JPH10212165A - Composite carbide powder and its production - Google Patents

Composite carbide powder and its production

Info

Publication number
JPH10212165A
JPH10212165A JP9012854A JP1285497A JPH10212165A JP H10212165 A JPH10212165 A JP H10212165A JP 9012854 A JP9012854 A JP 9012854A JP 1285497 A JP1285497 A JP 1285497A JP H10212165 A JPH10212165 A JP H10212165A
Authority
JP
Japan
Prior art keywords
powder
tungsten
carbide
chromium
composite carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9012854A
Other languages
Japanese (ja)
Inventor
Akihide Matsumoto
明英 松本
Ryoji Yamamoto
良治 山本
Nobuaki Asada
信昭 浅田
Yoshihiko Doi
良彦 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Tungsten Co Ltd
Original Assignee
Tokyo Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Tungsten Co Ltd filed Critical Tokyo Tungsten Co Ltd
Priority to JP9012854A priority Critical patent/JPH10212165A/en
Publication of JPH10212165A publication Critical patent/JPH10212165A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce composite carbide powder used for a cemented carbide hard to chip and having a long service life when it is used as a cutting edge. SOLUTION: This composite carbide powder contains tungsten carbide and metal chromium that forms a solid soln. or intermetallic compd. with a metal tungsten phase. When the metal chromium forms the carbonized product, tungsten carbide powder is remarkably finely crystallized by incorporating 0.5-2.0wt.% metal chromium to the amt. of the tungsten carbide. This composite carbide powder is obtd. as follows; tungsten oxide powder is mixed with at least one of chromium oxide powder and metal chromium powder and the resultant mixture is heated in an atmosphere of hydrogen at 700-1,100 deg.C and then the resultant solid soln. or intermetallic compd. is mixed with carbon powder and carbonized at 1,300-1,700 deg.C in an atmosphere of hydrogen or in vacuum.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,微細な炭化タング
ステン粒子を含有する靭性,および耐摩耗性の優れた微
粒超硬合金の原料である複合炭化物粉末とその製造方法
とに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite carbide powder containing fine tungsten carbide particles and being a raw material of a fine-grained cemented carbide having excellent toughness and wear resistance, and a method for producing the same.

【0002】[0002]

【従来の技術】電子機器の小型化,軽量化が進み,それ
に伴い超硬合金製ドリル特に,小径ドリルの需要が近年
急激に伸びている。小径ドリルに用いられる超硬合金
は,その使用条件が高速化され,硬度,強度,靭性の高
い特性が要求されている。この要求を満たすためには微
粒超硬合金が必要不可欠で,微細なWC粉末を出発原料
としたり,焼結過程での粒成長を抑えるために,種々の
抑制剤を添加する発明が提案されている。
2. Description of the Related Art In recent years, demands for drills made of cemented carbide, especially small-diameter drills have been increasing rapidly in recent years as electronic devices have become smaller and lighter. Cemented carbides used in small diameter drills are required to be used at high speeds and have high hardness, strength and toughness. In order to satisfy this requirement, a fine-grain cemented carbide is indispensable. An invention has been proposed in which fine WC powder is used as a starting material or various inhibitors are added to suppress grain growth in the sintering process. I have.

【0003】特開昭61−12847号公報(以下,従
来技術1と呼ぶ)には,WC−Co合金にVとCrを複
合添加することによって,WCの粒成長を抑制し,微粒
超硬合金を作り上げる方法が開示されている。
[0003] Japanese Patent Application Laid-Open No. 61-12847 (hereinafter referred to as "prior art 1") discloses a method of suppressing the grain growth of WC by adding V and Cr to a WC-Co alloy. Are disclosed.

