼結体の非常に注目すべき、また
本発明を有用ならしめる特徴として前記耐熱性化
合物が焼結体組織上で連続した相をなすことが挙
げられる。即ち、本発明の焼結体では強靭な耐熱
性化合物が、あたかもWC―Co超硬合金中の結合
相である金属Co相の如く、高硬度のCBN粒子間
の隙間に侵入して連続した結合相の状態を呈し、
このことにより焼結体に強靭性が付与せしめられ
たものである。 Ti,Zr,Hfの炭化物、窒化物及びこれ等の相
互固溶体が本発明の結合相耐熱化合物として特に
優れている理由の一つは、例えば窒化物を例にと
ると、これ等金属の窒化物はMN1±xの形で示さ
れ、(MはTi,Zr,Hfの金属を示し、xは原子空
孔または相対的に過剰の原子の存在を意味す
る。)M―N相図上で広い存在範囲を有する。焼
結体の原料としてこのMN1±xのxが種々異なる
ものを使用して焼結体を試作した結果、xの値が
ある範囲内では特に優れた焼結性を有することを
見出した。 この理由について以下検討してみる。 工具材用として考えた時、特に切削工具用途で
は、焼結体の結晶粒の大きさは、数ミクロン以下
が望ましく、このような結晶粒度を得るのには、
原料のCBN粒度をこれより細かな微粉としなく
てはならない。 ミクロンまたはミクロン以下の微粉は、かなり
多量の酸素を含有している。一般に、この酸素は
粉末表面に、ほぼ水酸化物の形に近い化合物の形
で存在するのが大部分である。この水酸化物の形
に近い化合物は加熱時分解してガスとなつて出て
くる。焼結される物質が密封されていない時に
は、このガスを系外に出すのは困難ではない。し
かし、本発明の如く、超高圧下で焼結する場合に
は、発生したガスは、加熱系外に脱出することは
殆んど不可能である。一般にかかる場合には、予
め脱ガス処理をする事が粉末冶金業界では常織で
あるが、脱ガス処理温度が十分高く出来ない場合
には問題である。本件は、まさにそれに当る。即
ち、CBNの低圧相への変態を考えると加熱温度
に上限がある。 微粉末の脱ガス過程としては、温度と共に次の
各段階がある。まず低温では物理吸着しているも
のと吸湿水分が除去される。次いで化学吸着して
いるもの及び水酸化物の分解が起る。最後に酸化
物が残る。 CBNの場合1000℃位までは安定であるので、
最低でもこの温度位には予め加熱出来る。従つ
て、予め脱ガス加熱すれば残留ガス成分は酸化物
の形で残つていると考えてよい。逆に言えばガス
成分はなるべく焼結体中に残したくないのだか
ら、水および水素を全て除去することは予備処理
として行なうのが好ましい。 本発明では、この考えの下に全て1000℃以上の
脱ガス処理を真空中でしている。 MN1±xを加えた時、何故焼結体として良好な
ものが得られるかは次の如く考えられる。 即ち、CBN粉末表面には酸化物、多分B2O3
形のものが存在する。 このB2O3とMN1±xの(−x)部分に相当す
るMが反応した場合には、 B2O3+4M→MB2+3MO となりガスを発生しない。そしてMOはMNと同
一結晶構造を有し、相互固溶体を形成する。ここ
にMN1±xで表わされるTi,Zr,Hf窒化物が特
に優れた焼結性を示す理由があると考えられる。
このことは窒化物に限らず、MC1±xの形で示さ
れる炭化物、又はM(C,N)±xで示される
炭窒化物、又はMとして2種以上の金属を含む上
記した化合物についても言えることである。発明
者等はMN1±x,MC1±x,M(C,N)±x
の形でTi,Zr,Hfの化合物を示した時に(±
x)の値が0.97以下のこれ等化合物を原料とした
場合に焼結性が優れていることを確認した。 本発明による焼結体ではCBNの結合材として
前記した耐熱性化合物を用いるものであるが、更
に必要により耐熱性化合物以外のNi,Co,Fe等
の金属相を第3相として含むものであつても良
い。但し結合相の主となる成分は耐熱性化合物相
であり、これ等金属相は焼結体中の体積比で耐熱
性化合物相の量以下とする必要がある。それ以上
では焼結体の耐熱性、耐摩性が低下し、工具とし
ての性能が失なわれる。また本発明による焼結体
ではCBNの合成に使用され、高温、高圧下で六
方晶型窒化硼素及びCBNに対して溶解性を有す
ると信じられる元素、例えばLi等のアルカリ金
属、Mg等のアルカリ土類金属、Pb,Sn,Sb,
Al,Cd,Si等を添加物として含むものであつて
も良い。 本発明の焼結体の原料として使用するCBNは
六方晶型窒化硼素を原料として超高圧下で合成さ
れたものである。従つて、CBN粉末中には不純
物として六方晶型窒化硼素が残存している可能性
がある。また、超高圧下で焼結する場合において
も、結合材がCBNの個々の粒子間に侵入するま
ではCBN粒子は外圧を静水圧的に受けておら
ず、この間の加熱によつて六方晶型窒化硼素経へ
変態を起こす可能性もある。このような場合に前
記した六方晶型窒化硼素に対して解媒作用を有す
る元素が混合粉末中に添加されていると、この逆
変態を防止する効果があると考えられる。 発明者等は、この考えに基いて特にAl,Siにつ
いて効果を確認する実験を行なつた。Al,Siを添
加する方法としては第4a族の窒化物を例にとる
と、このMN1±xなる化合物で(±x)が0.97
以下のものにAl又はSi又は、この双方を所定量加
え混合した後、600℃以上に真空中又は不活性雰
囲気中で加熱してMN1±xの相対的に過剰なMと
Al又はSiを反応しめてM―Al,M―Si相図上に存
在する金属間化合物(例えばMがTiの場合
TiAl3,TiAl等)を生成させ、この粉末をCBNと
混合する結合材原料とした。 この方法では加えたAl,Siが結合材中に均一に
分散した状態となり、小量の添加で、その効果が
発揮される。別の方法としては、あらかじめM―
Al,M―Si間の金属間化合物粉末を作成して原料
混合時に加えるかもしくはAl,Siの粉末を加えて
もよい。これは結合材化合物を炭化物、炭窒化物
とする場合も同様である。このようにして作成し
たAl,Siを添加した焼結体と、これ等を含まない
焼結体を比較してみた。 焼結体を研摩して組織観察を行なうとAl,Siを
含む焼結体の方が研摩面においてCBN粒子が焼
結体より剥離することが少なく、CBN粒子と結
合相との結合強度が強いと考えられる。 又切削工具として性能を比較すると、やはり
Al,Siを含有する方が耐摩耗性、靭性ともに優れ
ていた。尚、このような効果が現れるのは焼結体
中に重量%0.1%以上のAl又はSiを含む場合であ
つた。特にAlを含む場合、結合相中に形成され
るM―Al系の金属間化合物は耐熱性に富むと共
に靭性もあり、焼結体の靭性を向上させる効果も
ある。 但し、耐摩耗性は、CBNや結合相の主要成分
であるTi,Zr,Hfの炭化物、窒化物等より劣る
故にAlの添加量を多くしてM―Al系金属間化合
物量が増すと一般に耐摩耗性は低下する。 本発明の超硬合金母材に接合された焼結体を切
削工具として使用する場合CBNと耐熱性化合物
からなる高硬度焼結体を直接鋼の工具支持体にロ
ウ付けしたり、超硬合金製スローアウエイチツプ
の先端にロウ付けして使用することができる。 CBNそのものは通常の銀ロウや銅ロウでは濡
れ性が悪い。従つてCBNの含有量の高いものほ
どロウ付けは困難となる。 本発明の焼結体はCBNの含有量は体積%で30
%以上70%未満であり、結合相は周期律表4a,
5a,6a族金属の炭化物、窒化物、炭窒化物を主体
としたものでこれが組織中で連続した結合相を形
成している。この結合相は銀ロウや銅ロウに対し
ても濡れ性が良く、従つて本発明の焼結体は通常
の方法でロウ付けが可能である。しかし、本発明
の焼結体を切削工具として使用する場合、耐摩耗
性に富んだCBN含有硬質層が工具刃先を形成し
ておれば良い。従つて、この硬質層を超硬質合金
を母材としてその上に接合した複合焼結体とする
方が、経済性及び工具の強度等の面からみて有利
である。複合焼結体における硬質層の厚みは、切
削工具とての使用条件とそれに応じた工具形状に
よつて変える必要があるが、一般的には0.5mm以
上の厚みがあれば本発明の焼結体の場合は充分で
ある。母材となる超硬合金は剛性が高く、且つ熱
伝導性がよく、靭性も優れているWC基超硬合金
が好ましい。このような複合焼結体を得る方法
は、予め超硬合金で所定の形状の母材合金を作成
しておき、これに接して工具刃先となる硬質層を
形成するCBNと耐熱性化合物を主体とした混合
粉末を、粉状でまたは型押成型して置き、この全
体を超高圧装置内でホツトプレスして硬質層を焼
結せしめると同時に、これと母材超硬合金とを接
合する。このとき超硬合金母材はCo等の金属を
結合相として含有しており、ホツトプレス時にこ
の結合金属の液相出限度を越えると結合金属は溶
融する。硬質層形成粉末のCBNの含有量が本発
明の焼結体の場合より多く、例えばCBNのみか
らなるような場合はCBN粒子が極めて剛性が高
く変形し難い為、超高下においても粒子間に隙間
を有しており、この隙間に前述した母材超硬合金
の液相が侵入してしまう。ところが本発明の焼結
体ではCBNの結合材として周期律表4a,5a,6a
族金属の炭化物、窒化物や炭窒化物を主体とした
ものを用いており、これが焼結中で連続した結合
相を形成するものであるが、これ等化合物は
CBNに比較して剛性が低く、超高圧下では加工
時に変形して母材超硬合金に液相が生ずる以前に
殆んど隙間を有しない圧粉体となつている。この
為、本発明の焼結では超高圧下でのホツトプレス
中に母材超硬合金に生じた液相が硬質層中に侵入
して、硬質層の組成が変動したり、耐摩耗性が低
下することはない。また本発明焼結体の結合相で
ある周期律表4a,5a,6a族金属の炭化物、窒化
物、炭窒化物はこれ等が超硬合金やサーメツトの
主要な硬質体耐摩耗性成分として用いられること
からも判るように、超硬合金中の結合金属である
Co等の鉄族金属に対して親和性に富んでおり、
本発明の焼結体ではこれ等化合物が焼結体中で連
続した結合相となつていることから、母材超硬合
金との接合界面において強固な接着強度を得るこ
とができる。 本発明の焼結体は前述した如く焼入鋼や高硬度
の鋳鉄等の切削加工用工具として優れた性能を有
すものである。特に機械部品等に用いられる構造
用炭素鋼、合金鋼、肌焼鋼、軸受鋼等で硬度が
HRc45〜65に熱処理された高硬度の部品材料や、
金型や工具材として用いられる炭素工具鋼、合金
工具鋼、高速度鋼等の硬度がHRc45〜66に熱処理
された材料の切削加工に適しており、従来研削加
工に頼つていたものを高能率、高精度で切削加工
することが可能である。さらに線材や板の圧延に
使用するチルド鋳鉄、ダクタイル鋳鉄、鋳鋼、鍛
鋼、焼入れ材のロールや、アダマイト、グレーン
ロール等の硬度が約HRc40以上の圧延ロール等で
従来超硬合金やセラミツクス工具で切削加工して
いたものに適用して、従来工具よりも数倍の高能
率で加工でき、工具寿命は20〜50倍という極めて
優れた性能を有している。 以下実施例により具体適に説明する。 実施例 1 超硬合金ボール使用のボールミル粉砕により平
均粒度1μmとしたTiN0.73粉末と平均粒度30μ
のAl粉末を重量で各々90%、10%の割合に配合
しV型ブレンダーを用いて混合した。この混合粉
末を1t/cm3の圧力でベレツトに型押成型し真空炉
中で1000℃に加熱し、30分間保持した。 これを粉砕して粉状としX線回折によつて調べ
たところ、TiN以外にTiAl3,TiAl及びTi2AlNと
思える回折ピークが得られ、金属Alは検出され
なかつた。このAl化合物を含むTiN粉末と平均粒
度3μのCBN粉末を次表の割合に混合した。
Cubic boron nitride (Cubic BN, abbreviated as CBN) is a material with the second highest hardness after diamond.
Synthesized under ultra-high pressure and high temperature. Currently, CBN is already used as an abrasive grain for grinding, and CBN is also used for cutting purposes.
Sintered bodies made by bonding metals such as Co with metals are used in some cases. When this sintered body of CBN bonded with metal is used as a cutting tool, the wear resistance decreases due to the softening of the bonded metal phase at high temperatures, and the workpiece metal easily adheres to the tool, resulting in damage to the tool. There are some drawbacks. The present invention is a new material suitable for cutting tools in which a binder phase is a hard metal compound with high strength and excellent heat resistance, rather than a sintered body bonded with such metals.
This relates to CBN sintered bodies. The inventors first developed CBN into carbides, nitrides, and boron of group 4a, 5a, and 6a metals of the periodic table as a sintered body for tools that takes advantage of CBN's characteristics of high hardness and extremely high thermal conductivity. We have developed a highly hard sintered body for tools bonded with compounds consisting of oxides and silicides, and have applied for patents (Japanese Patent Application No. 154570, 1983).
No. 54666). The inventors further prototyped sintered bodies with a wide range of compositions and conducted performance tests on tool materials particularly suitable for cutting high-hardness steel and cast iron. As a result, we have arrived at the present invention. Conventionally, hardened steel with a hardness of HRc45 or higher was mainly cut using a grindstone using Al 2 O 3 or SiC-based abrasive grains.
CBN was developed as an abrasive grain for cutting such high-hardness materials, and is used for grinding already hardened tool steel. Grinding generally removes less workpiece per unit time than cutting, and processing efficiency is low. Further, when comparing processing machines such as lathes and grinders, grinders are generally more expensive, and combined with lower processing efficiency, the overall processing cost is higher. However, until now there has been no tool that can cut workpieces with a hardness of HRc45 or higher under practical conditions. The aforementioned commercially available sintered bodies made by bonding CBN with metals such as Co can be used to machine high-hardness materials that conventionally rely on cutting, but when actually tested, It still lacks heat resistance and wear resistance, and cannot be said to have sufficient practical performance as a cutting tool for high-hardness steel or cast iron. The inventors have developed CBN, which was disclosed in a previous application (Japanese Patent Application No. 154570/1982), as a tool for cutting high-hardness steel and cast iron, using various compounds of metals in groups 4a, 5a, and 6a of the periodic table. As a result of prototype bonded sintered bodies and performance tests, we found that among these compounds, carbides and nitrides are suitable as bonding materials, and in particular Ti, Zr, which are group 4a metals of the periodic table, It has been found that a material mainly composed of Hf carbide, nitride, or a mutual solid solution or mixture of these has the best wear resistance. These compounds are used as the main wear-resistant components of cermets for cutting tools currently on the market, and in the present invention they are used as binders for CBN with even higher hardness. When cutting a highly hardened material such as hardened steel, the stress applied to the tool edge is higher than when cutting ordinary steel under the same conditions, and the temperature of the tool edge also becomes higher.
When cutting with a tool material such as WC-based cemented carbide or TiC-based cermet that has a metal binder phase such as Co, these tool materials lack high-temperature hardness and the cutting edge deforms and breaks. Ceramic tools, which are mainly composed of Al 2 O 3 and do not contain any bonding metals, are relatively suitable for cutting such high-hardness steel and cast iron, but they lack toughness.
If the stress applied to the cutting edge changes during cutting, the tool will be severely damaged. Furthermore, when machining hardened steel or the like, generally the dimensional accuracy and surface roughness of the workpiece are required to have an accuracy comparable to machining. In particular, in order to improve the machined surface roughness, it is advantageous to sharpen the cutting edge angle of the tool so that it has good cutting quality, but Al 2 O 3 ceramics lack toughness, so it is difficult to sharpen the cutting edge. If used as a base, it will break and it will be difficult to obtain a good machined surface roughness. The sintered body of the present invention improves the drawbacks of conventional tool materials, and is made of a tough sintered body for tools that combines CBN, a highly hard and wear-resistant component, with a compound that is highly heat resistant and wear resistant. It provides unity. Furthermore, the inventors conducted detailed experiments on the relationship between CBN content in the sintered body, grain size, and cutting performance, and found that when cutting high-hardness steel, cast iron, etc.
It was found that CBN content and particle size greatly affect cutting performance. Figure 1 shows CBN using TiN as a bonding material.
The graph shows the correlation between the content of and the wear resistance when cutting hardened steel with a hardness of HRc60. The CBN grain size in the sintered body has an average grain size of 3μ, and Al is added to the binder for the reason described later to form a compound containing Al such as an Al-Ti intermetallic compound. CBN has higher hardness than TiN and is thought to have better wear resistance. Therefore, it is thought that the higher the CBN content, the better the wear resistance of tools for cutting hardened steel, etc. However, in reality, as shown in Figure 1, when TiN is used as a binder, CBN
The one with a content of 60% by volume has the best wear resistance, and if the content is more than 60%, the wear resistance becomes worse. The reason for this is still not fully elucidated, but
One reason is that when the CBN content exceeds 70% by volume, the CBN grains come into contact with each other, and in this case, it is good if the bonding strength of the CBN grain boundaries is sufficiently strong, but if this is not the case, the shear stress applied during cutting It is thought that this causes cracks in the grain boundaries and the CBN particles fall off. In the sintered body of the present invention, Ti, Zr, and Hf are used as binders.
The bonding strength between carbide, nitride crystals and CBN particles is
This is thought to be stronger than the bond strength between CBN grains,
It is thought that the maximum value of wear resistance occurs in the composition range where these binders can exist as a continuous binder phase between CBN particles. Furthermore, commercially available CBN sintered bodies made of Co-based metal as a binder are estimated from the structure to be approximately 85
% by volume of CBN, the sintered body of the present invention has significantly improved wear resistance. Note that when the CBN content is less than 30%, the wear resistance is comparable to that of commercially available CBN sintered bodies. Figure 2 shows a sintered body using TiN as a binder with a constant CBN content of 60% by volume, and the wear resistance was evaluated when only the particle size of CBN was changed. The finer the average particle size of CBN in the sintered body, the smaller the amount of wear. The particle size of CBN affects not only the wear resistance but also the machined surface roughness of the workpiece. As a result of experiments, it was found that when the particle size of CBN is coarse, the machined surface roughness of the workpiece becomes rough. When the sintered body of the present invention is used to cut hardened steel, which is currently being processed by grinding, the roughness of the machined surface naturally becomes a problem. According to experiments conducted by the inventors, the average particle size of CBN is 10% in terms of the required performance for both wear resistance and machined surface roughness of the workpiece.
There is no practical problem if it is less than μm, but if it is less than 3 μm,
It has been found that extremely excellent performance can be achieved if it is less than m. Now, the method for manufacturing a sintered body of CBN and a heat-resistant compound selected in this way is to first start with CBN.
powder and one or two of these heat-resistant compound powders
The seeds or more are mixed using means such as a ball mill, and this is pressed into powder form or molded into a predetermined shape at room temperature, and sintered under high pressure and high temperature using an ultra-high pressure device. The ultra-high pressure equipment used is a girdle type, belt type, etc. equipment used for diamond synthesis. A graphite cylinder is used as the heating element, and talc,
Pack an insulating material such as NaCl and wrap the CBN mixed powder embossed body. A pressure medium such as pyrofluorite is placed around the graphite heating element. It is desirable that the sintering pressure and temperature conditions be within the stable region of cubic boron nitride shown in FIG. 3, but this equilibrium line is not always accurately determined and is only a guideline.
