【発明の詳細な説明】[Detailed description of the invention]
この発明は、すぐれた靭性および耐熱耐摩耗性
を有し、特に切削工具用材料として使用するのに
適した超高圧焼結材料に関するものである。
一般に、鋳鉄などの鉄系金属材料や、アルミニ
ウム、アルミニウム合金、銅、および銅合金など
の非鉄金属材料、さらにプラスチツク、ゴム、黒
鉛、セラミツクなどの非金属材料などの切削に使
用される切削工具には、高硬度、すぐれた耐摩耗
性、靭性、および熱的化学的安定性などの特性を
備えることが要求されている。
近年、かかる要求を満足すべく、主成分がダイ
ヤモンドからなる超高圧焼結材料が提案され、前
記超高圧焼結材料は常温は勿論のこと、比較的高
温においても高硬度を有し、すぐれた耐摩耗性を
示すことから、衝撃の加わるような苛酷な条件下
での仕上げ切削工具用材料として使用されてい
る。
確かに、上記超高圧焼結材料製切削工具によれ
ば、上記鉄系金属材料や非鉄金属材料の切削に際
して、高速切削が可能となるために、構成刃先が
つきにくく、すぐれた仕上げ面が得られるという
利点がもたらされる。
このように上記従来超高圧焼結材料は、主成分
が著しく高い硬さを有するダイヤモンドで構成さ
れているために、上記鉄系金属材料や非鉄金属材
料、および非金属材料の切削に切削工具として使
用した場合に、すぐれた耐摩耗性を示すものの、
十分な靭性を備えたものでないため、この靭性不
足が原因で切削時にチツピング摩耗を起し易く、
この結果本来具備しているすぐれた耐摩耗性を十
分発輝することができず、また十分な高温耐酸化
性(耐熱性)を備えていないために、温度上昇を
伴なう切削には使用することができないのが現状
である。
本発明者等は、上述のような観点から、靭性、
高温耐酸化性(耐熱性)、および耐摩耗性を兼ね
備えた切削工具用材料を得べく、ダイヤモンドに
着目して研究を行なつた結果、ダイヤモンド粉末
に、立方晶窒化硼素(以下立方晶BNで示す)粉
末と、周期律表の4a、5a、および6a族金属の炭化
物、窒化物、炭室化物および硼化物のうちの1種
または2種以上(以下これらを総称して金属の
炭・窒・硼化物という)からなる粉末と、酸化ア
ルミニウム(以下Al2O3で示す)および酸化イツ
トリウム(以下Y2O3で示す)、および酸化マグネ
シウム(以下MgOで示す)のうちの1種または
2種以上(以下、これらを総称して酸化物と略記
する)からなる粉末とを配合したものを原料粉末
として使用し、超高圧焼結を行なうと、ダイヤモ
ンド粒子同志、上記BN粉末粒子同志、上記金属
の炭・窒・硼化物粒子同志、および上記酸化物粒
子同志の相互接触がなく、ダイヤモンド粒子、上
記BN粒子、上記金属の炭・窒・硼化物粒子、お
よび上記酸化物粒子とが相互に隣接し合い、しか
もその粒界では前記各粒子を構成する成分の拡散
が生じて強固な粒子間結合が形成されている緻密
な組織の焼結材料が得られ、この結果得られた焼
結材料は、ダイヤモンド粒子によつてもたらされ
るすぐれた耐摩耗性と、BN粒子、金属の炭・
窒・硼化物粒子、および酸化物粒子によつてもた
らされるすぐれた靭性および高温耐酸化性(耐熱
性)とを兼ね備えるという知見を得たのである。
したがつて、この発明の超高圧焼結材料は、上
記知見にもとづいてなされたもので、容量%で、
ダイヤモンド:20〜80%、
BN:5〜50%、
金属の炭・窒・硼化物:1〜30%、
酸化物および不可避不純物:1〜30%、
からなる組成を有することに特徴がある。
ついで、この発明の超高圧焼結材料において、
成分組成範囲を上述のように限定した理由を説明
する。
(a) ダイヤモンド
ダイヤモンド自体は、周知のようにモース硬
さ:10、ヌープ硬さ:8000Kg/mm2以上を有し、
現存する物質中、最も高い硬さを有する物質で
あるが、その含有量が20容量%未満では、所望
の耐摩耗性を確保することができず、一方80容
量%を越えて含有させると、ダイヤモンド粒子
相互間の接触度合が大きくなり、耐熱性にすぐ
れ、靭性に富んだ金属の炭・窒・硼化物粒子、
BN粒子、および酸化物粒子と、ダイヤモンド
粒子との強固な粒子間結合が不十分となり、こ
の結果靭性低下をきたして切削時にチツピング
摩耗が生じやすくなることから、その含有量を
20〜80容量%と定めた。なお、好ましくは40〜
60容量%の含有が望ましい。
また、この発明の超高圧焼結材料の製造に際
して、原料粉末として使用されるダイヤモンド
粉末は、すぐれた焼結性を確保する目的で、平
均粒径50μm以下、一般には同10μm以下の粉
末粒径をもつものを使用するのが好ましく、さ
らに市販のメタルコートのダイヤモンド粉末を
原料粉末として使用してもよい。
(b) BN
BNは、温度1200℃以上、圧力40Kb以上、望
ましくは温度1800℃以上、圧力60Kb以上の条
件で合成されるもので、ダイヤモンドに次ぐ硬
さ、すなわちビツカース硬さで6000〜7000Kg/
mm2を有し、かつダイヤモンドより高温まで安定
した性質をもつと共に、鉄族金属に対して反応
しにくい性質をもつ成分であるが、その含有量
