JPS6143307B2 - - Google Patents

Info

Publication number
JPS6143307B2
JPS6143307B2 JP53151484A JP15148478A JPS6143307B2 JP S6143307 B2 JPS6143307 B2 JP S6143307B2 JP 53151484 A JP53151484 A JP 53151484A JP 15148478 A JP15148478 A JP 15148478A JP S6143307 B2 JPS6143307 B2 JP S6143307B2
Authority
JP
Japan
Prior art keywords
diamond
particles
ultra
powder
high pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53151484A
Other languages
Japanese (ja)
Other versions
JPS5580776A (en
Inventor
Fumihiro Ueda
Kenichi Nishigaki
Taijiro Oonishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP15148478A priority Critical patent/JPS5580776A/en
Publication of JPS5580776A publication Critical patent/JPS5580776A/en
Publication of JPS6143307B2 publication Critical patent/JPS6143307B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、すぐれた靭性および耐熱耐摩耗性
を有し、特に切削工具用材料として使用するのに
適した超高圧焼結材料に関するものである。 一般に、鋳鉄などの鉄系金属材料や、アルミニ
ウム、アルミニウム合金、銅、および銅合金など
の非鉄金属材料、さらにプラスチツク、ゴム、黒
鉛、セラミツクスなどの非金属材料などの切削に
使用される切削工具には、高硬度、すぐれた耐摩
耗性、靭性、および熱的化学的安定性などの特性
を備えることが要求されている。 近年、かかる要求を満足すべく、主成分がダイ
ヤモンドからなる超高圧焼結材料が提案され、前
記超高圧焼結材料は常温は勿論のこと、比較的高
温においても高硬度を有し、すぐれた耐摩耗性を
示すことから、衝撃の加わるような苛酷な条件下
での仕上げ切削工具用材料として使用されてい
る。 確かに、上記超高圧焼結材料製切削工具によれ
ば、上記鉄系金属材料や非鉄金属材料の切削に際
して、高速切削が可能となるために、構成刃先が
つきにくく、すぐれた仕上げ面が得られるという
利点がもたらされる。 このように上記従来超高圧焼結材料は、主成分
が著しく高い硬さを有するダイヤモンドで構成さ
れているために、上記鉄系金属材料や非鉄金属材
料、および非金属材料の切削に切削工具として使
用した場合に、すぐれた耐摩耗性を示すものの、
十分な靭性を備えたものではないため、この靭性
不足が原因で切削時にチツピング摩耗を起し易
く、この結果本来具備しているすぐれた耐摩耗性
を十分発揮することができず、また十分な高温耐
酸化性(耐熱性)を備えていないため、温度上昇
を伴なう切削には使用することができないのが現
状である。 本発明者等は、上述のような観点から、靭性、
高温耐酸化性(耐熱性)、および耐摩耗性を兼ね
備えた切削工具用材料を得べく、ダイヤモンドに
着目して研究を行なつた結果、ダイヤモンド粉末
に、立方晶窒化ほう素(以下CBNで示す)粉末
と、周期律表の4a,5a、および6a族金属の炭化
物、同4aおよび5a族金属の窒化物および炭窒化
物、並びに同4a族金属のほう化物のうちの1種ま
たは2種以上(以下これらを総称して金属の炭・
窒・ほう化物という)からなる粉末と、けい化チ
タン(けい化チタンには、Ti5Si3やTiSi2などが
あるが、以下代表してTi5Si3で示す)粉末と、さ
らに炭化ほう素(以下B4Cで示す)、炭化けい素
(以下SiCで示す)、および窒化けい素(以下Si3N4
で示す)のうちの1種または2種以上(以下これ
を総称して炭・窒化物という)からなる粉末とを
配合したものを原料粉末として使用し、超高圧焼
結を施すと、ダイヤモンド粒子同志、CBN粒子
同志、金属の炭・窒・ほう化物粒子同志、けい化
チタン粒子同志、および炭・窒化物粒子同志の相
互接触がなく、ダイヤモンド粒子、CBN粒子、
金属の炭・窒・ほう化物粒子、けい化チタン粒
子、および炭・窒化物粒子が相互に隣接し合い、
しかもその粒界では前記各粒子を構成する成分の
拡散が生じて強固な粒子間結合が形成されている
緻密な組織の焼結材料が得られ、この結果得られ
た超高圧焼結材料は、ダイヤモンド粒子によつて
もたらされるすぐれた耐摩耗性と、CBN粒子、
金属の炭・窒・ほう化物粒子、けい化チタン粒
子、および炭・窒化物粒子によつてもたらされる
すぐれた靭性および高温耐酸化性(耐熱性)とを
兼ね備えるという知見を得たのである。 したがつて、この発明は、上記知見にもとづい
てなされたもので、容量%で、 ダイヤモンド:10〜70%、 CBN:5〜50%、 金属の炭・窒・ほう化物:1〜30%、 けい化チタン:0.1〜10%、 炭・窒化物および不可避不純物:1〜30%、 からなる組成を有し、かつすぐれた靭性、耐熱
性、および耐摩耗性を有する切削工具用超高圧焼
結材料に特徴を有するものである。 ついで、この発明の超高圧焼結材料において、
成分組成範囲を上述の通りに限定した理由を説明
する。 (a) ダイヤモンド ダイヤモンド自体は、周知のようにモース硬
さ:10、ヌープ硬さ:8000Kg/mm2(荷重100
g)を有し、現存する物質中、最も高い硬さを
有する物質であるが、その含有量が10容量%未
満では、所望の耐摩耗性を確保することができ
ず、一方70容量%を越えて含有させると、ダイ
ヤモンド粒子相互的の接触度合が大きくなり、
特に靭性に富んだ金属の炭・窒・ほう化物粒子
と、特に高温耐酸化性にすぐれたCBN粒子、
けい化チタン粒子、および炭・窒化物粒子と、
ダイヤモンド粒子との強固な粒子間結合が不十
分となり、この結果靭性低下をきたして切削時
にチツピング摩耗が生じやすくなることから、
その含有量を10〜70容量%と定めた。望ましく
は30〜50容量%の含量がよい。 また、この発明の超高圧焼結材料の製造に際
して、原料粉末として使用されるダイヤモンド
粉末は、すぐれた焼結性を確保する目的で、平
均粒径:50μm以下、一般には同10μm以下の
粉末粒径をもつものを使用するのが好ましく、
さらに市販のメタルコートのダイヤモンド粉末
を原料粉末として使用してもよい。 (b) CBN CBNは、温度1200℃以上、圧力40Kb以上、
望ましくは温度1800℃以上、圧力60Kb以上の
条件で合成されるもので、ダイヤモンドに次ぐ
硬さ、すなわちビツカース硬さで6000〜7000
Kg/mm2を有し、かつダイヤモンドより高温まで
安定した性質をもつと共に、鉄族金属に対して
反応しにくい性質をもつ成分であるが、その含
有量が5容量%未満では、所望の高温耐酸化性
および鉄族金属に対する耐反応性を確保するこ
とができず、一方50容量%を越えて含有させる
と、相対的にダイヤモンドの含有量が少なくな
り過ぎて、ダイヤモンドのもつ高硬度を焼結材
料に十分反映させることができず、この結果耐
摩耗性の低下をもたらすようになることから、
その含有量を5〜50容量%に定めた。なお、望
ましくは20〜35容量%の含有がよい。 (c) 金属の炭・窒・ほう化物 例えば、炭化チタン(以下TiCで示す)は融
点:3147℃、微少硬さ:3000Kg/mm2(荷重100
g)、窒化チタン(以下TiNで示す)は融点:
3205℃、微少硬さ:2000Kg/mm2、ほう化チタン
(以下TiB2で示す)は融点2980℃、微少硬さ:
3400Kg/mm2をそれぞれ有するように、金属の
炭・窒・ほう化物はいずれも高融点高硬度を有
すると共に、ダイヤモンドに比して高温におけ
る耐酸化性にすぐれた物質であり、しかも金属
の炭・窒・ほう化物には、上述のように焼結時
にダイヤモンド粒子、CBN粒子、けい化チタ
ン粒子、および炭・窒化物粒子の間で粒界拡散
を生じさせて強固な粒子間結合を形成する作用
があるほか、それ自体が焼結性にすぐれたもの
であるため、ダイヤモンド粒子間をCBN粒
子、けい化チタン粒子、および炭・窒化物粒子
と共存した状態で埋めた緻密な組織を形成し、
靭性に寄与する作用があるが、その含有量が1
%未満では前記作用に所望の効果を確保するこ
とができず、一方30容量%を越えて含有させる
と、相対的にダイヤモンドの含有量が少なくな
つて、ダイヤモンドのもつ高硬度を焼結材料に
十分反映することができず、この結果耐摩耗性
の低下をきたすようになることから、その含有
量を1〜30容量%と定めた。 また、この発明の超高圧焼結材料の製造に際
して、原料粉末として使用される金属の炭・
窒・ほう化物粉末は微粉のものが好ましく、平
均粒径:10μm以下の微細な粉末を使用するの
が望ましい。 (d) けい化チタン 例えば、Ti5Si3は融点:2120℃を有するよう
に、けい化チタンは、高融点を有し、しかもダ
イヤモンドおよび金属の炭・窒・ほう化物に比
して高温における耐酸化性にすぐれた物質であ
り、さらにダイヤモンド、CBN、金属の炭・
窒・ほう化物、および炭・窒化物に比して軟質
であるため、超高圧焼結中に容易に変形すると
共に、粒子間で辷りを生じてダイヤモンド粒
子、CBN粒子、金属の炭・窒・ほう化物粒
子、および炭・窒化物粒子用を緻密に埋め、こ
の結果靭性向上が図られるようになる作用をも
つが、その含有量が0.1容量%未満では、前記
作用に所望の効果を得ることができず、一方10
容量%を越えて含有させると、相対的にダイヤ
モンドの含有量が少なくなつて、所望の耐摩耗
性を確保することができなくなることから、そ
の含有量を0.1〜10容量%と定めた。なお、望
ましくは2〜6容量%の含有がよい。 (e) 炭・窒化物 例えば、SiCは融点:2827℃、微少ヌープ硬
さ:3000Kg/mm2(荷重100g)を有するよう
に、これら炭・窒化物はいずれも高融点高硬有
を有すると共に、ダイヤモンドに比して高温に
おける耐酸化性にすぐれた物質であり、しかも
炭・窒化物には、焼結時に、上述のようにダイ
ヤモンド粒子、CBN粒子、金属の炭・窒・ほ
う化物粒子、およびけい化チタン粒子の相互粒
界での成分拡散に寄与して強固な粒子間結合を
形成せしめる作用があるほか、それ自体が焼結
性にすぐれたものであるため、ダイヤモンド粒
子間をCBN粒子、金属の炭・窒・ほう化物粒
子、およびけい化チタン粒子と共存した状態で
埋めた緻密な組織を形成して靭性向上に寄与す
る作用があるが、その含有量が1容量%未満で
は、前記作用に所望の効果が得られず、一方30
容量%を越えて含有させると、相対的にダイヤ
モンドの含有量が少なくなつて、ダイヤモンド
のもつ高硬度を焼結材料に十分反映することが
できず、この結果耐摩耗性低下をきたすように
なることから、その含有量を1〜30容量%と定
めた。 なお、この発明の超高圧焼結材料の製造に際
して、原料粉末として使用される炭・窒化物粉
末、および上記のけい化チタン粉末は、金属の
炭・窒・ほう化物粉末と同様に、望ましくは平
均粒径:10μm以下の微細粉末の使用がよい。 さらに、この発明の超高圧焼結材料は、通常
の粉末治金法により、公知の超高圧超高温発生
装置を使用して製造することができる。 すなわち、原料粉末としてのダイヤモンド粉
末、CBN粉末、金属の炭・窒・ほう化物粉
末、けい化チタン粉末、および炭・窒化物粉末
を所定割合に配合し、この配合粉末を鉄製ボー
ルミルなどの混合機において長時間混合して均
質な混合粉末とし、ついでこの混合粉末を、例
えば特公昭36―23463号公報に記載されるよう
な超高圧高温発生装置における鋼製あるいは高
融点金属製の容器内に封入し、圧力および温度
を上げ、最高圧力:54〜70Kb、最高温度:
1400〜1800℃の範囲内の圧力および温度に数分
〜数10分保持した後、冷却し、最終的に圧力を
解放することからなる基本的工程によつて製造
することができる。 つぎに、この発明の超高圧焼結材料を実施例に
より説明する。 原料粉末として、それぞれ市販の平均粒径:3
μmを有するダイヤモンド粉末、同6μmの
CBN粉末、いずれも0.2〜2μmの範囲内の平均
粒径を有する各種の金属の炭・窒・ほう化物粉
末、同3μmのTi5Si3粉末、同3μmのSiC粉
末、同4μmのB4C粉末、および同2μmの
Si3N4粉末を用意し、これら原料粉末をそれぞれ
第1表に示される配合組成に配合し、これに溶媒
としてアセトンを加え、炭化タングステン基超硬
合金製のボールミル中で4時間混合し、乾燥した
後、直径:10mm×高さ:10mmの寸法をもつステン
レス鋼(JIS・SUS304)製の管内に詰め、真空引
きしながらJIS・p20の炭化タングステン基超硬
合金製の蓋を前記管の両側端部に溶接して密封
し、ついで、これを公知の超高圧高温発生装置に
装着し、最高付加圧力:60Kb、最高加熱温度:
1450℃の条件で10分間保持して焼結した後、冷却
し、圧力解放を行なうことによつて実質的に配合
組成と同一の成分組成をもつた本発明超高圧焼結
材料1〜18、および比較超高圧焼結材料1〜8を
それぞれ製造した。 この結果得られた本発明超高圧焼結材料1〜18
は、いずれもダイヤモンド、CBN、金属の炭・
窒・ほう化物、Ti5Si3、および炭・窒化物が均一
に分散した緻密な組織をもつものであつた。 なお、比較超高圧焼結材料1〜8は、いずれも
構成成分のうちの少なくともいずれかの成分含有
量(第1表に※印を付したもの)がこの発明の範
囲から外れた組成をもつものである。 つぎに、上記の本発明超高圧焼結材料1〜18、
および比較超高圧焼結材料1〜8、並びに第1表
に示される組成をもつた従来公知の主成分がダイ
ヤモンドからなる市販の超高圧焼結材料から、切
断および研磨により切削用切刃を切出し、この切
刃を炭化タングステン基超硬合金製チツプに銀ろ
うを用いてろう付けした状態で、 被削材:FC30、 切削速度:200m/min、 切込み:1mm、 切削油:なし、 の条件での鋳鉄の仕上げ面加工切削試験、並びに 被削材:Al―Si合金(Si:8重量%含有)、 切削速度:300m/min、 送り:0.1mm/rev.、 切込み:0.5mm、
The present invention relates to an ultra-high pressure sintered material that has excellent toughness and heat and wear resistance, and is particularly suitable for use as a material for cutting tools. Generally used for cutting tools used to cut ferrous metal materials such as cast iron, non-ferrous metal materials such as aluminum, aluminum alloys, copper, and copper alloys, and non-metal materials such as plastics, rubber, graphite, and ceramics. are required to have properties such as high hardness, excellent wear resistance, toughness, and thermal and chemical stability. In recent years, in order to satisfy such demands, ultra-high pressure sintered materials