Further, conditions can be changed depending on the type of heat-resistant compound to be combined with CBN. A very noteworthy feature of the sintered body according to the invention, which makes the invention useful, is that the heat-resistant compound forms a continuous phase on the structure of the sintered body. That is, in the sintered body of the present invention, the tough heat-resistant compound penetrates into the gaps between the high-hardness CBN particles and forms a continuous bond, just like the metal Co phase that is the binding phase in WC-Co cemented carbide. exhibits a state of phase,
This imparts toughness to the sintered body. One of the reasons why carbides, nitrides, and their mutual solid solutions of Ti, Zr, and Hf are particularly excellent as the binder phase heat-resistant compound of the present invention is that, taking nitrides as an example, nitrides of these metals is expressed in the form MN 1 ±x (M indicates a metal such as Ti, Zr, or Hf, and x means the presence of an atomic vacancy or a relative excess of atoms) on the MN phase diagram. It has a wide range of existence. As a result of trial production of sintered bodies using materials with various values of x in MN 1 ±x as raw materials for the sintered bodies, it was found that the sintering properties were particularly excellent when the value of x was within a certain range. The reason for this will be discussed below. When considered as a tool material, especially for cutting tools, it is desirable that the crystal grain size of the sintered body is several microns or less, and in order to obtain such a crystal grain size,
The CBN particle size of the raw material must be finer than this. Micron or sub-micron fine powder contains a fairly large amount of oxygen. Generally, most of this oxygen exists on the powder surface in the form of a compound approximately in the form of hydroxide. This hydroxide-like compound decomposes when heated and comes out as a gas. When the material to be sintered is not sealed, it is not difficult to get this gas out of the system. However, when sintering is performed under ultra-high pressure as in the present invention, it is almost impossible for the generated gas to escape outside the heating system. Generally, in such cases, it is common practice in the powder metallurgy industry to perform a degassing treatment in advance, but this becomes a problem if the degassing treatment temperature cannot be made high enough. This case corresponds to exactly that. That is, when considering the transformation of CBN into a low-pressure phase, there is an upper limit to the heating temperature. The degassing process of fine powder involves the following stages depending on the temperature. First, at low temperatures, physically adsorbed substances and hygroscopic water are removed. Decomposition of chemisorbed substances and hydroxides then occurs. At the end, oxide remains. In the case of CBN, it is stable up to about 1000℃, so
It can be preheated to at least this temperature. Therefore, it can be considered that if the gas is degassed and heated in advance, the residual gas components remain in the form of oxides. Conversely, since it is desired that gas components remain in the sintered body as little as possible, it is preferable to remove all water and hydrogen as a preliminary treatment. In the present invention, all degassing treatments at temperatures of 1000° C. or higher are performed in vacuum based on this idea. The reason why a good sintered body can be obtained when MN 1 ±x is added is considered as follows. That is, oxides, probably in the form of B 2 O 3 , are present on the CBN powder surface. When this B 2 O 3 reacts with M corresponding to the (-x) portion of MN 1 ±x, the reaction is B 2 O 3 +4M→MB 2 +3MO, and no gas is generated. MO has the same crystal structure as MN and forms a mutual solid solution. This is thought to be the reason why Ti, Zr, and Hf nitrides represented by MN 1 ±x exhibit particularly excellent sinterability.
This is true not only for nitrides but also for carbides represented by MC 1 ±x, carbonitrides represented by M(C,N) 1 ±x, or the above-mentioned compounds containing two or more metals as M. The same can be said about The inventors are MN 1 ±x, MC 1 ±x, M(C,N) 1 ±x
When a compound of Ti, Zr, and Hf is shown in the form ( 1 ±
It was confirmed that the sinterability is excellent when these compounds having a value of x) of 0.97 or less are used as raw materials. The sintered body according to the present invention uses the above-mentioned heat-resistant compound as a binder for CBN, but may also contain a metal phase other than the heat-resistant compound such as Ni, Co, Fe, etc. as a third phase if necessary. It's okay. However, the main component of the binder phase is a heat-resistant compound phase, and the volume ratio of these metal phases in the sintered body must be equal to or less than the amount of the heat-resistant compound phase. If it exceeds this range, the heat resistance and wear resistance of the sintered body will decrease, and the performance as a tool will be lost. In addition, the sintered body of the present invention contains elements that are used in the synthesis of CBN and are believed to have solubility in hexagonal boron nitride and CBN at high temperatures and high pressures, such as alkali metals such as Li, alkalis such as Mg, etc. Earth metals, Pb, Sn, Sb,
It may also contain Al, Cd, Si, etc. as additives. CBN used as a raw material for the sintered body of the present invention is synthesized under ultra-high pressure using hexagonal boron nitride as a raw material. Therefore, there is a possibility that hexagonal boron nitride remains as an impurity in the CBN powder. In addition, even when sintering under ultra-high pressure, the CBN particles do not receive external pressure hydrostatically until the binder penetrates between the individual CBN particles, and the heating during this time causes them to form hexagonal crystals. There is also the possibility of metamorphosis to boron nitride. In such a case, it is thought that if an element having a dissolvating effect on the above-mentioned hexagonal boron nitride is added to the mixed powder, there is an effect of preventing this reverse transformation. Based on this idea, the inventors conducted experiments to confirm the effect particularly on Al and Si. As an example of a method for adding Al and Si, using a group 4a nitride, in this compound MN 1 ±x, ( 1 ±x) is 0.97.
Add a predetermined amount of Al or Si or both to the following, mix, and then heat to 600℃ or higher in a vacuum or inert atmosphere to remove a relative excess of M of MN 1 ±x.
Intermetallic compounds that exist on the M-Al, M-Si phase diagram by reacting Al or Si (for example, when M is Ti)
TiAl 3 , TiAl, etc.) was produced, and this powder was used as a binder material to be mixed with CBN. In this method, the added Al and Si are uniformly dispersed in the binder, and the effect can be achieved even with a small amount of addition. Another method is to use M-
Al, M--Si intermetallic compound powder may be prepared and added at the time of mixing the raw materials, or Al and Si powder may be added. This also applies when the binder compound is a carbide or carbonitride. We compared the sintered body created in this way to which Al and Si were added and the sintered body that did not contain these. When a sintered body is polished and its structure is observed, it is found that the sintered body containing Al and Si has less peeling of CBN particles on the polished surface than the sintered body, and the bond strength between the CBN particles and the binder phase is stronger. it is conceivable that. Also, when comparing the performance as a cutting tool,
The steel containing Al and Si was superior in both wear resistance and toughness. Incidentally, such an effect appeared when the sintered body contained Al or Si in an amount of 0.1% or more by weight. In particular, when Al is included, the M--Al intermetallic compound formed in the binder phase has high heat resistance and toughness, and has the effect of improving the toughness of the sintered body. However, wear resistance is inferior to CBN and carbides and nitrides of Ti, Zr, and Hf, which are the main components of the binder phase. Abrasion resistance decreases. When using the sintered body bonded to the cemented carbide base material of the present invention as a cutting tool, the high-hardness sintered body made of CBN and a heat-resistant compound may be brazed directly to a steel tool support, or It can be used by brazing the tip of a manufactured throw-away tip. CBN itself has poor wettability with ordinary silver or copper solder. Therefore, the higher the CBN content, the more difficult it is to braze. The sintered body of the present invention has a CBN content of 30% by volume.
% or more and less than 70%, and the bonded phase is 4a of the periodic table,
It is mainly composed of carbides, nitrides, and carbonitrides of group 5a and 6a metals, which form a continuous binder phase in the structure. This binder phase has good wettability to silver solder and copper solder, and therefore, the sintered body of the present invention can be brazed by a conventional method. However, when the sintered body of the present invention is used as a cutting tool, it is only necessary that a CBN-containing hard layer with high wear resistance forms the cutting edge of the tool. Therefore, it is more advantageous in terms of economy and strength of the tool to form this hard layer into a composite sintered body made of cemented carbide as a base material and bonded thereon. The thickness of the hard layer in the composite sintered body needs to be changed depending on the conditions of use of the cutting tool and the corresponding tool shape, but generally speaking, if the thickness is 0.5 mm or more, the sintering of the present invention will be effective. In the case of the body, it is sufficient. The cemented carbide used as the base material is preferably a WC-based cemented carbide, which has high rigidity, good thermal conductivity, and excellent toughness. The method for obtaining such a composite sintered body is to first prepare a base alloy in a predetermined shape using cemented carbide, and then use CBN and a heat-resistant compound to form a hard layer that forms the cutting edge of the tool. The resulting mixed powder is placed in powder form or pressed and molded, and the whole is hot-pressed in an ultra-high pressure device to sinter the hard layer, and at the same time, bond this to the base cemented carbide. At this time, the cemented carbide base material contains a metal such as Co as a binder phase, and when the limit of the liquid phase of the binder metal is exceeded during hot pressing, the binder metal melts. The content of CBN in the hard layer-forming powder is higher than that in the sintered body of the present invention, for example, when it consists only of CBN, the CBN particles have extremely high rigidity and are difficult to deform. It has a gap, into which the liquid phase of the base cemented carbide mentioned above enters. However, in the sintered body of the present invention, CBN binders are those of 4a, 5a, and 6a of the periodic table.
Group metal carbides, nitrides, and carbonitrides are mainly used, and these form a continuous binder phase during sintering.
It has lower rigidity than CBN, and under ultra-high pressure, it deforms during processing and becomes a compact with almost no gaps before a liquid phase forms in the base cemented carbide. For this reason, in the sintering of the present invention, the liquid phase generated in the base cemented carbide during hot pressing under ultra-high pressure invades the hard layer, changing the composition of the hard layer and reducing wear resistance. There's nothing to do. In addition, carbides, nitrides, and carbonitrides of metals from groups 4a, 5a, and 6a of the periodic table, which are the binder phase of the sintered body of the present invention, are used as the main hard wear-resistant components of cemented carbide and cermet. As can be seen from the above, it is a bonding metal in cemented carbide.
It has high affinity for iron group metals such as Co,
In the sintered body of the present invention, since these compounds form a continuous binder phase in the sintered body, strong adhesive strength can be obtained at the bonding interface with the base cemented carbide. As mentioned above, the sintered body of the present invention has excellent performance as a cutting tool for hardened steel, high hardness cast iron, etc. In particular, the hardness of structural carbon steel, alloy steel, case hardening steel, bearing steel, etc. used for machine parts, etc.
High hardness component materials heat treated to HRc45~65,
It is suitable for cutting of carbon tool steel, alloy tool steel, high-speed steel, and other materials that have been heat treated to a hardness of HRc45 to HRc 66, which are used for molds and tool materials, and can replace the conventional grinding process. It is possible to cut with efficiency and high precision. Furthermore, rolls of chilled cast iron, ductile cast iron, cast steel, forged steel, and hardened materials used for rolling wire rods and plates, as well as rolls of adamite and grain rolls with a hardness of approximately HRc40 or more, are cut using conventional cemented carbide or ceramic tools. When applied to items that have been previously machined, it has extremely superior performance, allowing several times higher efficiency than conventional tools, and tool life being 20 to 50 times longer. The present invention will be specifically explained below using examples. Example 1 TiN 0.73 powder with an average particle size of 1 μm by ball milling using cemented carbide balls and an average particle size of 30 μm
Al powders were blended at a weight ratio of 90% and 10%, respectively, and mixed using a V-type blender. This mixed powder was pressed into a beret at a pressure of 1 t/cm 3 , heated to 1000° C. in a vacuum furnace, and held for 30 minutes. When this was crushed into powder and examined by X-ray diffraction, diffraction peaks that appeared to be TiAl 3 , TiAl, and Ti 2 AlN were obtained in addition to TiN, and no metal Al was detected. This TiN powder containing the Al compound and CBN powder with an average particle size of 3 μm were mixed in the proportions shown in the table below.