が5容量%未満では、所望の高温耐酸化性およ
び鉄族金属に対する耐反応性を確保することが
できず、一方50容量%を越えて含有させると、
相対的にダイヤモンドの含有量が少なくなり過
ぎて、前記ダイヤモンドのもつ高硬度を焼結材
料に充分反映させることができず、この結果、
耐摩耗性の低下をもたらすようになることか
ら、その含有量を5〜50容量%、望ましくは15
〜30容量%にすることが必要である。
(c) 金属の炭・窒・硼化物
例えば、炭化チタン(以下TiCで示す)は融
点:3147℃、微少硬さ:3000Kg/mm2(荷重100
g)、窒化チタン(以下TiNで示す)は融点:
3205℃、微少硬さ:2000Kg/mm2、硼化チタン
(以下TiB2で示す)は融点:2980℃、微少硬
さ:3400Kg/mm2をそれぞれ有するように、金属
の炭・窒・硼化物はいずれも高融点高硬度を有
すると共に、ダイヤモンドに比して高温におけ
る耐酸化性にすぐれた物質であり、しかも金属
の炭・窒・硼化物には、上述のように焼結時に
ダイヤモンド粒子、BN粒子、および酸化物粒
子との間に粒界拡散を生じさせて強固な粒子間
結合を形成する作用があるほか、それ自体が焼
結性にすぐれたものであるため、ダイヤモンド
粒子間をBN粒子、および酸化物粒子と共存し
た状態で埋めた緻密な組織を形成する作用があ
るが、その含有量が1%未満では、前記作用に
所望の効果を得ることができず、この結果靭性
低下をきたすようになり、一方30容量%を超え
て含有させると、相対的にダイヤモンドおよび
BNの含有量が少なくなり過ぎて、ダイヤモン
ドおよびBNのもつ高硬度の焼結材料に充分反
映することができず、この結果耐摩耗性低下を
きたすようになることから、その含有量を1〜
30容量%と定めた。
また、この発明の超高圧焼結材料の製造に際
して、原料粉末として使用される金属の炭・
窒・硼化物粉末は微粉のものが好ましく、平均
粒径10μm以下の微細な粉末を使用するのが望
ましい。
(d) 酸化物
例えば、Al2O3は融点:2040℃、微少硬さ:
2720Kg/mm2(荷重50g)を有するように、酸化
物はいずれも高融点高硬度を有し、しかもダイ
ヤモンドおよび金属の炭・窒・硼化物に比して
著しくすぐれた高温耐酸化性(耐熱性)を有す
る。また酸化物は焼結時および切削時にも安定
しているため、ダイヤモンドおよび金属の炭・
窒・硼化物を酸化することはない。さらに酸化
物には、それ自体の高温硬さがBNに比して低
いため、超高圧焼結中に容易に変形すると共
に、粒子間で辷りを生じてダイヤモンド粒子、
BN粒子、および金属の炭・窒・硼化物粒子間
を緻密に埋めて靭性を向上させる作用がある
が、その含有量が1容量%未満では、前記作用
に所望の効果を得ることができないことから靭
性低下をきたすようになり、また同様に30容量
%を越えて含有させると、相対的にダイヤモン
ドおよびBN含有量が少なくなり過ぎて、ダイ
ヤモンドおよびBNのもつ高硬度を焼結材料に
十分反映することができず、この結果耐摩耗性
低下をきたすようになることから、その含有量
を1〜30容量%と定めた。
なお、望ましくは5〜20容量%の含有が好まし
い。
また、この発明の超高圧焼結材料の製造に際し
て、原料粉末として使用される酸化物粉末は、微
細なものが好ましく、平均粒径10μm以下の微細
粉末の使用が望ましい。
さらに、この発明の超高圧焼結材料は、通常の
粉末治金法により、公知の超高圧超高温発生装置
を使用して製造することができる。
すなわち、原料粉末としてのダイヤモンド粉
末、BN粉末、金属の炭・窒・硼化物粉末、およ
び酸化物粉末を所定割合に配合し、この配合粉末
を鉄製ボールミルなどの混合機において長時間混
合して均質な混合粉末とし、ついでこの混合物粉
末を、例えば特公昭36−23463号公報に記載され
るような超高圧高温発生装置における鋼製あるい
は高融点金属製の容器内に封入し、圧力および温
度を上げ、最高圧力:54〜70Kb、最高温度:
1400〜1800℃の範囲内の圧力および温度に数分〜
数10分保持した後、冷却し、最終的に圧力を解放
することからなる基本的工程によつて製造するこ
とができる。
つぎに、この発明の超高圧焼結材料を実施例に
より説明する。
実施例 1
原料粉末として、それぞれ市販の平均粒径3μ
mのダイヤモンド粉末:50容量%、同6μmの
BN粉末:30容量%、同1μmのAl2O3粉末:10容
量%および同2μmのTiC粉末:10容量%を配合
し、この配合粉末を超硬合金製のボールミル中で
溶媒としてアセトンを使用して4時間混合した
後、乾燥した。ついで、この混合粉末を直径10mm
φ×高さ10mmのステンレス鋼(JIS・SUS304)製
管内に詰め、真空引きしながら超硬合金(p20)
製の蓋を前記管の両側端部に溶接し、前記管を密
封した。
このように上記混合粉末を充填密封した管を、
公知の超高圧高温発生装置に装着し、最高付加圧
力:60Kb、最高加熱温度:1450℃の条件で10分
間保持して焼結した後、冷却し、圧力解放を行な
うことによつて第1表に示される成分組成をもつ
