JP2710937B2 - Cermet alloy - Google Patents
Cermet alloyInfo
- Publication number
- JP2710937B2 JP2710937B2 JP22588987A JP22588987A JP2710937B2 JP 2710937 B2 JP2710937 B2 JP 2710937B2 JP 22588987 A JP22588987 A JP 22588987A JP 22588987 A JP22588987 A JP 22588987A JP 2710937 B2 JP2710937 B2 JP 2710937B2
- Authority
- JP
- Japan
- Prior art keywords
- double
- carbonitride
- alloy
- cermet alloy
- tac
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000956 alloy Substances 0.000 title claims description 34
- 229910045601 alloy Inorganic materials 0.000 title claims description 34
- 239000011195 cermet Substances 0.000 title claims description 21
- 229910052751 metal Inorganic materials 0.000 claims description 14
- 239000002184 metal Substances 0.000 claims description 14
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 9
- 239000011230 binding agent Substances 0.000 claims description 5
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 150000001247 metal acetylides Chemical class 0.000 claims 1
- 150000002739 metals Chemical class 0.000 claims 1
- 230000000737 periodic effect Effects 0.000 claims 1
- 230000002093 peripheral effect Effects 0.000 description 20
- 239000002245 particle Substances 0.000 description 15
- 239000000203 mixture Substances 0.000 description 13
- 230000000694 effects Effects 0.000 description 12
- 238000005520 cutting process Methods 0.000 description 9
- 239000000843 powder Substances 0.000 description 8
- 239000006104 solid solution Substances 0.000 description 7
- 229910052721 tungsten Inorganic materials 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- 239000007858 starting material Substances 0.000 description 4
- 229910052715 tantalum Inorganic materials 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000007545 Vickers hardness test Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000006355 external stress Effects 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は高温耐摩耗性,高温強度及び耐チッピング性
に優れるサーメット合金に関する。
[従来の技術]
従来、サーメット合金はTiCが主成分であり、このTiC
粒子あるいはTiCN粒子と結合金属相とのぬれ性を改善す
る目的で、Mo2C,WC,TaC,NbC等の成分を添加するのが一
般的であった。これら添加成分は焼結中に結合金属相へ
の溶解、TiC,TiCN粒子への析出といった過程に基づき、
TiC,TiCN粒子を取り囲み、周辺組織を形成し、結合金属
相とのぬれ性改善に寄与するものである。従って従来の
サーメットはその複炭窒化物は2重有芯構造を有する
が、中心部がTiに富み、周辺組織がぬれ性改善成分であ