【表】 この混合粉末の中でD,Eの粉末にカンフアー
を2%加え、外径10mm、高さ1.5mmに型押成型し
た。これをステンレス製の容器中に挿入した。 この容器を真空炉中で10-4mmHgの真空度で
1100℃に20分間加熱して脱ガスした。 これをガードレール型超高圧装置に装入した。 圧力媒体としてはパイロフイライトを、ヒータ
ーとしては黒鉛の円筒を用いた。尚、黒鉛ヒータ
ーと試料の間はNaClを充填した。先ず、圧力を
55Kbにあげ、のちに温度を1100℃に上げ20分間
保持したのち温度を下げ、圧力を徐々におろし
た。得られた焼結体は外径約10mm、厚さは約1mm
であつた。これをダイヤモンド砥石で平面に研削
し、更にダイヤモンド切断刃を用いて切断し、切
削チツプを作成し、これを鋼の支持体にロウ付け
し、これを比較材とした。 さらに、ステンレス製の容器に外径9.8mm、厚
さ3mmのWC―10%Co組成の超硬合金円板を入
れ、この上に第1表のA〜Iの粉末を充填し、こ
の容器を真空中で1100℃にて20分加熱して脱ガス
した後、圧力50Kb、温度1200℃で15分間焼結し
た。その結果外径10mm、厚さ1mmの焼結体が超硬
合金に接合されたものが得られた。 次にこの焼結体をダイヤモンド切断刃を用いて
切断し、これの超硬合金面を鋼の支持体にロウ付
けし、切削加工用のバイトA〜Iを作製し、侵炭
焼入熱処理後のSCM21種で硬度HRc60の鋼を切
削速度100m/min、切込み0.3mm、送り0.15mm/
revで30分切削した。比較のため超硬合金の母材
に接合していないD,Eの組成を有するチツプも
テストした。本願実施例で得られた結果を第1表
に示す。また比較例としてテストしたDは10分で
またEは15分でロウ付け部がはずれた。焼結体C
についてCBN焼結体の面をX線回折により調べ
たところCBN,TiN以外に少量のTiAl,TiAlN,
AlNとTiB2が検出された。 実施例 2 平均粒度が異なるCBN原料粉末を使用して第
2表の組成で混合粉末を作成した。尚、CBNと
混合するTiN―Al化合物粉末は実施例1で得られ
たものを使用した。
[Table] Among the mixed powders, 2% camphor was added to powders D and E, and the mixture was pressed to have an outer diameter of 10 mm and a height of 1.5 mm. This was inserted into a stainless steel container. This container was placed in a vacuum furnace at a vacuum of 10 -4 mmHg.
Degassed by heating to 1100°C for 20 minutes. This was loaded into a guardrail type ultra-high pressure device. Pyrofluorite was used as the pressure medium, and a graphite cylinder was used as the heater. Note that NaCl was filled between the graphite heater and the sample. First, apply pressure
The temperature was raised to 55 Kb, and later the temperature was raised to 1100°C and held for 20 minutes, then the temperature was lowered and the pressure was gradually lowered. The obtained sintered body has an outer diameter of approximately 10 mm and a thickness of approximately 1 mm.
It was hot. This was ground to a flat surface using a diamond grindstone, and further cut using a diamond cutting blade to create a cutting chip, which was brazed to a steel support and used as a comparison material. Furthermore, a cemented carbide disk of WC-10% Co composition with an outer diameter of 9.8 mm and a thickness of 3 mm was placed in a stainless steel container, and powders A to I in Table 1 were filled on top of the disk. After degassing by heating at 1100°C in vacuum for 20 minutes, it was sintered at a pressure of 50 Kb and a temperature of 1200°C for 15 minutes. As a result, a sintered body with an outer diameter of 10 mm and a thickness of 1 mm bonded to the cemented carbide was obtained. Next, this sintered body was cut using a diamond cutting blade, the cemented carbide surface of this was brazed to a steel support, and bits A to I for cutting were made. Cutting steel with hardness HRc60 with SCM21 type at 100m/min, depth of cut 0.3mm, feed 0.15mm/
Cutting with rev for 30 minutes. For comparison, chips having compositions D and E that were not bonded to a cemented carbide base material were also tested. Table 1 shows the results obtained in the Examples of the present application. In addition, the brazed part of D, which was tested as a comparative example, came off in 10 minutes, and the brazed part of E came off in 15 minutes. Sintered body C
When the surface of the CBN sintered body was examined by X-ray diffraction, in addition to CBN and TiN, small amounts of TiAl, TiAlN,
AlN and TiB2 were detected. Example 2 A mixed powder was prepared using CBN raw material powders having different average particle sizes and having the composition shown in Table 2. The TiN--Al compound powder mixed with CBN was the one obtained in Example 1.