た本発明超高圧焼結材料(以下発明材料という)
1を製造した。
この結果得られた本発明材料1は、ダイヤモン
ド、BN、Al2O3、およびTiCが均一に分散した緻
密な組織を有するものであつた。
ついで、比較の目的で、第1表に示されるよう
に、この発明の範囲から外れた成分組成を有する
比較超高圧焼結材料(以下比較材料という)1〜
8を、第1表に示される最終成分組成になるよう
に原料粉末の配合割合を変える以外は、上記本発
明1の製造に適したと同一の条件で製造した。
つぎに、上記本発明材料1、比較材料1〜8、
および同様に比較の目的で用意した従来公知の主
成分がダイヤモンドからなる超高圧焼結材料(以
下従来材料1という)から、切断および研磨手段
によつて切削用切刃を切出し、この切刃を炭化タ
ングステン基超硬合金製チツプに銀ろうを使用し
The present invention relates to an ultra-high pressure sintered material that has excellent toughness and heat and wear resistance, and is particularly suitable for use as a material for cutting tools. Generally used for cutting tools used to cut ferrous metal materials such as cast iron, non-ferrous metal materials such as aluminum, aluminum alloys, copper, and copper alloys, and non-metallic materials such as plastics, rubber, graphite, and ceramics. are required to have properties such as high hardness, excellent wear resistance, toughness, and thermal and chemical stability. In recent years, in order to satisfy such demands, ultra-high pressure sintered materials whose main component is diamond have been proposed, and the ultra-high pressure sintered materials have high hardness not only at room temperature but also at relatively high temperatures, and have excellent properties. Because it exhibits wear resistance, it is used as a material for finishing cutting tools under harsh conditions such as impact. It is true that the above-mentioned cutting tool made of ultra-high pressure sintered material enables high-speed cutting when cutting the above-mentioned ferrous metal materials and non-ferrous metal materials, making it difficult for built-up edges to stick and providing an excellent finished surface. This provides the advantage of being able to In this way, the conventional ultra-high pressure sintered materials mentioned above are mainly composed of diamond which has extremely high hardness, so they can be used as cutting tools for cutting the above-mentioned ferrous metal materials, non-ferrous metal materials, and non-metal materials. Although it shows excellent wear resistance when used,
Because it does not have sufficient toughness, chipping wear is likely to occur during cutting due to this lack of toughness.