【0004】特開平4−257197号公報(以下,従
来技術2と呼ぶ)には平均粒度が0.6μm以下でかつ
最大粒径が3.0μm以下のWC粒子が分散しているW
C基超硬合金の素地中に,さらに最大粒径が3.0μm
以下であるV,Cr,Ta,NbおよびTiうちの1種
の炭化物もしくは炭窒化物粒子,またはV,Cr,T
a,NbおよびTiうちの2種以上の炭化物もしくは炭
窒化物の固溶体粒子が分散している組織を有するWC基
超硬合金が開示されている。
[0004] Japanese Patent Application Laid-Open No. 4-257197 (hereinafter referred to as "prior art 2") discloses that W particles having an average particle size of 0.6 μm or less and a maximum particle size of 3.0 μm or less are dispersed.
In the base of C-base cemented carbide, the maximum grain size is 3.0 μm.
Carbide or carbonitride particles of one of V, Cr, Ta, Nb and Ti, or V, Cr, T
A WC-based cemented carbide having a structure in which solid solution particles of two or more of a, Nb, and Ti are dispersed.

【0005】特開昭61−76646号公報には(以
下,従来技術3と呼ぶ)WC−Co合金にVとCr,T
aを複合添加することによって,WCの粒成長を抑制
し,微粒超硬合金を作り上げる方法が開示されている。
Japanese Patent Application Laid-Open No. 61-76664 (hereinafter referred to as prior art 3) discloses that V, Cr, and T are added to a WC-Co alloy.
A method is disclosed in which the addition of a suppresses the grain growth of WC and produces a fine-grain cemented carbide.

【0006】[0006]

【発明が解決しようとする課題】しかし,従来技術1に
おける方法において,V,Crを合金を作るときに添加
するために,分散が不均一となり細径のドリルになると
折損に至り,工具の安定性に欠けると言う問題があっ
た。
However, in the method of the prior art 1, since V and Cr are added at the time of forming an alloy, the dispersion is not uniform, and when a drill having a small diameter is formed, breakage is caused and the stability of the tool is reduced. There was a problem of lack of sex.

【0007】また,従来技術2においては,微粒WC中
のV,Cr,Ta,NbおよびTiの炭化物もしくは炭
窒化物の固溶体粒子は,粗大粒子として働くことがあ
り,靭性,硬度,強度の向上に働かないと言う問題があ
る。
In the prior art 2, the solid solution particles of carbides or carbonitrides of V, Cr, Ta, Nb and Ti in the fine WC may function as coarse particles, thereby improving toughness, hardness and strength. There is a problem that does not work.

【0008】また,従来技術3においては,Taを添加
するため合金中にNaCl型固溶体炭化物を形成する。
このNaCl型固溶体炭化物はWC粒子よりも粗いた
め,合金中に欠陥として働き,工具の安定性に欠けると
言う問題点がある。
In the prior art 3, NaCl-type solid solution carbide is formed in the alloy to add Ta.
Since this NaCl-type solid solution carbide is coarser than WC particles, it has a problem that it acts as a defect in the alloy and lacks tool stability.

【0009】以上,いずれの発明も超硬合金を焼結する
時の粒成長を抑制する方法である。これらの従来技術に
よる方法では,超硬合金中の粒成長を抑制しきれないの
が現状である。そのため,上記のWC基超硬合金は,高
い硬度,優れた強度,を有するもののこれを小径ドリル
として用いた場合,超硬合金中の粗大粒子により,切刃
に欠損が生じ易く,比較的短時間で使用寿命に至るもの
である。
As described above, any of the inventions is a method for suppressing grain growth when sintering a cemented carbide. At present, these conventional methods cannot completely suppress grain growth in a cemented carbide. Therefore, although the above-mentioned WC-based cemented carbide has high hardness and excellent strength, when it is used as a small diameter drill, coarse particles in the cemented carbide are apt to cause chipping defects on the cutting edge, and are relatively short. The service life is reached in hours.

【0010】そこで,本発明の技術的課題は,切刃に用
いた場合,欠損が生せず,使用寿命の長い超硬合金に使
用される複合炭化物粉末とその製造方法とを提供するこ
とにある。
Accordingly, it is an object of the present invention to provide a composite carbide powder used for cemented carbide having a long service life without generating defects when used as a cutting edge, and a method for producing the same. is there.

【0011】[0011]

【課題を解決するための手段】そこで,本発明者らは,
上述のような観点から,上記従来WC基超硬合金のもつ
問題点を解決すべく微粒超硬合金の原料を提供すべく研
究をおこなった。
Means for Solving the Problems Therefore, the present inventors have proposed:
From the above viewpoints, research was conducted to provide a raw material for a fine-grained cemented carbide in order to solve the problems of the conventional WC-based cemented carbide.