【表】 以下、実施例1と同様にステンレスの容器に超
硬合金の円板を入れた上に混合物を充填したもの
を超高圧下でホツトプレスし、焼結体を得た。 これより切削チツプを作成して、SNCM9種の
鋼を用い性能を調べた。被削材の硬度はHRc60で
切削条件は切削速度150m/min、切込み0.2mm、
送り0.12mm/revとした。第2図は15分間切削し
た後の工具逃げ面摩耗巾を示した。 尚、実施例1で作成した平均粒度3μmの
CBN原料を使用した焼結体Fも同時にテストし
た。 第2図を見るとCBN粒度が細かいものほど耐
摩耗性は良くなつている。尚、焼結体をダイヤモ
ンドペーストを用いて研摩後、光学顕微鏡で組織
を観察したところ、F及びJ.K.Lの焼結体はいず
れもCBN粒子をAl化合物を含むTiNで結合した組
織であり、この結合相は組織中で連続した相をな
しており、また焼結体中のCBN粒子の粒度は原
料CBN粒子と略同一であつた。 焼結体Kを例にとり、更に詳しく焼結体中にお
けるAlの挙動を調べた。第4,5,6図は焼結
体Kの研摩面の代表的な組織の一部をX線マイク
ロアナライザーを用いて分析した写真である。 先ず第4図は4000倍に拡大した反射電子線像で
あるが、写真で黒色に見える各々独立した粒子が
CBNである。 CBNの結合相であるTiN―Al化合物は灰色に見
える部分である。尚、CBN粒子の外周部及び結
合相中に白色の領域があるが、これは後述する如
くW元素であり、原料TiN中に含有されていたも
のである。 第5図は第4図と同一個所について写真中に白
色の線A―A′で示す線上におけるAl(B―
B′線)、Ti(C―C′線)の相対的な濃度分布を分
析した結果である。B―B′,C―C′線共に写真
の上方向が濃度が大である方向である。これで見
るとAl,TiはCBN粒子の結合相中にほぼ同様な
濃度の傾向をもつて分布している。このAl―Ti
化合物より特性X線であり、TiはTiN及びAl―Ti
化合物より特性X線である。 第6図は第4,5図と同一個所で第5図と同一
位置であるA―A′線上についてAl(B―B′線)、
W(C―C′線)の分布を示したものである。 Wは原料TiN粉末中に含まれていたもので焼結
体中には重量で約1%含有されている。 注目されるのはWがCBN粒子の近傍において
濃度が高くなつていることである。この現象を検
討する為に焼結体Kと同一CBN原料粉末と同一
TiN原料粉末を用いてAlを加えずにCBNを体積で
60%含有する焼結体を試作した。焼結体Kと同一
圧力55Kbで1100℃に20分間加熱したが、この場
合は緻密な焼結体が得られず、1300℃まで焼結温
度を上げて焼結体を作成した。このものについ
て、焼結Kと同様に分析した結果が第7図,第8
図である。第7図は第4図に対応する反射電子線
像で黒色の粒子がCBNである。灰色のTiN結合相
中に白色に点在するのがWである。第8図は第7
図と同一個所でA―A′線上についてW(C―
C′線)、Ti(B―B′線)の特性X線により濃度分
布を調べたもので焼結体Kにおいて第6図に見ら
れたようにTiNに含まれたWがCBN粒子近傍に富
化されるような現象はない。 Alを含む場合は低温(1100℃)でW元素の移
動が生じており、焼結中に一部液相が生じたもの
と推定される。このことによりAlを含む場合は
焼結性が改善されるものと考えられる。 実施例 3 平均粒度3μのCBN粉末を用いて次表の組成
に各粉末を配合した。
[Table] As in Example 1, a cemented carbide disk was placed in a stainless steel container, and the mixture was filled therein and hot pressed under ultra-high pressure to obtain a sintered body. A cutting chip was made from this and its performance was investigated using SNCM grade 9 steel. The hardness of the work material is HRc60, and the cutting conditions are cutting speed 150m/min, depth of cut 0.2mm,
The feed was set to 0.12 mm/rev. Figure 2 shows the tool flank wear width after cutting for 15 minutes. In addition, the average particle size of 3 μm prepared in Example 1
Sintered body F using CBN raw material was also tested at the same time. As shown in Figure 2, the finer the CBN particle size, the better the wear resistance. Furthermore, after polishing the sintered bodies using diamond paste, we observed their structures with an optical microscope, and found that both the F and JKL sintered bodies had a structure in which CBN particles were bonded with TiN containing an Al compound. The phase formed a continuous phase in the structure, and the particle size of the CBN particles in the sintered body was approximately the same as that of the raw CBN particles. Using sintered body K as an example, the behavior of Al in the sintered body was investigated in more detail. Figures 4, 5, and 6 are photographs of a portion of a typical structure of the polished surface of the sintered body K, analyzed using an X-ray microanalyzer. First of all, Figure 4 is a reflected electron beam image magnified 4000 times, and the individual particles that appear black in the photograph are clearly visible.
It is CBN. The TiN-Al compound, which is the bonding phase of CBN, appears gray. Note that there is a white region in the outer periphery of the CBN particles and in the binder phase, but as will be described later, this is the W element, which was contained in the raw material TiN. Figure 5 shows Al (B--
This is the result of analyzing the relative concentration distribution of B' line) and Ti (CC' line). For both lines B-B' and C-C', the upper direction of the photograph is the direction in which the density is higher. This shows that Al and Ti are distributed in the binder phase of CBN particles with almost similar concentration trends. This Al―Ti
It is more characteristic X-ray than a compound, and Ti is TiN and Al-Ti
It is a more characteristic X-ray than a compound. Figure 6 shows Al (B-B' line) on line A-A', which is the same location as Figures 4 and 5, and the same position as Figure 5;
It shows the distribution of W (C-C' line). W was contained in the raw material TiN powder, and was contained in the sintered body in an amount of about 1% by weight. What is noteworthy is that the concentration of W increases near the CBN particles. In order to study this phenomenon, we used the same CBN raw powder as the sintered body K.
CBN by volume without adding Al using TiN raw material powder
We prototyped a sintered body containing 60%. Although it was heated to 1100°C for 20 minutes at the same pressure as sintered body K at 55 Kb, a dense sintered body could not be obtained in this case, so the sintering temperature was raised to 1300°C to create a sintered body. This material was analyzed in the same way as sintered K, and the results are shown in Figures 7 and 8.
It is a diagram. FIG. 7 is a reflected electron beam image corresponding to FIG. 4, and the black particles are CBN. W is dotted in white in the gray TiN bonded phase. Figure 8 is the 7th
W(C-
The concentration distribution was investigated using characteristic X-rays of C' line) and Ti (B-B' line), and as seen in Figure 6 in sintered body K, the W contained in TiN was found near the CBN particles. There is no phenomenon of enrichment. When Al is included, the W element migrates at low temperatures (1100°C), and it is presumed that a liquid phase was partially formed during sintering. This is thought to improve sinterability when Al is included. Example 3 Using CBN powder with an average particle size of 3μ, each powder was blended into the composition shown in the table below.