るWC,TaC,Mo2C,NbC等の成分に富みTiに乏しい組成構成
を有するものが一般的である。(特公56-51201,特開61-
73857,特開61-210150,特開61-201750公報等参照)。こ
れらのサーメット合金の代表的なSEM(走査電子顕微
鏡)像を第1図に示す。SEM像においては軽元素ほど黒
色を呈するが、2重有芯構造の中心部は黒く軽元素であ
るTiに富み、周辺組織は白っぽく重元素であるW,Ta等に
富んでいることがわかる。透過型分析電顕により該2重
有芯構造の複炭窒化物を分析した結果、Ti,Wに関して
は、中心部のTiは65.8%、Wは5.0%、周辺組織部はTi4
9.5%、W23.2%であり、中心部が周辺部に比べTiに富
み、Wに乏しく、周辺部が中心部に比べWに富みTiに乏
しい組成構成を有している。
該組成構成を有する複炭窒化物粒子は、高速切削時に
おいて、結合金属相が摩耗し、該複炭窒化物の表面が現
われた時に、Tiに乏しく、Wは富む組成を有する表面は
酸化し易くまた硬さも軟いためTiの利点がそこなわれる
欠点を有するものである。また、WC,TaC,NbC,Mo2Cとい
った成分が周辺組織を形成するに伴い、複炭窒化物粒子
が粒成長し、互いに接触しあう結果となる。この複炭窒
化物同志の接触部分は、外部応力が加わった時に微小ク
ラックの発生源となったり、クラックの伝播経路として
へき開し易く、従って接触部分が多ければ多いほど破壊
靱性値が低くなると同時に、耐チャピング性を劣化させ
る要因となってきた。これに対し、接触部分を少なくす
るために周辺組織形成成分を少なくすると高温強度が著
しく劣化するため、現状では、ある程度以上の周辺組織
形成成分の添加は避けきれず、従ってある程度の接触部
分の存在を余儀なくされている。
[発明が解決しようとする問題点]
本発明は、前述の問題点を改善するため、周辺部が硬
く、耐酸化性に富み、高温での耐摩耗性が向上するよう
な2重有芯構造を有する複炭窒化物からなるサーメット
合金を提供するとともに、従来の周辺組織成分であるW
C,TaC,NbC,Mo2C等を高温強度をもたせるのに必要十分量
添加すると同時に、周辺組織形成量を抑制し、複炭窒化
物同志の接触部分を著しく減少せしめ、耐チッピング性
を向上させたサーメット合金を提供するものである。
[問題点を解決するための手段]
本発明者らは前述の問題点を解決すべく種々の検討を
行った結果、少なくともW,Tiを含みこれに4a,5a,6a族の
1種又は2種以上を含有した多元複炭窒化物を出発原料
として用い、これに外部より単独にTiNあるいはTiCNお
よび結合相金属粉末及び必要に応じて他成分炭化物もし
くは窒化物もしくは炭窒化物を加え焼結することによ
り、所望の特性が得られることを見い出した。以下に詳
細を記述する。
出発原料として少なくともW,Tiを含む、これにTaC,Nb
C,Mo2C等の周辺組織形成成分である4a,5a,6a族の1種又
は2種以上を含有する多元複炭窒化物を出発原料に用い
ることにより、該多元複炭窒化物の組成は比較的前述の
周辺組織組成に近いため、金属結合相とのぬれ性も良
く、靱性劣化、及び焼結性の劣化は生じない。かつ周辺
組織形成成分の1部が含有されるため、その分、比較
的、周辺組織形成量は少なく、複炭窒化物同志の接触部
分は少ない傾向にある。しかし該複炭窒化物原料だけを
用いても、焼結中に、結合相に該複炭窒化物から周辺組
織形成成分が固溶し、この固溶成分が、該複炭窒化物粒
子へ連続的に析出し、粒成長、及びそれに基づく複炭窒
化物同志の接触部分が生じ、耐チッピング性に対し所望
の特性が得られないと同時に、複炭窒化物は周辺部がTi
に富む層構造にはならない。
本発明者らは、さらに検討を加え、TiNあるいはTiCN
を外部から単独添加することにより、以下に示す3つの
効果を発見し、驚くべき特性の向上が可能であることを
見出した。第1点は、TiNあるいはTiCNは高温で熱力学
的に不安定であり、特に周りに炭素の供給源が場合には
著しく不安定であり、従ってTiNあるいはTiCNを外部よ
り添加するとTiN,TiCN粒子が焼結中に熱分解し、結合金
属相中に優先的に固溶する。この結果、複炭窒化物中に
含まれる周辺組織形成成分である例えばMo,Ta,Nb等の成
分の結合金属相中への固溶が抑制され、周辺組織形成量
が抑制され、その結果、複炭窒化物同志の接触部は著し
く減少するわけである。第2点は、熱分解したTi及びN
が、複炭窒化物粒子へ拡散固溶するために該複炭窒化物
粒子は周辺部がTiに富んだ層構造となり、その結果該複
炭窒化物は、表面が硬く耐酸化性を有する層構造になる
わけである。第3点は、結合金属相中に固溶したTi及び
Nが該複炭窒化物へ拡散固溶する際に、複炭窒化物中に
含まれ、Nとの親和力のないWが、複炭窒化物粒子から
排出され結合金属相中に固溶し、結合金属を著しく固溶
強化するわけである。以上の結果、第1点の効果により
耐チッピング性、第2点の効果により高温耐摩耗性、第
3点の効果により高温強度が格段に優れたサーメット合
金が得られるわけである。また必要に応じてTiNあるい
はTiCNに加え他の成分を1部外部添加してもさしつかえ
ない。
従って本発明に基づくサーメット合金は、複炭窒化物