【0012】その結果,クロムの金属もしくは炭化物
が,タングステン金属相と固溶体もしくは金属間化合物
を形成し,かつ炭化物形成時に炭化タングステンに対し
て2重量%以下含有している場合,クロムの炭化物が,
炭化タングステンの結晶粒界に介在物として存在し,超
硬合金の組織は焼結過程においてCoがWC粒内にある
結晶粒界に入り込み,多結晶のWC粒子を分離する事と
同様に,粒成長を抑制する炭化物を添加して生成した複
合炭化物も,超硬合金のWC粒径の微粒化と均粒化に効
果のあることがわかった。
As a result, if the chromium metal or carbide forms a solid solution or an intermetallic compound with the tungsten metal phase and contains 2% by weight or less of the tungsten carbide when the carbide is formed, the chromium carbide becomes
The carbides are present as inclusions at the grain boundaries of tungsten carbide, and the structure of the cemented carbide is similar to that of Co entering the grain boundaries in the WC grains during the sintering process and separating the polycrystalline WC grains. It was also found that a composite carbide formed by adding a carbide that inhibits the growth was also effective in refining and equalizing the WC grain size of the cemented carbide.

【0013】つまり,クロムの金属もしくは炭化物は,
炭化反応を促進する触媒効果があり,炭化反応の進行に
伴って,W粒子内に拡散固溶する。完全にWCが生成す
ると溶解度を失い,複合化合物と思われる相を析出す
る。
That is, chromium metal or carbide is
It has a catalytic effect of accelerating the carbonization reaction, and diffuses and dissolves in the W particles with the progress of the carbonization reaction. When WC is completely formed, the solubility is lost, and a phase considered as a composite compound is precipitated.

【0014】この効果によってWC粒子の微細化が進
み,析出相が多結晶体中の結晶粒成長を抑制し,超硬合
金中の炭化タングステン相を著しく微細結晶化させた複
合炭化物粉末の開発に成功し,本発明を為すに至ったも
のである。
Due to this effect, the WC particles are refined, the precipitation phase suppresses the growth of crystal grains in the polycrystal, and the development of a composite carbide powder in which the tungsten carbide phase in the cemented carbide is remarkably finely crystallized. It was successful and led to the present invention.

【0015】即ち,本発明によれば,炭化タングステン
と金属クロムとを含む複合炭化物粉末であって,前記金
属クロムが,タングステン金属相と固溶体もしくは金属
間化合物を形成し,かつ前記金属クロムが添加物形成時
に,前記炭化タングステンに対して0.5〜2.0重量
%含有することによって,炭化タングステン粉末を著し
く微細結晶化させていることを特徴とする複合炭化物粉
末が得られる。
That is, according to the present invention, there is provided a composite carbide powder containing tungsten carbide and chromium metal, wherein the chromium metal forms a solid solution or an intermetallic compound with a tungsten metal phase, and the chromium metal is added. By forming the tungsten carbide powder in an amount of 0.5 to 2.0% by weight with respect to the tungsten carbide during the formation of the carbide, a composite carbide powder characterized in that the tungsten carbide powder is remarkably finely crystallized can be obtained.

【0016】また,本発明によれば,タングステン酸化
物粉末と,クロム酸化物粉末及び金属クロム粉末の内の
少なくとも一種の粉末とを混合し,700℃以上110
0℃以下の水素雰囲気中で加熱して得られる固溶体もし
くは金属間化合物を,炭素粉末と混合し,水素及び真空
雰囲気中で1300℃〜1700℃の温度で炭化するこ
とによって複合炭化物粉末を得ることを特徴とする複合
炭化物粉末の製造方法が得られる。
According to the present invention, the tungsten oxide powder is mixed with at least one of chromium oxide powder and metal chromium powder,
Obtaining a composite carbide powder by mixing a solid solution or an intermetallic compound obtained by heating in a hydrogen atmosphere of 0 ° C. or less with carbon powder and carbonizing at a temperature of 1300 ° C. to 1700 ° C. in a hydrogen and vacuum atmosphere. A method for producing a composite carbide powder characterized by the following.