whose main component is diamond have been proposed, and the ultra-high pressure sintered materials have high hardness not only at room temperature but also at relatively high temperatures, and have excellent properties. Because it exhibits wear resistance, it is used as a material for finishing cutting tools under harsh conditions such as impact. It is true that the above-mentioned cutting tool made of ultra-high pressure sintered material enables high-speed cutting when cutting the above-mentioned ferrous metal materials and non-ferrous metal materials, making it difficult for built-up edges to stick and providing an excellent finished surface. This gives you the advantage of being able to In this way, the conventional ultra-high pressure sintered materials mentioned above are mainly composed of diamond which has extremely high hardness, so they can be used as cutting tools for cutting the above-mentioned ferrous metal materials, non-ferrous metal materials, and non-metal materials. Although it shows excellent wear resistance when used,
Because it does not have sufficient toughness, chipping wear is likely to occur during cutting due to this lack of toughness, and as a result, the excellent wear resistance that it originally has cannot be fully demonstrated, and the Currently, it cannot be used for cutting that involves a rise in temperature because it does not have high-temperature oxidation resistance (heat resistance). From the above-mentioned viewpoint, the present inventors have determined that toughness,
In order to obtain a material for cutting tools that has both high-temperature oxidation resistance (heat resistance) and wear resistance, we conducted research focusing on diamond. ) Powder and one or more of carbides of metals from groups 4a, 5a, and 6a of the periodic table, nitrides and carbonitrides of metals from groups 4a and 5a, and borides of metals from group 4a. (Hereinafter, these will be collectively referred to as metallic charcoal and
powder of titanium silicide (titanium silicide includes Ti 5 Si 3 and TiSi 2 , but will be referred to as Ti 5 Si 3 below), and powder of boron carbide. Silicon carbide ( hereinafter referred to as SiC), and silicon nitride (hereinafter referred to as Si 3 N 4 )
When a powder consisting of one or more of the following (hereinafter collectively referred to as carbon/nitride) is used as a raw material powder and subjected to ultra-high pressure sintering, diamond particles are formed. There is no mutual contact between CBN particles, metal carbon/nitrogen/boride particles, titanium silicide particles, and carbon/nitride particles, and diamond particles, CBN particles,
Metallic carbon/nitride/boride particles, titanium silicide particles, and carbon/nitride particles are adjacent to each other,
Moreover, a sintered material with a dense structure in which the components constituting each particle diffuses at the grain boundaries and strong interparticle bonds are formed is obtained, and the ultra-high pressure sintered material obtained as a result is Excellent wear resistance provided by diamond particles and CBN particles,
They found that the material combines the excellent toughness and high-temperature oxidation resistance (heat resistance) provided by metal carbon/nitride/boride particles, titanium silicide particles, and carbon/nitride particles. Therefore, this invention was made based on the above knowledge, and in volume %, diamond: 10 to 70%, CBN: 5 to 50%, metal carbon/nitrogen/boride: 1 to 30%, Ultra-high pressure sintering for cutting tools with a composition of titanium silicide: 0.1-10%, carbon/nitrides and unavoidable impurities: 1-30%, and has excellent toughness, heat resistance, and wear resistance. The material has characteristics. Next, in the ultra-high pressure sintered material of this invention,