粒子は2重有芯構造を有し、その組成分布は、中心部
が、相対的にTiに乏しくWに富む複炭窒化物が相対的に
Tiに富み、Wに乏しい複炭窒化物で包囲された組成構成
を有することになる。本発明に基づくサーメット合金の
SEM像を第2図に示す。中心部がWに富むため白っぽく
第1図に示した従来のサーメット合金とは層構造が異な
ることが明らかである。以上により、高温耐摩耗性の優
れたサーメット合金が得られたわけであるが、さらに高
温耐摩耗性、塑性変形性を改善するためにTaCの1部又
は全部をNbCに置き換えた方が効果的である。これはNbC
がTaCよりも高温での特性を改善する効果があるためで
ある。またTiCの0.5%〜10%をW,Ta,Nb,Mo以外の4a,5a,
6a族に置き換えることによってもさらなる高温強度の改
善が可能である。
次に数値限定した理由について説明する。硬質相は硬
質相である複炭窒化物が95%を越えて含有すると合金の
靱性劣化が著しく、50%未満であると、所望の高温耐摩
耗性、高温強度が得られないため50重量%〜95重量%と
した。また所定2重有芯構造を有する複炭窒化物が全硬
質層の70%以上としたのは、製造上、2重有芯構造を有
しない粒子の存在が避けきれない場合もあり、70%以上
とした。TiCは、10%未満では合金の耐摩耗性が劣化
し、40%を越えて含有すると靱性劣化をきたすため10%
〜40%とした。TiNは微粒子化及び靱性の向上を寄与す
るが、5%未満ではその効果は少なく、また20%を越え
て含有すると焼結体内に欠陥を生ずる場合があり、5〜
20%とした。WCは、靱性及び高温強度を改善する成分で
あるが、10%未満ではその効果は少なく、また35%を越
えて含有すると耐摩耗性を劣化するため、また、35%を
越えて含有すると周辺組織形成量が多くなり靱性が劣化
するため、10〜35%とした。TaCもWCと同様に靱性及び
高温強度を改善する成分であるが5%未満ではその効果
は少なく、30%を越えて含有すると逆に周辺組織形成量
が多くなり、靱性を劣化するため5〜30%とした。Mo2C
はぬれ性を改善し、靱性改善及び微粒化に寄与する成分
であるが、Mo2C自体の硬さは軟かく、そのため、ぬれ性
改善に必要な必要最低量の1.5〜4.5%とした。4.5%を
越えて含有すると高温での耐摩耗性は著しく劣化する。
NbCは高温での強度、耐塑性変形性を改善するのに効果
を有するため、特に高温で使用される条件下ではTaCよ
りも工具性能を向上させるため、TaCの1部又は全部をN
bCに置きかえた方が良い場合がある。5%未満ではその
効果は少なく、30%を越えて含有すると、TaCと同様に
靱性が劣化するため5〜30%とした。TiCの1部置換量
は0.5%未満では高温強度に対する効果が少なく、また1
0%未満を越えて含有すると、靱性を劣化さすため0.5〜
10%未満とした。
〔実施例〕
以下実施例に基づき本発明を記述する。
実施例1
原料複炭窒化物の作製にあたっては、市販の平均粒径
1.0μmのWC粉末,同1.2μmのTiC0.7N0.3粉末,同1.1
μmのTaC粉末,同1.2μmのNbC粉末,同1.0μmのMo2C
粉末,同1.5μmのVC粉末,同1.2μmのZrC粉末,同1.3
μmのHfC粉末を用い、所定の複炭窒化物組成になるよ
う秤量、湿式混合を行った後、1800℃においてN2分圧20
〜30Torr1時間の固溶処理を行った。
固溶処理後アトライター粉砕をし、出発原料多元複炭窒
化物とした。本工程により、第1表に示す配合組織の本
発明合金a〜i及び比較合金1〜5をN2分圧1Torrにて1
400℃1時間焼結により作製した。第1表中の配合仕様
は用いた複炭窒化物及び外部添加した成分を示す。また
第1表に本発明合金と比較合金の物性を併記する。また
第1表中の接触率は、複炭窒化物同志の接触面積/全複
炭窒化物面積をGorlandの方法により測定したものであ
り、高温強度としては高温短時間クリープ(応力80kg/m
m2,温度960℃)における破断までの時間で示した。ま
たクラック抵抗は50kgの荷重にてビッカースの圧痕をお
し、そのコーナーから発生するクラックの長さで荷重を
徐した値であり、1mmのクラック発生に必要な荷重を示し、破壊靱性値K1c
と相関を有するものである。第1表より、TiNあるいはT
iCNを外部より添加し、かつ層構造を逆転した本発明合
金は、前述のごとく、接触率が少なく、破壊靱性値も格
段に優れると同時に、複炭窒化物からのWの結合相中へ
の排出に基づく結合金属の固溶強化により高温短時間ク
リープにおける破断までの時間が著しく長いことが認め
られる。
第2表は本発明合金と比較合金を切削テストした結果
である。チッピング発生率はDAC(HRc44)をφ10mmのエ
ンドミル加工において、切込深さ10mm,切込巾1mm、周速
150m/分、1刃あたりの送り0.05mmの条件にて乾式にお
いて15分間切削を行った場合の(チッピング長さ/全切
刃長さ)×100として表わしたものである。また工具寿
命はSNGN432にてSNCM8(HB)270の丸棒を切削速度100m/
分及び250m/分で切削した場合、最大逃面摩耗が0.3mmに