【0017】また,本発明によれば,タングステン酸化
物粉末と,クロム酸化物粉末及び金属クロム粉末の内の
少なくとも一種の粉末と,炭素粉末とを混合し,100
0℃以上の,窒素雰囲気中で加熱し,続いて水素気流中
1300〜1700℃で炭化することによって複合炭化
物粉末を得ることを特徴とする複合炭化物粉末の製造方
法がえられる。
Further, according to the present invention, a tungsten oxide powder, at least one powder of chromium oxide powder and metallic chromium powder, and carbon powder are mixed and mixed.
A method of producing a composite carbide powder characterized by obtaining a composite carbide powder by heating in a nitrogen atmosphere at 0 ° C. or higher and subsequently carbonizing in a hydrogen stream at 1300 to 1700 ° C.

【0018】また,本発明によれば,タングステン粉末
と,クロム酸化物粉末及び金属クロム粉末の内の少なく
とも一種の粉末と,炭素粉末とを混合し,水素及び真空
雰囲気中で1300℃〜1700℃の温度で炭化するこ
とによって炭化物粉末を得ることを特徴とする複合炭化
物粉末の製造方法が得られる。
Further, according to the present invention, tungsten powder, at least one of chromium oxide powder and metallic chromium powder, and carbon powder are mixed and mixed in a hydrogen and vacuum atmosphere at 1300 ° C. to 1700 ° C. A carbonized powder is obtained by carbonizing at a temperature of the above.

【0019】次に,本発明について,上記のように限定
した理由について説明する。
Next, the reason for limiting the present invention as described above will be described.

【0020】まず,本発明において,タングステン金属
相と固溶体もしくは金属間化合物を形成するものを用い
る。その理由は,タングステン金属相と固溶体もしくは
金属間化合物を形成しないIVa,Va,VIa族の金属も
しくは炭化物は,金属相のタングステンを炭化する場
合,炭化タングステンの結晶粒界に介在物として存在せ
ず,微細化する効果が薄れるためである。
First, in the present invention, one that forms a solid solution or an intermetallic compound with a tungsten metal phase is used. The reason is that metals or carbides of Group IVa, Va, VIa which do not form a solid solution or an intermetallic compound with the tungsten metal phase do not exist as inclusions at the tungsten carbide grain boundaries when carbonizing the metal phase tungsten. This is because the effect of miniaturization is weakened.

【0021】また,本発明において,クロム金属の含有
量を炭化物形成時に炭化タングステンに対して0.5〜
2.0重量%と限定したのは,2重量%を超えて含有す
る場合,固溶体もしくは金属間化合物を形成し,超硬合
金中の複合炭化物粉末の占める割合が多くなり,焼結条
件により第3相が析出する。一方,0.5重量%未満の
場合,超硬合金中の複合炭化物粉末の占める割合が少な
くなり微粒化,均粒化の効果が得られないからである。
In the present invention, the content of chromium metal is set to 0.5 to 0.5% with respect to tungsten carbide during carbide formation.
The reason why the content is limited to 2.0% by weight is that when the content exceeds 2% by weight, a solid solution or an intermetallic compound is formed, and the ratio of the composite carbide powder in the cemented carbide increases, and depending on the sintering conditions, Three phases precipitate. On the other hand, if it is less than 0.5% by weight, the proportion of the composite carbide powder in the cemented carbide becomes small, and the effect of atomization and uniformization cannot be obtained.

【0022】さらに,本発明において,タングステン酸
化物粉末,クロムの酸化物もしくは金属粉末を,水素雰
囲気中で加熱する場合の温度,即ち,還元温度を,70
0℃以上1100℃以下に限定したのは,その温度が7
00℃未満では,還元反応の進行が遅くその結果,未反
応のタングステンやクロムの酸化物が混入するようにな
るからであり,一方,その温度が1100℃を超えると
粒成長が起こり,微粒で均粒な目的とする粉末を得る事
ができないからである。
Further, in the present invention, the temperature when the tungsten oxide powder, the chromium oxide or the metal powder is heated in a hydrogen atmosphere, that is, the reduction temperature is set at 70 ° C.
The reason why the temperature is limited to 0 ° C or higher and 1100 ° C or lower is that
If the temperature is lower than 00 ° C., the progress of the reduction reaction is slow, and as a result, unreacted tungsten and chromium oxides are mixed in. On the other hand, if the temperature exceeds 1100 ° C., grain growth occurs, and fine grains are formed. This is because a uniform target powder cannot be obtained.