As a result, the excellent wear resistance that it originally has cannot be fully demonstrated, and it does not have sufficient high-temperature oxidation resistance (heat resistance), so it cannot be used for cutting that involves a rise in temperature. The current situation is that this is not possible. From the above-mentioned viewpoint, the present inventors have determined that toughness,
In order to obtain a material for cutting tools that has both high-temperature oxidation resistance (heat resistance) and wear resistance, we conducted research focusing on diamond. powder) and one or more of the carbides, nitrides, carbides and borides of metals in groups 4a, 5a and 6a of the periodic table (hereinafter these are collectively referred to as metal carbons and nitrides).・One or two of aluminum oxide (hereinafter referred to as Al 2 O 3 ), yttrium oxide (hereinafter referred to as Y 2 O 3 ), and magnesium oxide (hereinafter referred to as MgO). When ultra-high pressure sintering is performed using a mixture of powders consisting of oxides or more (hereinafter collectively referred to as oxides) as a raw material powder, diamond particles, the above BN powder particles, and the above There is no mutual contact between the metal carbon/nitrogen/boride particles and the oxide particles, and the diamond particles, the BN particles, the metal carbon/nitride/boride particles, and the oxide particles do not interact with each other. A sintered material with a dense structure is obtained in which the components constituting each particle are adjacent to each other and at the grain boundaries, diffusion occurs and strong interparticle bonds are formed, and the resulting sintered material combines the excellent wear resistance provided by diamond particles with the superior wear resistance provided by BN particles and metallic carbon.
They found that it combines the excellent toughness and high-temperature oxidation resistance (heat resistance) provided by nitride/boride particles and oxide particles. Therefore, the ultra-high-pressure sintered material of the present invention was created based on the above knowledge, and in terms of volume %, diamond: 20 to 80%, BN: 5 to 50%, and metal carbon, nitride, and boride. : 1 to 30%, oxides and inevitable impurities: 1 to 30%. Next, in the ultra-high pressure sintered material of this invention,
The reason why the component composition range is limited as described above will be explained. (a) Diamond As is well known, diamond itself has a Mohs hardness of 10 and a Knoop hardness of 8000 kg/mm 2 or more.
It is a substance with the highest hardness among existing substances, but if its content is less than 20% by volume, the desired wear resistance cannot be achieved, whereas if it is contained in excess of 80% by volume, Carbon, nitride, and boride particles of metals have a greater degree of contact between diamond particles, have excellent heat resistance, and are rich in toughness.
The strong interparticle bond between BN particles, oxide particles, and diamond particles becomes insufficient, resulting in a decrease in toughness and making chipping wear more likely to occur during cutting.
It was set at 20-80% by volume. In addition, preferably 40~
A content of 60% by volume is desirable. In addition, in the production of the ultra-high pressure sintered material of this invention, the diamond powder used as the raw material powder has an average particle size of 50 μm or less, generally 10 μm or less, in order to ensure excellent sinterability. It is preferable to use diamond powder with a metal coating, and commercially available metal-coated diamond powder may also be used as the raw material powder. (b) BN BN is synthesized under conditions of a temperature of 1200℃ or higher and a pressure of 40Kb or higher, preferably a temperature of 1800℃ or higher and a pressure of 60Kb or higher, and has a hardness second only to diamond, that is, a Bitkers hardness of 6000 to 7000Kg/
mm 2 and has properties that are more stable at higher temperatures than diamond and are less likely to react with iron group metals; however, if its content is less than 5% by volume, the desired high-temperature oxidation resistance may not be achieved. However, if the content exceeds 50% by volume,
The relatively low diamond content makes it impossible to fully reflect the high hardness of diamond in the sintered material, and as a result,
Since it causes a decrease in wear resistance, the content should be increased to 5 to 50% by volume, preferably 15%.