至った時の時間とした。この場合一回転あたりの送り量
は
0.3mmとした。第2表より、本発明合金は、耐チッピン
グ性に著しく優れると同時に、特に切削速度の速い高温
切削において著しく高寿命であることが認められる。
実施例2
N2量2.0%、C量8.1%、組成25TiCN-30WC-15TaC−10N
bC−5Mo2C‐7.5Co−7.5Niになる合金j,k、比較合金6,7
を作製し、2重有芯構造の中心部,周辺部を組成分析し
た結果、第3表に示す。分析は金属元素は透過型分析電
子顕微鏡を用い、定量分析を行った。本発明合金は、中
心部は相対的にTiに乏しくWに富み、周辺部がTiに富み
にに乏しいことが認められる。
実施例3
実施例1と同様に本発明合金m,n,比較合金8,9を作製
し、評価した結果を第4表に示す。実施例1と同様に本
発明合金は耐チッピング性,高温強度に優れることが認
められる。
[発明の効果]
本発明によれば、従来のサーメットでは耐チッピング
性に難点があり不可能であったエンドミル工具へのサー
メット合金の適用が可能であると同時、高温での耐摩耗
性、強度に優れるため、高硬度材切削分野へのサーメッ
トの適用も可能である。また、より高速での切削におい
ても極めて長寿命化が可能である。Description: TECHNICAL FIELD The present invention relates to a cermet alloy excellent in high-temperature wear resistance, high-temperature strength and chipping resistance. [Prior art] Conventionally, a cermet alloy is mainly composed of TiC.
For the purpose of improving the wettability between the particles or the TiCN particles and the binding metal phase, it has been common to add components such as Mo 2 C, WC, TaC, and NbC. These additional components are based on processes such as dissolution in the binder metal phase and precipitation into TiC and TiCN particles during sintering.
It surrounds the TiC and TiCN particles, forms a peripheral structure, and contributes to improving the wettability with the binding metal phase. Therefore, in the conventional cermet, the double carbonitride has a double cored structure, but the center is rich in Ti, and the surrounding structure is rich in components such as WC, TaC, Mo 2 C, NbC which are wettability improving components. Those having a composition composition poor in Ti are generally used. (Japanese Patent Publication No. 56-51201,
73857, JP-A-61-210150, JP-A-61-201750, etc.). FIG. 1 shows representative SEM (scanning electron microscope) images of these cermet alloys. In the SEM image, it can be seen that the lighter the element is, the more black it is, but the central part of the double cored structure is black and rich in the light element Ti, and the surrounding structure is whitish and rich in the heavy elements W and Ta. The double cored double carbonitride was analyzed by transmission analysis electron microscopy. As a result, with respect to Ti and W, Ti in the center was 65.8%, W was 5.0%, and the peripheral structure was Ti4.