The reason why the component composition range was limited as described above will be explained. (a) Diamond Diamond itself has a Mohs hardness of 10 and a Knoop hardness of 8000 kg/mm 2 (load of 100 kg).
g) and has the highest hardness among existing substances, but if the content is less than 10% by volume, the desired wear resistance cannot be secured; If the content exceeds the amount, the degree of contact between the diamond particles increases,
Carbon/nitrogen/boride particles, which are metals with particularly high toughness, and CBN particles, which have particularly excellent high-temperature oxidation resistance,
Titanium silicide particles and carbon/nitride particles,
Strong interparticle bonding with diamond particles becomes insufficient, resulting in a decrease in toughness and making chipping wear more likely to occur during cutting.
Its content was determined to be 10 to 70% by volume. The content is preferably 30 to 50% by volume. In addition, in the production of the ultra-high pressure sintered material of this invention, the diamond powder used as the raw material powder has an average particle size of 50 μm or less, generally 10 μm or less, in order to ensure excellent sinterability. It is preferable to use one with a diameter,
Furthermore, commercially available metal-coated diamond powder may be used as the raw material powder. (b) CBN CBN has a temperature of 1200℃ or more, a pressure of 40Kb or more,
It is preferably synthesized at a temperature of 1,800℃ or higher and a pressure of 60Kb or higher, and has a hardness second only to diamond, i.e., 6,000 to 7,000 on the Vickers hardness.
Kg/mm 2 and has properties that are more stable at higher temperatures than diamond and less reactive with iron group metals. Oxidation resistance and reaction resistance to iron group metals cannot be ensured, and on the other hand, if the content exceeds 50% by volume, the diamond content becomes relatively too small, and the high hardness of diamond is quenched. This is because the wear resistance cannot be sufficiently reflected in the bonding material, resulting in a decrease in wear resistance.
Its content was set at 5 to 50% by volume. Note that the content is preferably 20 to 35% by volume. (c) Metallic carbon, nitride, and borides For example, titanium carbide (hereinafter referred to as TiC) has a melting point of 3147℃ and a microhardness of 3000Kg/mm 2 (load of 100
g), Titanium nitride (hereinafter referred to as TiN) has a melting point:
3205℃, microhardness: 2000Kg/mm 2 , titanium boride (hereinafter referred to as TiB 2 ) has a melting point of 2980℃, microhardness:
3400Kg/mm 2 , the metals carbon, nitride, and borides all have high melting points and high hardness, and are substances with excellent oxidation resistance at high temperatures compared to diamond.・As mentioned above, for nitride/boride, grain boundary diffusion occurs between diamond particles, CBN particles, titanium silicide particles, and carbon/nitride particles during sintering to form strong interparticle bonds. In addition to its excellent sinterability, it forms a dense structure in which the spaces between diamond particles are filled with CBN particles, titanium silicide particles, and carbon/nitride particles. ,