【0023】また,本発明において炭化温度,即ち,タ
ングステン酸化物粉末及びタングステン粉末と,IVa,
Va,VIa族の酸化物もしくは金属粉末を,1300℃
以上1700℃以下の,水素雰囲気中で還元することに
よって得られる固溶体もしくは金属間化合物を,炭素粉
末と混合し,水素及び真空雰囲気中で1300℃〜17
00℃の温度で炭化することに限定したのは,その温度
が1300℃未満では,炭化反応の進行が遅くその結
果,未炭化のタングステンやクロムの金属間化合物が混
入するようになるからであり,一方,1700℃を超え
ると粒成長が起こり,微粒で均粒な目的とする粉末を得
る事ができないからである。
In the present invention, the carbonization temperature, that is, tungsten oxide powder and tungsten powder, and IVa,
Va, VIa oxide or metal powder at 1300 ° C
A solid solution or an intermetallic compound obtained by reduction in a hydrogen atmosphere at a temperature of 1300 ° C. or less is mixed with carbon powder, and the mixture is mixed with hydrogen at a temperature of 1300 ° C.
The reason why the carbonization is limited to the temperature of 00 ° C. is that if the temperature is lower than 1300 ° C., the progress of the carbonization reaction is slow, and as a result, intermetallic compounds of tungsten and chromium which are not carbonized become mixed. On the other hand, when the temperature exceeds 1700 ° C., grain growth occurs, and it is impossible to obtain a fine and uniform target powder.

【0024】[0024]

【発明の実施の形態】以下,本発明の実施の形態につい
て説明する。
Embodiments of the present invention will be described below.

【0025】(第1の実施の形態)まず,本発明の第1
の実施の形態について説明する。
(First Embodiment) First, the first embodiment of the present invention will be described.
An embodiment will be described.

【0026】原料粉末を,下記表1に示した組成に配合
し,ヘンシェルミキサーで1時間混合した。次に,下記
表2に示したように,得られた粉末にカーボン粉末を加
えヘンシェルミキサーで1時間混合し,直径5mmにプ
レス成形した後,下記表2に示した炭化温度で水素雰囲
気中,本発明法,従来法を処理した。その後得られた粉
末を,粉砕,篩分し,粉末の粒度をBET法で測定し
た。その時の測定結果を下記表3に示した。
The raw material powders were blended in the composition shown in Table 1 below and mixed for 1 hour with a Henschel mixer. Next, as shown in Table 2 below, carbon powder was added to the obtained powder, mixed with a Henschel mixer for 1 hour, press-molded to a diameter of 5 mm, and then placed in a hydrogen atmosphere at a carbonization temperature shown in Table 2 below. The method of the present invention and the conventional method were processed. Thereafter, the obtained powder was pulverized and sieved, and the particle size of the powder was measured by the BET method. The measurement results at that time are shown in Table 3 below.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】[0029]

【表3】 [Table 3]

【0030】上記表3から,明らかなように本発明複合
炭化物粉末はいずれの条件においても従来法に比較して
微細化している事がわかる。
It is apparent from Table 3 that the composite carbide powder of the present invention is finer than that of the conventional method under any conditions.

【0031】(第2の実施の形態)次に,本発明の第2
の実施の形態について説明する。
(Second Embodiment) Next, a second embodiment of the present invention will be described.
An embodiment will be described.

【0032】原料粉末を,下記表4に示した配合組成に
配合し,ヘンシェルミキサーで1時間混合した。その
後,混合した粉末を直径5mmにプレス成形し,下記表
4に示した炭化温度で本発明法,従来法を処理した。以
上得られた粉末を,粉砕,篩分し,粉末の粒度をFSS
Sで測定した。その時の測定結果を下記表5に示した。
The raw material powders were blended in the composition shown in Table 4 below and mixed for 1 hour with a Henschel mixer. Thereafter, the mixed powder was press-formed to a diameter of 5 mm, and the method of the present invention and the conventional method were processed at the carbonization temperatures shown in Table 4 below. The powder obtained above is crushed and sieved, and the particle size of the powder is
S was measured. The measurement results at that time are shown in Table 5 below.