【表】 この各々の粉末を混合し、以下実施例1と同様
に超硬合金の円板と粉末をステンレス製の容器に
入れて55Kbの圧力下で1200〜1300℃の温度範囲
で焼結した。この焼結体を切断し、切削チツプを
作成して性能試験を行なつた。 被削材はダイス鋼SKD11相当の焼入れ鋼で硬
度がHRc65のものを用いた。切削条件は速度80
m/分、切込み0.2mm、送り0.06mm/回転であ
る。各々の組成の焼結体について逃げ面摩耗巾が
0.2mmに達するまでの切削時間は次の通りであつ
た。
[Table] These respective powders were mixed, and as in Example 1, the cemented carbide disk and powder were placed in a stainless steel container and sintered under a pressure of 55 Kb at a temperature range of 1200 to 1300°C. . This sintered body was cut to make a cutting chip and a performance test was conducted. The work material used was hardened steel equivalent to die steel SKD11 with a hardness of HRc65. Cutting conditions are speed 80
m/min, depth of cut 0.2mm, feed 0.06mm/rotation. The flank wear width for each composition of sintered body is
The cutting time to reach 0.2 mm was as follows.

【表】 この結果ではTiNもしくはTiCを結合材の主成
分としたものが耐摩耗性は優れていた。 実施例 4 実施例1で述べたFに相当するCBNとAl化合
物を含むTiN粉末を混合し、この混合粉末を外径
10mm、厚さ1.5mmのペレツトに型押成型した。 別にWC―6%Coの超硬合金製の外径10mm、厚
さ3mmの円板を作成した。 この超硬合金製円板と前記ペレツトを重ね合わ
せてステンレス製の容器中に挿入した。 以下実施例1と同様にしてこの全体を真空脱ガ
ス処理を行なつた後に、超高圧装置を用いて圧力
55Kb、温度1100℃で20分間ホツトプレスした。
得られた焼結体はCBNを含有する硬質焼結体の
外径約10mm、厚さ約1mmの層が、WC―6%Co超
硬合金円板に強固に接合されたものであつた。 この複合焼結体をダイヤモンド砥石で研削して
円盤状の切削チツプとした。これを鋼製の支持体
に装入して性能試験した。被削材は硬度HRc56で
外径735mm、巾650mmのチルド鋳鉄製ロール材を使
用した。比較の為に市販のCBNをCoを主体とし
た金属で結合した焼結体、TiCを含有するAl2O3
セラミツク、JIS分類KO1相当超硬合金製の切削
チツプを同時にテストした。切削条件は各々の工
具に適した条件とし、次表の条件で行なつた。
[Table] The results show that those with TiN or TiC as the main component of the binder had excellent wear resistance. Example 4 TiN powder containing CBN and Al compound corresponding to F described in Example 1 was mixed, and this mixed powder was
It was molded into pellets of 10 mm and 1.5 mm thick. Separately, a disk made of WC-6% Co cemented carbide with an outer diameter of 10 mm and a thickness of 3 mm was prepared. This cemented carbide disk and the pellets were placed one on top of the other and inserted into a stainless steel container. After performing vacuum degassing treatment on the whole in the same manner as in Example 1, pressure was applied using an ultra-high pressure device.
Hot pressed at 55Kb and 1100℃ for 20 minutes.
The obtained sintered body was a layer of a hard sintered body containing CBN with an outer diameter of about 10 mm and a thickness of about 1 mm, which was firmly bonded to a WC-6% Co cemented carbide disk. This composite sintered body was ground with a diamond grindstone to obtain a disc-shaped cutting chip. This was placed in a steel support and a performance test was conducted. The work material used was a chilled cast iron roll material with a hardness of HRc56, an outer diameter of 735 mm, and a width of 650 mm. For comparison, a sintered body made of commercially available CBN bonded with a metal mainly composed of Co, and an Al 2 O 3 containing TiC.
Cutting tips made of ceramic and cemented carbide equivalent to JIS classification KO1 were tested at the same time. Cutting conditions were determined to be suitable for each tool, and the cutting conditions were as shown in the table below.