It has the effect of contributing to toughness, but its content is 1
If the diamond content is less than 30% by volume, the desired effect cannot be achieved, while if the content exceeds 30% by volume, the diamond content will be relatively small, making it difficult to apply the high hardness of diamond to the sintered material. The content was determined to be 1 to 30% by volume, since this would result in a decrease in wear resistance. In addition, when manufacturing the ultra-high pressure sintered material of this invention, metal charcoal and
The nitrogen/boride powder is preferably a fine powder, and it is desirable to use a fine powder with an average particle size of 10 μm or less. (d) Titanium silicide For example, titanium silicide has a high melting point, as Ti 5 Si 3 has a melting point of 2120°C, and moreover, it can be used at higher temperatures than diamond and metal carbon, nitride, and borides. It is a material with excellent oxidation resistance, and is also highly resistant to diamond, CBN, metal charcoal,
Because they are softer than nitride/borides and carbon/nitrides, they are easily deformed during ultra-high pressure sintering, and stagnation occurs between particles, resulting in diamond particles, CBN particles, and carbon/nitrides in metals. It has the effect of densely filling boride particles and carbon/nitride particles, thereby improving toughness, but if the content is less than 0.1% by volume, the desired effect cannot be obtained. is not possible, while 10
If the diamond content exceeds 0.1 to 10% by volume, the content of diamond becomes relatively small, making it impossible to secure the desired wear resistance. Therefore, the content was set at 0.1 to 10% by volume. Note that the content is preferably 2 to 6% by volume. (e) Carbon/Nitride For example, SiC has a melting point of 2827℃ and a minute Knoop hardness of 3000Kg/mm 2 (load: 100g). All of these carbons and nitrides have a high melting point and high hardness. , is a material with superior oxidation resistance at high temperatures compared to diamond, and carbon/nitrides also contain diamond particles, CBN particles, metal carbon/nitride/boride particles, In addition to contributing to component diffusion at the mutual grain boundaries of titanium silicide particles and forming strong interparticle bonds, CBN particles also have excellent sintering properties, so CBN particles connect diamond particles to each other. , has the effect of contributing to improving toughness by forming a dense structure in coexistence with metallic carbon/nitrogen/boride particles and titanium silicide particles, but if its content is less than 1% by volume, The desired effect cannot be obtained from the above action, while 30
If the content exceeds % by volume, the diamond content will be relatively low, and the high hardness of diamond will not be fully reflected in the sintered material, resulting in a decrease in wear resistance. Therefore, its content was determined to be 1 to 30% by volume. In the production of the ultra-high pressure sintered material of the present invention, the carbon/nitride powder used as the raw material powder and the titanium silicide powder described above are desirably the same as the metal carbon/nitride/boride powder. It is preferable to use fine powder with an average particle size of 10 μm or less. Further, the ultra-high pressure sintered material of the present invention can be manufactured by a conventional powder metallurgy method using a