~30% by volume is required. (c) Metallic carbon, nitride, and borides For example, titanium carbide (hereinafter referred to as TiC) has a melting point of 3147℃ and a microhardness of 3000Kg/mm 2 (load of 100
g), Titanium nitride (hereinafter referred to as TiN) has a melting point:
3205℃, microhardness: 2000Kg/mm 2 , and titanium boride (hereinafter referred to as TiB 2 ) has a melting point: 2980℃, microhardness: 3400Kg/mm 2 , respectively. All of these substances have high melting points and high hardness, and are superior in oxidation resistance at high temperatures compared to diamond.Moreover, metal carbon, nitride, and borides have diamond particles and diamond particles during sintering, as described above. In addition to causing grain boundary diffusion between BN particles and oxide particles to form strong interparticle bonds, BN itself has excellent sinterability, so BN It has the effect of forming a dense structure in coexistence with particles and oxide particles, but if its content is less than 1%, the desired effect cannot be obtained, resulting in a decrease in toughness. On the other hand, if the content exceeds 30% by volume, diamond and
If the BN content becomes too low, it will not be able to fully reflect the high hardness of diamond and BN in the sintered material, resulting in a decrease in wear resistance.
It was set at 30% by capacity. In addition, when manufacturing the ultra-high pressure sintered material of this invention, metal charcoal and
The nitride/boride powder is preferably a fine powder, and it is desirable to use a fine powder with an average particle size of 10 μm or less. (d) Oxide For example, Al 2 O 3 has a melting point of 2040℃ and a microhardness:
2720Kg/mm 2 (load: 50g), all oxides have a high melting point and high hardness, and they also have significantly superior high-temperature oxidation resistance (heat resistance) compared to diamond and metals such as carbon, nitride, and borides. gender). Oxides are also stable during sintering and cutting, so diamond and metal charcoal and
It does not oxidize nitrates and borides. Furthermore, since the oxide itself has a lower high-temperature hardness than BN, it is easily deformed during ultra-high pressure sintering, and also causes sliding between particles, resulting in diamond particles and
It has the effect of densely filling spaces between BN particles and metal carbon/nitrogen/boride particles to improve toughness, but if its content is less than 1% by volume, the desired effect cannot be obtained. Similarly, if the diamond and BN content exceeds 30% by volume, the diamond and BN contents become relatively too low, and the high hardness of diamond and BN cannot be sufficiently reflected in the sintered material. Since this results in a decrease in wear resistance, the content is set at 1 to 30% by volume. Note that the content is desirably 5 to 20% by volume. Further, in producing the ultra-high pressure sintered material of the present invention, the oxide powder used as the raw material powder is preferably fine, and it is desirable to use fine powder with an average particle size of 10 μm or less. Further, the ultra-high pressure sintered material of the present invention can be manufactured by a conventional powder metallurgy method using a known ultra-high pressure and ultra-high temperature generator. That is, diamond powder, BN powder, metal carbon/nitrogen/boride powder, and oxide powder are blended in a predetermined ratio as raw material powders, and this blended powder is mixed for a long time in a mixer such as an iron ball mill to make it homogeneous. Then, this mixed powder is sealed in a container made of steel or a high melting point metal in an ultra-high pressure and high temperature generator as described in Japanese Patent Publication No. 36-23463, and the pressure and temperature are increased. , Maximum pressure: 54~70Kb, Maximum temperature:
A few minutes to pressure and temperature within the range of 1400-1800℃
It can be produced by a basic process consisting of holding for several tens of minutes, cooling and finally releasing the pressure. Next, the ultra-high pressure sintered material of the present invention will be explained using examples. Example 1 As raw material powder, each commercially available average particle size of 3μ
m diamond powder: 50% by volume, 6 μm diamond powder
BN powder: 30% by volume, 1 μm Al 2 O 3 powder: 10% by volume, and 2 μm TiC powder: 10% by volume were mixed, and this mixed powder was placed in a cemented carbide ball mill using acetone as a solvent. After mixing for 4 hours, it was dried. Next, apply this mixed powder to a diameter of 10 mm.