【表】 結果は上表の通りで、本発明焼結体は欠損する
ことがなくKO1超硬合金の実に50倍の性能であ
つた。 実施例 5 平均粒度1μのCBNを使用して次表の組成に
各粉末を配合した。
[Table] The results are shown in the table above, and the sintered body of the present invention had no defects and had a performance 50 times better than that of KO1 cemented carbide. Example 5 Using CBN with an average particle size of 1 μm, each powder was blended into the composition shown in the table below.

【表】 この混合粉末を用いて実施例4の方法に従つ
て、WC―6%Coの超硬合金母材に接合された厚
さ1mmのCBN含有硬質層を有する焼結体を作成
した。これを切断後超硬合金製のスローアウエイ
チツプの一端にロウ付けした。このチツプを用い
て正面フライス盤で焼入鋼のフライス加工を行な
つた。被削材は硬度HRc64のSKD11種相当の熱
間ダイス鋼で作られた粉末型押成型用の金型であ
る。この金型の端面を切削速度143m/分、切込
み0.4mm、送り0.07mm/回転の条件で一枚刃でフ
ライス加工した。本発明の焼結体R,S,T,U
はいずれもこの条件で刃先が欠損することなく加
工できた。また加工した金型面の面粗度は最大高
さ粗さで2〜3μであり、極めて良好な加工面で
あつた。 実施例 6 平均粒度3μのCBN粉末と平均粒度3μのTi
(C0.80N0.150.95粉末及びSi粉末を各々体積%で68
%,30%,2%の割合に混合した。以下実施例4
の方法に従つてWC―6%Co超硬合金母材に接合
された厚み1mmのCBN含有硬質層を有する円板
状の焼結体を得た。これを研削加工して円形の切
刃部を有する切削チツプを作成した。これを用い
て硬度HRc55の鋳鋼製の圧延用ロールを切削加工
した。比較の為にJIS分類KO1相当の超硬合金製
切削チツプでも同一のロールを切削加工した。条
件は各々次の通りである。
[Table] Using this mixed powder and following the method of Example 4, a sintered body having a 1 mm thick CBN-containing hard layer bonded to a WC-6% Co cemented carbide base material was produced. After cutting this, it was brazed to one end of a throwaway chip made of cemented carbide. This chip was used to mill hardened steel using a face milling machine. The workpiece material is a powder press mold made of hot die steel equivalent to SKD 11 grade with a hardness of HRc64. The end face of this mold was milled with a single blade at a cutting speed of 143 m/min, depth of cut of 0.4 mm, and feed rate of 0.07 mm/rotation. Sintered bodies of the present invention R, S, T, U
Both were able to be machined under these conditions without chipping the cutting edge. Further, the surface roughness of the machined mold surface was 2 to 3 μm in maximum height roughness, and the machined surface was extremely good. Example 6 CBN powder with an average particle size of 3μ and Ti with an average particle size of 3μ
(C 0.80 N 0.15 ) 0.95 powder and Si powder each in volume % 68
%, 30%, and 2%. Example 4 below
A disk-shaped sintered body having a 1 mm thick CBN-containing hard layer bonded to a WC-6% Co cemented carbide base material was obtained according to the method described in . This was ground to create a cutting chip with a circular cutting edge. This was used to cut a rolling roll made of cast steel with a hardness of HRc55. For comparison, the same roll was cut using a cemented carbide cutting chip equivalent to JIS classification KO1. The conditions are as follows.