【0033】[0033]

【表4】 [Table 4]

【0034】[0034]

【表5】 [Table 5]

【0035】上記表5から明らかなように本発明複合炭
化物粉末はいずれの条件においても従来法に比較して微
細化している事がわかる。
As is evident from Table 5, the composite carbide powder of the present invention is smaller than the conventional method under any conditions.

【0036】(第3の実施の形態)次に,本発明の第3
の実施の形態について説明する。
(Third Embodiment) Next, a third embodiment of the present invention will be described.
An embodiment will be described.

【0037】原料粉末を,下記表6に示した配合組成に
配合し,ヘンシェルミキサーで1時間混合した。その
後,混合した粉末を直径5mmにプレス成形し,下記表
6に示した炭化温度で本発明法,従来法を処理した。以
上得られた粉末を,粉砕,篩分し,粉末の粒度をFSS
Sで測定した。その時の測定結果を下記表7に示した。
The raw material powder was blended in the composition shown in Table 6 below and mixed for 1 hour with a Henschel mixer. Thereafter, the mixed powder was press-molded to a diameter of 5 mm, and the method of the present invention and the conventional method were processed at the carbonization temperatures shown in Table 6 below. The powder obtained above is crushed and sieved, and the particle size of the powder is
S was measured. The measurement results at that time are shown in Table 7 below.

【0038】[0038]

【表6】 [Table 6]

【0039】[0039]

【表7】 [Table 7]

【0040】上記表7からもわかるように本発明複合炭
化物粉末はいずれの条件においても従来法に比較して微
細化している事がわかる。
As can be seen from Table 7, the composite carbide powder of the present invention is finer than that of the conventional method under any conditions.

【0041】(第4の実施の形態)次に,本発明の第4
の実施の形態について説明する。第1の実施の形態,第
2の実施の形態及び第3の実施の形態で調整した本発明
法による複合炭化物粉末試料4,24,37と従来法に
よる複合炭化物粉末試料16,24,45を使用し,下
記表8に示した配合組成に配合した。次に,アトライタ
ーで6時間湿式混合した。その後,得られた粉末をプレ
ス成形し,1380℃で60分間焼結した。続いて13
50℃で60分間HIP処理を行った。焼結体はダイヤ
モンド砥石で直径4mmの2枚刃エンドミルに加工し
て,本発明のWC基エンドミル及び従来のWC基エンド
ミルとした。つぎに,これらのWC基エンドミルの切削
試験を行った。その際の切削条件を下記表9に記す。評
価としては逃げ面摩耗幅:0.3mmを寿命基として,
寿命にいたるまでの切削長を比較した。これらの結果を
下記表10に示した。
(Fourth Embodiment) Next, a fourth embodiment of the present invention will be described.
An embodiment will be described. The composite carbide powder samples 4, 24, and 37 according to the present invention prepared in the first, second, and third embodiments and the composite carbide powder samples 16, 24, and 45 according to the conventional method were used. It was used and blended in the composition shown in Table 8 below. Next, wet mixing was performed for 6 hours using an attritor. Then, the obtained powder was press-molded and sintered at 1380 ° C. for 60 minutes. Then 13
HIP treatment was performed at 50 ° C. for 60 minutes. The sintered body was processed into a two-flute end mill having a diameter of 4 mm using a diamond grindstone to obtain a WC-based end mill of the present invention and a conventional WC-based end mill. Next, cutting tests of these WC-based end mills were performed. The cutting conditions at that time are shown in Table 9 below. The flank wear width: 0.3 mm
The cutting lengths up to the service life were compared. The results are shown in Table 10 below.

【0042】[0042]

【表8】 [Table 8]

【0043】[0043]

【表9】 [Table 9]

【0044】[0044]

【表10】 [Table 10]

【0045】上記表10の結果から明らかなように,本
発明法による複合炭化物粉末を使用した超硬合金は,従
来法による複合炭化物粉末を使用した超硬合金に比較し
て優れた切削性能を有することがわかる。
As is clear from the results shown in Table 10 above, the cemented carbide using the composite carbide powder according to the present invention has superior cutting performance as compared with the cemented carbide using the composite carbide powder according to the conventional method. It can be seen that it has.