Packed into a stainless steel (JIS/SUS304) tube with a diameter of 10 mm and a height of 10 mm, and poured into a cemented carbide (P20) tube while vacuuming.
lids made of aluminum were welded to both ends of the tube to seal the tube. In this way, the tube filled with the above mixed powder and sealed,
It was installed in a known ultra-high pressure and high temperature generator and sintered at a maximum applied pressure of 60 Kb and a maximum heating temperature of 1450°C for 10 minutes, then cooled and released the pressure to produce the results shown in Table 1. The ultra-high pressure sintered material of the present invention having the composition shown in (hereinafter referred to as the "invention material")
1 was manufactured. The resulting material 1 of the present invention had a dense structure in which diamond, BN, Al 2 O 3 and TiC were uniformly dispersed. Next, for the purpose of comparison, as shown in Table 1, comparative ultra-high pressure sintered materials (hereinafter referred to as comparative materials) 1 to 1 having component compositions outside the scope of the present invention were used.
Sample No. 8 was produced under the same conditions as those suitable for production of Invention 1 above, except that the mixing ratio of the raw material powders was changed so that the final component composition shown in Table 1 was obtained. Next, the above-mentioned present invention material 1, comparative materials 1 to 8,
Similarly, from a conventionally known ultra-high pressure sintered material whose main component is diamond (hereinafter referred to as conventional material 1) prepared for the purpose of comparison, a cutting edge is cut out by cutting and polishing means. Silver solder is used on the tungsten carbide-based cemented carbide chip.
【表】
てろう付けすることにより本発明材料1製の切削
工具、比較材料1〜8製の切削工具1〜8、およ
び従来材料1製の切削工具1をそれぞれ製造し
た。
この結果得られた上記各種切削工具を用いて、
切削速度:400m/min、
送り:0.1mm/rev.、
切り込み:0.2mm、
切削油:なし、
の条件で鋳鉄(FC30)の仕上げ面加工を行な
い、上記各種切削工具の逃げ面摩耗が0.2mmに達
するのに要する時間を測定した。この測定結果を
第2表に示した。[Table] Cutting tools made of Inventive Material 1, Cutting Tools 1 to 8 made of Comparative Materials 1 to 8, and Cutting Tool 1 made of Conventional Material 1 were manufactured by brazing. Using the various cutting tools obtained above, finishing surface machining of cast iron (FC30) was carried out under the following conditions: cutting speed: 400 m/min, feed: 0.1 mm/rev., depth of cut: 0.2 mm, cutting oil: none. The time required for the flank wear of the various cutting tools mentioned above to reach 0.2 mm was measured. The measurement results are shown in Table 2.
【表】
第2表に示されるように、本発明材料は、これ
を切削工具として使用した場合、この発明の範囲
から外れた成分組成を有する比較材料および従来
材料に比してきわめてすぐれた切削特性を示すこ
とが明らかである。
実施例 2
配合粉末を、それぞれ市販の平均粒径3μmの
ダイヤモンド粉末:50容量%、同6μmのBN粉
末:25容量%、同1μmのAl2O3粉末:1容量
%、同1μmのTiC粉末:5容量%および同1μ
mのTiB2粉末:5容量%から構成し、混合時間
を1時間とする以外は、上記実施例1における本
発明材料1の製造条件と同一の条件で、実質的に
前記配合組成と同一の最終成分組成をもつた本発
明材料2を製造した。
ついで、上記本発明材料2と、実施例1で使用
したと同じ従来材料より、それぞれ実施例1にお
けると同一の条件で切削工具を製造して、アルミ
ニウム合金部材の穴あけ加工を行ない、工具寿命
に至るまでの穴あけ加工個数を測定したところ、
本発明材料2製の切削工具は5万5千個の穴あけ
加工を行なうことができたのに対して、従来材料
製の切削工具は1万3千個の穴あけ加工しかでき
ず、本発明材料はきわめてすぐれた切削特性を有
することが明らかである。
実施例 3
配合粉末を、それぞれ市販の平均粒径1〜2μ
mのダイヤモンド粉末:40容量%、同6μmの
BN粉末:20容量%、同1μmのAl2O3粉末:10容
量%、同1μmのMgO粉末:10容量%、および
同1μmのTiN粉末:20容量%から構成し、混合
時間を1時間とする以外は、実施例1における本
発明材料1の製造条件と同一の条件で、実質的に
前記配合粉末組成と同一の最終成分組成をもつた
本発明材料3を製造した。
ついで、上記本発明材料3、実施例1で使用し
たと同じ従来材料1、および従来公知の主成分が
BNからなる超高圧焼結材料(以下従来材料2と
いう)より、それぞれ実施例1におけると同一の
条件で切削工具を製造し、
被削材:JIS−SNCM−8(硬さHRC50)、