【表】 本発明焼結体では、切削速度×切込み×送りで
みた加工能率はKO1超硬合金の3倍であり、工
具寿命に至るまでの被削材加工体積は約50倍であ
つた。
[Table] In the sintered body of the present invention, the machining efficiency in terms of cutting speed x depth of cut x feed was three times that of KO1 cemented carbide, and the volume of workpiece material machined until the tool life was reached was approximately 50 times.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明焼結体の組成範囲を説明するた
めのもので、TiN主体とした結合相を有するCBN
含有量の異なる焼結体で硬度HRc60の焼入鋼を30
分間切削したときの工具逃げ面摩耗巾を示したも
のである。第2図は本発明焼結体におけるCBN
の粒度と耐摩耗性の関係を説明するためのもの
で、CBN粒度の異なる焼結体でHRc60の焼入鋼
を一定時間切削したときの工具逃げ面摩耗巾を示
している。第3図は本発明の焼結体の製造条件に
関する図表で立方晶型窒化硼素の圧力、温度相図
上での安定存在領域を示すものである。第4,
5,6,7及び8図は何れも本発明の焼結体の微
細組織及び成分元素の分布を説明するための顕微
鏡組織写真である。第4,5,6図はTiN―Al化
合物を結合相とする焼結体についてX線マイクロ
アナライザーを用いて分析した反射電子線像と成
分元素の分布を示したもの、第7,8図はTiNを
結合相とする焼結体について同様に分布した顕微
鏡組織写真である。
Figure 1 is for explaining the composition range of the sintered body of the present invention, which shows CBN with a TiN-based binder phase.
Hardened steel with hardness HRc60 is made of sintered bodies with different contents.
This shows the tool flank wear width when cutting for minutes. Figure 2 shows CBN in the sintered body of the present invention.
This is to explain the relationship between grain size and wear resistance, and shows the tool flank wear width when hardened steel of HRc60 is cut for a certain period of time using sintered bodies with different CBN grain sizes. FIG. 3 is a diagram relating to the manufacturing conditions of the sintered body of the present invention, and shows the stable existence region of cubic boron nitride on the pressure and temperature phase diagram. Fourth,
Figures 5, 6, 7, and 8 are all microscopic structure photographs for explaining the microstructure and distribution of component elements of the sintered body of the present invention. Figures 4, 5, and 6 show the backscattered electron beam image and the distribution of component elements analyzed using an X-ray microanalyzer for a sintered body with a TiN-Al compound as the binder phase, and Figures 7 and 8 show the distribution of component elements. This is a micrograph of a similarly distributed microstructure of a sintered body with TiN as a binder phase.

Claims (1)