known ultra-high pressure and ultra-high temperature generator. That is, raw material powders such as diamond powder, CBN powder, metal carbon/nitrogen/boride powder, titanium silicide powder, and carbon/nitride powder are blended in a predetermined ratio, and this blended powder is passed through a mixing machine such as an iron ball mill. The mixed powder is mixed for a long time to form a homogeneous mixed powder, and then this mixed powder is sealed in a steel or high melting point metal container in an ultra-high pressure and high temperature generator as described in Japanese Patent Publication No. 36-23463. and increase the pressure and temperature, maximum pressure: 54~70Kb, maximum temperature:
It can be produced by a basic process consisting of holding at a pressure and temperature in the range 1400-1800° C. for a few minutes to several tens of minutes, then cooling and finally releasing the pressure. Next, the ultra-high pressure sintered material of the present invention will be explained using examples. As raw material powder, each commercially available average particle size: 3
Diamond powder with 6 μm
CBN powder, carbon/nitrogen/boride powder of various metals with an average particle size within the range of 0.2 to 2 μm, Ti 5 Si 3 powder of 3 μm, SiC powder of 3 μm, B 4 C of 4 μm powder, and the same 2 μm
Si 3 N 4 powder was prepared, these raw material powders were each blended into the composition shown in Table 1, acetone was added as a solvent, and the mixture was mixed for 4 hours in a ball mill made of tungsten carbide-based cemented carbide. After drying, it is packed into a stainless steel (JIS/SUS304) tube with dimensions of diameter: 10 mm x height: 10 mm, and a JIS/p20 tungsten carbide-based cemented carbide lid is attached to the tube while vacuuming. Both ends are welded and sealed, and then this is attached to a known ultra-high pressure and high temperature generator, maximum applied pressure: 60Kb, maximum heating temperature:
The ultra-high pressure sintered materials 1 to 18 of the present invention, which have substantially the same composition as the blended composition, are obtained by holding and sintering at 1450°C for 10 minutes, cooling, and releasing the pressure. and comparative ultra-high pressure sintered materials 1 to 8 were produced, respectively. The resulting ultra-high pressure sintered materials 1 to 18 of the present invention
are diamond, CBN, metal charcoal,
It had a dense structure in which nitride/boride, Ti 5 Si 3 , and carbon/nitride were uniformly dispersed. Comparative ultra-high pressure sintered materials 1 to 8 all have compositions in which the content of at least one of the constituent components (marked with * in Table 1) is outside the scope of the present invention. It is something. Next, the above-mentioned ultra-high pressure sintered materials 1 to 18 of the present invention,
Comparative ultra-high pressure sintered materials 1 to 8, and commercially available ultra-high pressure sintered materials whose main component is diamond and have the compositions shown in Table 1, are cut into cutting edges by cutting and polishing. , with this cutting edge brazed to a tungsten carbide-based cemented carbide chip using silver solder, work material: FC30, cutting speed: 200 m/min, depth of cut: 1 mm, cutting oil: None, under the following conditions. Cutting test for finishing surface of cast iron, and workpiece material: Al-Si alloy (Si: 8% by weight), cutting speed: 300m/min, feed: 0.1mm/rev., depth of cut: 0.5mm,