切削速度:120m/min、
送り:0.1mm/rev.、
切り込み:0.1mm、
切削油:なし、
の条件で切削試験を行ない、上記各切削工具の逃
げ面摩耗が0.2mmに達するのに要する時間を測定
したところ、従来材料1製の切削工具は30分、従
来材料2製の切削工具は80分で前記摩耗量に達し
たのに対して、本発明材料3製の切削工具は前記
従来切削工具に比して著しく長い150分を要し
た。
上述のように、この発明の超高圧焼結材料
は、、すぐれた靭性、高温耐酸化性(耐熱性)お
よび耐摩耗性を兼ね備えているので、特に切削工
具用材料として使用した場合にすぐれた切削性能
を発揮するのである。[Table] As shown in Table 2, when the material of the present invention is used as a cutting tool, it has an extremely superior cutting ability compared to comparative materials and conventional materials having compositions outside the scope of the present invention. It is clear that it exhibits characteristics. Example 2 The blended powders were commercially available diamond powder with an average particle size of 3 μm: 50% by volume, BN powder with an average particle size of 6 μm: 25% by volume, Al 2 O 3 powder with an average particle size of 1 μm: 1% by volume, and TiC powder with an average particle size of 1 μm. : 5% by volume and 1μ
TiB 2 powder: 5% by volume, and the mixing time was 1 hour. Inventive material 2 having the final component composition was produced. Next, cutting tools were manufactured from the above-mentioned Inventive Material 2 and the same conventional material as used in Example 1 under the same conditions as in Example 1, and drilling of aluminum alloy members was performed to improve the tool life. When we measured the number of holes drilled until the
The cutting tool made from Inventive Material 2 was able to drill 55,000 holes, whereas the cutting tool made from the conventional material could only drill 13,000 holes. It is clear that the material has very good cutting properties. Example 3 The blended powders were each commercially available with an average particle size of 1 to 2 μm.
m diamond powder: 40% by volume, 6 μm diamond powder
BN powder: 20% by volume, Al 2 O 3 powder of 1 μm: 10% by volume, MgO powder of 1 μm: 10% by volume, and TiN powder of 1 μm: 20% by volume, and the mixing time was 1 hour. Except for the above, inventive material 3 was produced under the same conditions as the inventive material 1 in Example 1, having substantially the same final component composition as the blended powder composition. Next, the above-mentioned inventive material 3, the same conventional material 1 used in Example 1, and the conventionally known main components were
Cutting tools were manufactured from ultra-high pressure sintered material made of BN (hereinafter referred to as conventional material 2) under the same conditions as in Example 1, and workpiece materials: JIS-SNCM-8 (hardness H R C50), A cutting test was conducted under the following conditions: cutting speed: 120 m/min, feed: 0.1 mm/rev., depth of cut: 0.1 mm, cutting oil: none, and the time required for the flank wear of each of the above cutting tools to reach 0.2 mm. When measured, it was found that the cutting tool made of conventional material 1 reached the wear amount in 30 minutes, and the cutting tool made of conventional material 2 reached the wear amount in 80 minutes, whereas the cutting tool made of inventive material 3 reached the wear amount in 30 minutes. It took 150 minutes, which is significantly longer than using tools. As mentioned above, the ultra-high pressure sintered material of this invention has excellent toughness, high-temperature oxidation resistance (heat resistance), and wear resistance, so it is particularly suitable for use as a material for cutting tools. It demonstrates cutting performance.