【特許請求の範囲】 1 平均粒度が3μ以下の立方晶型窒化硼素を体
積%で30%以上、70%未満含有し、残部が周期律
表第4a,5a,6a族遷移金属の炭化物、窒化物もし
くはこれ等の混合物または相互固溶体を主体とし
たものからなり、この化合物が焼結体組織中で連
続した結合相をなし、該焼結体の厚み0.5mm以上
の層が超硬合金母材に接合されてなることを特徴
とする焼入鋼等の高硬度鋼、高硬度鋳鉄の切削加
工工具用焼結体。 2 連続した結合相をなす化合物が周期律表第4a
族金属のTi,Zr,Hfの炭化物、窒化物、炭窒化
物を主体としたものからなることを特徴とする特
許請求の範囲第1項記載の切削加工工具用焼結
体。 3 連続した結合相をなす化合物が周期律表第
4a,族金属のTi,Zr,Hfの炭化物、窒化物、炭
窒化物を主体としたものからなり、焼結体中に
AlもしくはSi、もしくはこの双方を重量で0.1%
以上含有することを特徴とする特許請求の範囲第
1項または第2項記載の切削加工工具用焼結体。 4 平均粒度が3μ以下の立方晶型窒化硼素粉末
と周期律表第4a,5a,6a族遷移金属の炭化物、窒
化物もしくはこれ等の混合物または相互固溶体化
合物を主体とした粉末を混合し、これを粉末状で
もしくは型押成型後、超硬合金製の母材に接して
置き、この全体を超高圧装置を用いて高圧、高温
下で焼結せしめることを特徴とする立方晶型窒化
硼素を体積%で30%以上、70%未満含有し、残部
が周期律表第4a,5a,6a族遷移金属の炭化物、窒
化物もしくはこれ等の混合物、または相互固溶体
化合物を主体としたものからなり、この化合物が
焼結体組織中で連続した結合相をなし、該焼結体
の厚み0.5mm以上の層が超硬合金母材に接合され
てなる焼入鋼等の高硬度鋼、高硬度鋳鉄の切削加
工工具用焼結体の製造方法。 5 平均粒度が3μ以下の立方晶型窒化硼素粉末
と周期律表第4a族のTi,Zr,Hfの炭化物、窒化
物、炭窒化物をそれぞれMC1±x,MN1±xM
(C,N)±x,の形で表わしたときに(±
x)の値が0.97以下であるこれ等化合物を主体と
した粉末を混合し、これを粉末状でもしくは型押
成型後、超硬合金製の母材に接して置き、この全
体を超高圧装置を用いて高圧、高温下で焼結せし
めることを特徴とする立方晶型窒化硼素を体積%
で30%以上70%未満含有し、残部が周期律表第4a
族のTi,Zr,Hfの炭化物、窒化物、炭窒化物を
主体とした化合物を主体としたものからなり、こ
の化合物が焼結体組織中で連続した結合相をな
し、該焼結体の厚み0.5mm以上の層が超硬合金母
材に接合されてなる焼入鋼等の高硬度鋼、高硬度
鋳鉄の切削加工工具用焼結体の製造方法。 6 周期律表第4a族のTi,Zr,Hfの炭化物、窒
化物、炭窒化物をそれぞれMC1±x,MN1±x,
M(C,N)±x,の形で表わしたときに(
±x)の値が0.97以下であるこれ等化合物粉末に
Al粉末又はSi粉末またはこれ等を含む化合物粉末
を加え、あらかじめ600℃以上の温度で真空もし
くは不活性ガス雰囲気中でこの双方を反応せしめ
M―Al,M―Si相図上に存在する金属間化合物を
生成させるか、もしくはAl,Si粉末またはこれ等
を含む化合物粉末と平均粒度が3μ以下の立方晶
型窒化硼素粉末と上記したTi,Zr,Hfの化合物
粉末を主体とした粉末を混合し、これを粉末状も
しくは型押成型後超硬合金製の母材に接して置
き、この全体を超高圧装置を用いて高圧、高温下
で焼結せしめることを特徴とする立方晶型窒化硼
素を体積%で30%以上、70%未満含有し、残部が
焼結体組織中で連続した結合相をなす化合物とか
らなり、該化合物は周期律表第4a族のTi,Zr,
Hfの炭化物、窒化物、炭窒化物を主体としたも
ので、焼結体中にAlもしくはSi、もしくはこの双
方を重量で0.1%以上含有し、該焼結体の厚み0.5
mm以上の層が超硬合金母材に接合されてなる焼入
鋼等の高硬度鋼、高硬度鋳鉄の切削加工工具用焼
結体の製造方法。
[Scope of Claims] 1 Contains 30% or more but less than 70% by volume of cubic boron nitride with an average particle size of 3μ or less, with the remainder being carbides or nitrides of transition metals from groups 4a, 5a, and 6a of the periodic table. This compound forms a continuous binder phase in the structure of the sintered body, and the layer of the sintered body with a thickness of 0.5 mm or more is the cemented carbide base material. A sintered body for cutting tools made of high hardness steel such as hardened steel and high hardness cast iron, characterized by being joined to. 2 Compounds that form a continuous bonded phase are listed in Periodic Table 4a.
A sintered body for a cutting tool according to claim 1, characterized in that the sintered body is mainly made of carbides, nitrides, and carbonitrides of Group metals Ti, Zr, and Hf. 3 Compounds forming a continuous bonded phase are listed in the periodic table.
It is mainly composed of carbides, nitrides, and carbonitrides of group 4a metals Ti, Zr, and Hf.
0.1% by weight of Al or Si or both
A sintered body for a cutting tool according to claim 1 or 2, characterized in that the sintered body contains the above. 4 Mix cubic boron nitride powder with an average particle size of 3μ or less and powder mainly composed of carbides, nitrides, or mixtures thereof or mutual solid solution compounds of group 4a, 5a, and 6a transition metals of the periodic table. Cubic boron nitride is produced by placing it in contact with a cemented carbide base material in powder form or after molding, and sintering the entire body under high pressure and high temperature using an ultra-high pressure device. Contains 30% or more and less than 70% by volume, with the remainder mainly consisting of carbides, nitrides, or mixtures thereof, or mutual solid solution compounds of group 4a, 5a, and 6a transition metals of the periodic table, This compound forms a continuous binder phase in the structure of the sintered body, and a layer of the sintered body with a thickness of 0.5 mm or more is bonded to a cemented carbide base material.High hardness steel such as hardened steel, high hardness cast iron. A method for producing a sintered body for cutting tools. 5 Cubic boron nitride powder with an average particle size of 3μ or less and carbides, nitrides, and carbonitrides of Ti, Zr, and Hf from Group 4a of the periodic table are MC 1 ±x and MN 1 ±xM, respectively.
(C,N) When expressed in the form of 1 ±x, ( 1 ±
Mix powders mainly composed of these compounds with a value of Volume % of cubic boron nitride, which is characterized by being sintered under high pressure and high temperature using
Contains 30% or more and less than 70%, and the remainder is from periodic table 4a
This compound mainly consists of compounds mainly composed of carbides, nitrides, and carbonitrides of Ti, Zr, and Hf of the group Ti, Zr, and Hf, and these compounds form a continuous binder phase in the structure of the sintered body. A method for manufacturing a sintered body for cutting tools of high hardness steel such as hardened steel or high hardness cast iron, in which a layer with a thickness of 0.5 mm or more is bonded to a cemented carbide base material. 6 Carbides, nitrides, and carbonitrides of Ti, Zr, and Hf in Group 4a of the periodic table are MC 1 ±x, MN 1 ±x, respectively.
When expressed in the form of M(C,N) 1 ±x, ( 1
For these compound powders whose value of ±x) is less than 0.97,
Al powder, Si powder, or compound powder containing these is added, and the two are reacted in advance in a vacuum or inert gas atmosphere at a temperature of 600°C or higher. Either by generating a compound, or by mixing Al, Si powder or a compound powder containing these, cubic boron nitride powder with an average particle size of 3μ or less, and powder mainly composed of the above-mentioned Ti, Zr, Hf compound powder. The cubic boron nitride is produced by placing it in powder form or in contact with a cemented carbide base material after molding, and then sintering the entire product under high pressure and high temperature using an ultra-high pressure device. The compound contains 30% or more and less than 70% by volume, with the remainder forming a continuous binder phase in the structure of the sintered body, and the compound is composed of Ti, Zr,
It is mainly composed of carbides, nitrides, and carbonitrides of Hf, and the sintered body contains 0.1% or more of Al or Si, or both by weight, and the thickness of the sintered body is 0.5%.
A method for manufacturing a sintered body for cutting tools of high hardness steel such as hardened steel or high hardness cast iron, in which a layer of mm or more is bonded to a cemented carbide base material.
JP11398777A 1976-12-21 1977-09-21 Sintered body for cutting tool and method of making same Granted JPS5446211A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP11398777A JPS5446211A (en) 1977-09-21 1977-09-21 Sintered body for cutting tool and method of making same
AU31520/77A AU512633B2 (en) 1976-12-21 1977-12-14 Sintered tool
DE2756512A DE2756512C3 (en) 1976-12-21 1977-12-19 Use of a sintered body for a tool for machining steel and cast iron
FR7738377A FR2375155B1 (en) 1976-12-21 1977-12-20
GB53344/77A GB1593770A (en) 1976-12-21 1977-12-21 Sintered compact for a machine tool and a method of producing the compact
CA293,584A CA1090062A (en) 1976-12-21 1977-12-21 Sintered compact for a machining tool and a method of producing the compact
US06/119,771 US4334928A (en) 1976-12-21 1980-02-08 Sintered compact for a machining tool and a method of producing the compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11398777A JPS5446211A (en) 1977-09-21 1977-09-21 Sintered body for cutting tool and method of making same

Publications (2)

Publication Number Publication Date
JPS5446211A JPS5446211A (en) 1979-04-12
JPS6246510B2 true JPS6246510B2 (en) 1987-10-02

Family

ID=14626211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11398777A Granted JPS5446211A (en) 1976-12-21 1977-09-21 Sintered body for cutting tool and method of making same

Country Status (1)

Country Link
JP (1) JPS5446211A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS569279A (en) * 1979-06-28 1981-01-30 Sumitomo Electric Industries Sintered body for cutting tool and its manufacture
JPS6035979B2 (en) * 1979-08-16 1985-08-17 東芝タンガロイ株式会社 High hardness sintered body
JPS5860678A (en) * 1981-10-02 1983-04-11 三菱マテリアル株式会社 High tenacity boron nitride base super high pressure sintering material for cutting and abrasion-resistant tool
JPS61266364A (en) * 1985-05-17 1986-11-26 住友電気工業株式会社 High hardness sintered body composite material having sandwich structure
JPS63274676A (en) * 1987-12-21 1988-11-11 Sumitomo Electric Ind Ltd Composite sintered body for tool
EP0406580B1 (en) * 1989-06-09 1996-09-04 Matsushita Electric Industrial Co., Ltd. A composite material and a method for producing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5377811A (en) * 1976-12-21 1978-07-10 Sumitomo Electric Ind Ltd Sintered material for tools of high hardness and its preparation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5377811A (en) * 1976-12-21 1978-07-10 Sumitomo Electric Ind Ltd Sintered material for tools of high hardness and its preparation

Also Published As

Publication number Publication date
JPS5446211A (en) 1979-04-12

Similar Documents

Publication Publication Date Title
JP2907315B2 (en) Production of polycrystalline cubic boron nitride
KR960008726B1 (en) Method for production of high-pressure phase sintered article of boron nitride for use in cutting tool and sintered article produced thereby
US4647546A (en) Polycrystalline cubic boron nitride compact
US5271749A (en) Synthesis of polycrystalline cubic boron nitride
US4334928A (en) Sintered compact for a machining tool and a method of producing the compact
US5580666A (en) Cemented ceramic article made from ultrafine solid solution powders, method of making same, and the material thereof
JP2879475B2 (en) Group IVB boride based articles, cutting tools, manufacturing methods, and methods of processing Group IVB based materials
GB2049654A (en) Sintered compact for use in a tool
EP0816304B1 (en) Ceramic bonded cubic boron nitride compact
EP1551581A1 (en) Sintered body with high hardness for cutting cast iron and the method for producing the same
JPS6246510B2 (en)
JP6283985B2 (en) Sintered body
JPH0215515B2 (en)
JPS6251911B2 (en)
JPS6137221B2 (en)
JPS644989B2 (en)
JPS627259B2 (en)
JPS6158432B2 (en)
JPS62983B2 (en)
JPS6241306B2 (en)
JPH0149667B2 (en)
JPS638072B2 (en)
JPH0357171B2 (en)
JPS6247940B2 (en)
JPS62247008A (en) High-hardness sintered body for tool and its production