【0046】[0046]

【発明の効果】以上,説明したように,本発明によれ
ば,切刃に用いた場合に,欠損が生せず,使用寿命の長
い超硬合金に使用される複合炭化物とその製造方法とを
提供することができる。
As described above, according to the present invention, when used as a cutting edge, no fracture occurs and a composite carbide used for a cemented carbide having a long service life and a method for producing the same. Can be provided.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 土井 良彦 東京都台東区東上野五丁目24番8号 東京 タングステン株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yoshihiko Doi 5--24-8 Higashiueno, Taito-ku, Tokyo Inside Tokyo Tungsten Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 炭化タングステンと金属クロムとを含む
複合炭化物粉末であって,前記金属クロムが,タングス
テン金属相と固溶体もしくは金属間化合物を形成し,か
つ前記金属クロムが添加物形成時に,前記炭化タングス
テンに対して0.5〜2.0重量%含有することによっ
て,炭化タングステン粉末を著しく微細結晶化させてい
る事を特徴とする複合炭化物粉末。
1. A composite carbide powder containing tungsten carbide and chromium metal, wherein the chromium metal forms a solid solution or an intermetallic compound with a tungsten metal phase, and the chromium metal is added when forming an additive. A composite carbide powder characterized in that tungsten carbide powder is remarkably finely crystallized by containing 0.5 to 2.0% by weight based on tungsten.
【請求項2】 タングステン酸化物粉末と,クロム酸化
物粉末及び金属クロム粉末の内の少なくとも一種の粉末
とを混合し,700℃以上1100℃以下の水素雰囲気
中で加熱して得られる固溶体もしくは金属間化合物を,
炭素粉末と混合し,水素及び真空雰囲気中で1300℃
〜1700℃の温度で炭化することによって複合炭化物
粉末を得ることを特徴とする複合炭化物粉末の製造方
法。
2. A solid solution or metal obtained by mixing tungsten oxide powder, at least one powder of chromium oxide powder and metallic chromium powder, and heating the mixture in a hydrogen atmosphere at 700 ° C. to 1100 ° C. Inter-compound,
1300 ° C in hydrogen and vacuum atmosphere mixed with carbon powder
A method for producing a composite carbide powder, comprising obtaining a composite carbide powder by carbonizing at a temperature of from about 1700C to about 1700C.
【請求項3】 タングステン酸化物粉末と,クロム酸化
物粉末及び金属クロム粉末の内の少なくとも一種の粉末
と,炭素粉末とを混合し,1000℃以上の,窒素雰囲
気中で加熱し,続いて水素気流中1300〜1700℃
で炭化することによって複合炭化物粉末を得ることを特
徴とする複合炭化物粉末の製造方法。
3. A mixture of tungsten oxide powder, at least one powder of chromium oxide powder and metallic chromium powder, and carbon powder, and heating in a nitrogen atmosphere at 1000 ° C. or higher. 1300-1700 ° C in air stream
A method for producing a composite carbide powder, comprising obtaining a composite carbide powder by carbonizing the mixture.
【請求項4】 タングステン粉末と,クロム酸化物粉末
及び金属クロム粉末の内の少なくとも一種の粉末と,炭
素粉末とを混合し,水素及び真空雰囲気中で1300℃
〜1700℃の温度で炭化することによって炭化物粉末
を得ることを特徴とする複合炭化物粉末の製造方法。
4. Tungsten powder, at least one of chromium oxide powder and metallic chromium powder, and carbon powder are mixed, and the mixture is mixed at 1300 ° C. in a hydrogen and vacuum atmosphere.
A method for producing a composite carbide powder, characterized in that a carbide powder is obtained by carbonizing at a temperature of 1700C.
JP9012854A 1997-01-27 1997-01-27 Composite carbide powder and its production Pending JPH10212165A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9012854A JPH10212165A (en) 1997-01-27 1997-01-27 Composite carbide powder and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9012854A JPH10212165A (en) 1997-01-27 1997-01-27 Composite carbide powder and its production