【表】【table】

【表】 切削油:なし、 の条件でのAl合金の仕上げ面加工切削試験を行
ない、いずれの切削試験でも切刃の逃げ面摩耗幅
が0.2mmに達するまでの切削時間を測定した。こ
れらの測定結果を第1表に示した。 第1表に示される結果から、本発明超高圧焼結
材料1〜18は、いずれも市販の超高圧焼結材料に
比して、著しくすぐれた靭性および耐熱性を有
し、かつこれと同等のすぐれた耐摩耗性を有する
ので、きわめて長い切削時間を示すのに対して、
市販の超高圧焼結材料は、靭性および耐熱性不足
が原因で比較的短かい切削時間しか示さないこと
が明らかである。 また、比較超高圧焼結材料1〜8に見られるよ
うに、構成成分のうちの少なくともいずれかの成
分含有量でもこの発明の範囲から外れると、靭
性、耐熱性、および耐摩耗性のうちの少なくとも
いずれかの性質が劣つたものになるので、所望の
切削性能を示さず、比較的短時間の切削時間しか
示さないものである。 上述のように、この発明の超高圧焼結材料は、
すぐれた靭性、耐熱性(高温耐酸化性)、および
耐摩耗性を兼ね備えているので、特に切削工具用
材料として使用した場合にすぐれた切削性能を発
揮するのである。
[Table] Cutting tests were conducted to finish the surface of Al alloys under the conditions of no cutting oil and , and in each cutting test, the cutting time until the flank wear width of the cutting edge reached 0.2 mm was measured. The results of these measurements are shown in Table 1. From the results shown in Table 1, ultra-high pressure sintered materials 1 to 18 of the present invention all have significantly superior toughness and heat resistance compared to commercially available ultra-high pressure sintered materials, and are equivalent to these. Because of its excellent wear resistance, it exhibits extremely long cutting times;
It is evident that commercially available ultra-high pressure sintered materials exhibit relatively short cutting times due to lack of toughness and heat resistance. Furthermore, as seen in Comparative Ultra-High Pressure Sintered Materials 1 to 8, if the content of at least one of the constituent components falls outside the scope of the present invention, the toughness, heat resistance, and wear resistance may deteriorate. Since at least one of the properties is inferior, it does not exhibit the desired cutting performance and exhibits only a relatively short cutting time. As mentioned above, the ultra-high pressure sintered material of this invention is
Since it has excellent toughness, heat resistance (high temperature oxidation resistance), and wear resistance, it exhibits excellent cutting performance especially when used as a material for cutting tools.