Publications (1)

Publication Number Publication Date
JPH10212165A true JPH10212165A (en) 1998-08-11

Family

ID=11816997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9012854A Pending JPH10212165A (en) 1997-01-27 1997-01-27 Composite carbide powder and its production

Country Status (1)

Country Link
JP (1) JPH10212165A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004142993A (en) * 2002-10-24 2004-05-20 Toshiba Tungaloy Co Ltd Hexagonal composite carbide, and production method therefor
JP2005519018A (en) * 2001-11-06 2005-06-30 サーバイド Method for making a high density tungsten carbide ceramic body
JP2007269534A (en) * 2006-03-31 2007-10-18 Allied Material Corp Wc powder and its production method
US7514061B2 (en) 2003-08-12 2009-04-07 Sandvik Intellectual Property Aktiebolag Method of making submicron cemented carbide
WO2020230542A1 (en) * 2019-05-13 2020-11-19 住友電気工業株式会社 Tungsten carbide powder
WO2024005100A1 (en) * 2022-06-30 2024-01-04 京セラ株式会社 Tungsten carbide powder

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005519018A (en) * 2001-11-06 2005-06-30 サーバイド Method for making a high density tungsten carbide ceramic body
JP2004142993A (en) * 2002-10-24 2004-05-20 Toshiba Tungaloy Co Ltd Hexagonal composite carbide, and production method therefor
US7514061B2 (en) 2003-08-12 2009-04-07 Sandvik Intellectual Property Aktiebolag Method of making submicron cemented carbide
JP2007269534A (en) * 2006-03-31 2007-10-18 Allied Material Corp Wc powder and its production method
WO2020230542A1 (en) * 2019-05-13 2020-11-19 住友電気工業株式会社 Tungsten carbide powder
JP6815574B1 (en) * 2019-05-13 2021-01-20 住友電気工業株式会社 Tungsten carbide powder
US11339096B1 (en) 2019-05-13 2022-05-24 Sumitomo Electric Industries, Ltd. Tungsten carbide powder
EP3971137A4 (en) * 2019-05-13 2022-07-13 Sumitomo Electric Industries, Ltd. Tungsten carbide powder
WO2024005100A1 (en) * 2022-06-30 2024-01-04 京セラ株式会社 Tungsten carbide powder

Similar Documents

Publication Publication Date Title
JP2007039329A (en) High content cbn-containing material, compact incorporating the same and method of making the same
EP0559901B1 (en) Hard alloy and production thereof
JPH0621312B2 (en) Sintered body for high hardness tool and manufacturing method thereof
JP2004508461A (en) Ultra-coarse single crystal tungsten carbide, method for producing the same and hard alloy produced therefrom
JPS6256224B2 (en)
JPH10212165A (en) Composite carbide powder and its production
JP4593173B2 (en) Composite carbide powder having nano particle size and method for producing the same
JP2003013169A (en) WC-Co FINE-PARTICULATE CEMENTED CARBIDE SUPERIOR IN OXIDATION RESISTANCE
JP2009248237A (en) Titanium carbonitride-based cermet cutting tool excellent in wear resistance
JP3318887B2 (en) Fine-grained cemented carbide and method for producing the same
JPS6256943B2 (en)
JP2004131769A (en) Hyperfine-grained cemented carbide
JP3605740B2 (en) Carbide alloy for end mill
JP2502322B2 (en) High toughness cermet
JP2002029845A (en) Super-hard sintered compact
JPS636618B2 (en)
JPH09302437A (en) Fine-grained cemented carbide
JP2005068515A (en) Hard metal containing fine particles
JP2626863B2 (en) Cemented carbide and its manufacturing method
JPS61194148A (en) Sintered hard alloy of super fine grains
JPS6245295B2 (en)
JP3045199B2 (en) Manufacturing method of high hardness cemented carbide
JPH11269573A (en) Manufacture of cemented carbide containing plate crystal wc
JP2710937B2 (en) Cermet alloy
JP2003034836A (en) WC-Co HARD METAL SUPERIOR IN OXIDATION RESISTANCE

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060510