Claims (1)

【特許請求の範囲】 1 ダイヤモンド:10〜70%、 立方晶窒化ほう素:5〜50%、 周期律表の4a,5a、および6a族金属の炭化物、
同4aおよび5a族金属の窒化物および炭窒化物、並
びに同4a族金属のほう化物のうちの1種または2
種以上:1〜30%、 けい化チタン:0.1〜10%、 炭化ほう素、炭化けい素、および窒化けい素の
うちの1種または2種以上および不可避不純物:
1〜30%、 からなる組成(以上容量%)を有することを特徴
とする靭性および耐熱耐摩耗性のすぐれた切削工
具用超高圧焼結材料。
[Claims] 1 Diamond: 10 to 70%, cubic boron nitride: 5 to 50%, carbides of metals from groups 4a, 5a, and 6a of the periodic table,
One or two of nitrides and carbonitrides of group 4a and 5a metals, and borides of group 4a metals.
More than species: 1 to 30%, Titanium silicide: 0.1 to 10%, One or more of boron carbide, silicon carbide, and silicon nitride and inevitable impurities:
An ultra-high pressure sintered material for cutting tools having excellent toughness and heat and wear resistance, characterized by having a composition (volume %) consisting of 1 to 30%.
JP15148478A 1978-12-09 1978-12-09 Tanacious heattresisting antiabrasive super high pressure sintering material Granted JPS5580776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15148478A JPS5580776A (en) 1978-12-09 1978-12-09 Tanacious heattresisting antiabrasive super high pressure sintering material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15148478A JPS5580776A (en) 1978-12-09 1978-12-09 Tanacious heattresisting antiabrasive super high pressure sintering material

Publications (2)

Publication Number Publication Date
JPS5580776A JPS5580776A (en) 1980-06-18
JPS6143307B2 true JPS6143307B2 (en) 1986-09-26

Family

ID=15519503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15148478A Granted JPS5580776A (en) 1978-12-09 1978-12-09 Tanacious heattresisting antiabrasive super high pressure sintering material

Country Status (1)

Country Link
JP (1) JPS5580776A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4231195A (en) * 1979-05-24 1980-11-04 General Electric Company Polycrystalline diamond body and process

Also Published As

Publication number Publication date
JPS5580776A (en) 1980-06-18

Similar Documents

Publication Publication Date Title
US4647546A (en) Polycrystalline cubic boron nitride compact
US20040018108A1 (en) Method of producing an abrasive product containing cubic boron nitride
KR930005896B1 (en) Hard sintered compact for tools
US20050226691A1 (en) Sintered body with high hardness for cutting cast iron and the method for producing same
JPS627149B2 (en)
JP2861487B2 (en) High hardness sintered cutting tool
JPS6143307B2 (en)
JPS6020456B2 (en) High-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools
JPS6020457B2 (en) High-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools
JPS6146429B2 (en)
JPH06198504A (en) Cutting tool for high hardness sintered body
JPS607022B2 (en) Cubic boron nitride-based ultra-high pressure sintered material for cutting tools
JPS6143306B2 (en)
JPS6141873B2 (en)
JPS6141866B2 (en)
JP2808725B2 (en) Sintered body for high hardness tools
JPH075384B2 (en) Cubic boron nitride based sintered body
JPS6119591B2 (en)
JPS6131069B2 (en)
JPS6143312B2 (en)
JPS6225632B2 (en)
JPS6141865B2 (en)
JPS6119588B2 (en)
JPS627259B2 (en)
JPS6119589B2 (en)