It is 9.5% and W23.2%, and has a composition in which the central portion is richer in Ti and less W than the peripheral portion, and the peripheral portion is richer in W and less Ti than the central portion. The double carbonitride particles having the above composition are worn during high-speed cutting, when the surface of the double carbonitride is worn out and the surface of the double carbonitride appears, the surface having a composition poor in Ti and W is oxidized. It has the disadvantage that the advantages of Ti are lost because it is easy and the hardness is soft. Further, as components such as WC, TaC, NbC, and Mo 2 C form a peripheral structure, double carbonitride particles grow and come into contact with each other. The contact portion between the double carbonitrides is a source of microcracks when external stress is applied, and is easily cleaved as a crack propagation path.Therefore, the more contact portions, the lower the fracture toughness value This has been a factor of deteriorating the anti-chapping property. On the other hand, when the peripheral tissue forming component is reduced to reduce the contact portion, the high-temperature strength is remarkably deteriorated. At present, it is unavoidable to add the peripheral tissue forming component to a certain degree or more. Have to be forced. [Problems to be Solved by the Invention] In order to solve the above-mentioned problems, the present invention has a double cored structure in which the peripheral portion is hard, rich in oxidation resistance, and has improved wear resistance at high temperatures. Provides a cermet alloy composed of double carbonitride having
C, TaC, NbC, Mo 2 C, etc. are added in a necessary and sufficient amount to provide high-temperature strength, and at the same time, the amount of peripheral structure formation is suppressed, the contact portion between double carbonitrides is significantly reduced, and the chipping resistance is improved. It is intended to provide a cermet alloy which has been subjected to heat treatment. [Means for Solving the Problems] As a result of various studies to solve the above problems, the present inventors have found that at least W, Ti containing at least one of the 4a, 5a, Multi-component double carbonitride containing more than one species is used as a starting material, and TiN or TiCN and binder phase metal powder and external component carbide or nitride or carbonitride are added and sintered from the outside alone. As a result, it has been found that desired characteristics can be obtained. The details are described below. Contains at least W and Ti as starting materials, including TaC, Nb
By using, as a starting material, a multiple carbonitride containing one or more of the 4a, 5a, and 6a groups, which are peripheral structure forming components such as C and Mo 2 C, the composition of the multiple carbonitride is improved. Is relatively close to the above-mentioned composition of the peripheral structure, so that it has good wettability with the metal bonding phase, and does not cause deterioration in toughness and sinterability. In addition, since one part of the peripheral structure forming component is contained, the peripheral structure formation amount is relatively small, and the contact portion between the double carbonitrides tends to be relatively small. However, even when only the double carbonitride raw material is used, a peripheral structure forming component is solid-dissolved from the double carbonitride in the binder phase during sintering, and this solid solution component is continuously dispersed in the double carbonitride particles. Precipitates, grain growth, and the contact portion of the double carbonitrides based on it, and the desired characteristics with respect to chipping resistance cannot be obtained.
The layer structure does not become rich. The present inventors have further studied and found that TiN or TiCN
By solely adding from the outside, the following three effects were discovered, and it was found that surprising properties can be improved. The first point is that TiN or TiCN is thermodynamically unstable at high temperature, especially when the carbon source is extremely unstable. Therefore, when TiN or TiCN is added from outside, TiN or TiCN particles are Thermally decomposes during sintering and preferentially forms a solid solution in the bonded metal phase. As a result, solid solution in the binding metal phase of components such as Mo, Ta, and Nb, which are the peripheral structure forming components contained in the double carbonitride, is suppressed, and the amount of the peripheral structure formation is suppressed. The contact portion between double carbonitrides is significantly reduced. The second point is that pyrolyzed Ti and N
However, since the solidified carbonitride particles have a layer structure rich in Ti at the periphery due to the diffusion and solid solution into the double carbonitride particles, the double carbonitride has a hard surface and a layer having oxidation resistance. It becomes a structure. The third point is that when Ti and N dissolved in the bonded metal phase are diffused and solid-dissolved in the double carbonitride, W contained in the double carbonitride and having no affinity with N is mixed with the double carbon. It is discharged from the nitride particles and solid-dissolves in the binding metal phase to remarkably strengthen the binding metal. As a result, a cermet alloy excellent in chipping resistance by the first effect, high-temperature wear resistance by the second effect, and extremely high-temperature strength by the third effect is obtained. If necessary, one part of other components may be externally added in addition to TiN or TiCN. Therefore, in the cermet alloy according to the present invention, the double carbonitride particles have a double cored structure, and the composition distribution is such that the double carbonitride having a relatively low Ti content and a high W content
It has a compositional composition surrounded by a double carbonitride rich in Ti and poor in W. Of the cermet alloy according to the invention
The SEM image is shown in FIG. It is clear that the layer structure is different from that of the conventional cermet alloy shown in FIG. From the above, a cermet alloy with excellent high-temperature wear resistance was obtained, but it was more effective to replace part or all of TaC with NbC in order to further improve high-temperature wear resistance and plastic deformation. is there. This is NbC
This is because there is an effect of improving the characteristics at a higher temperature than TaC. Also, 0.5% to 10% of TiC is 4a, 5a, other than W, Ta, Nb, and Mo.
Further improvement in high-temperature strength is also possible by replacing with group 6a. Next, the reason for limiting the numerical values will be described. When the hard phase contains more than 95% of the double carbonitride, which is a hard phase, the toughness of the alloy is significantly degraded. If the hard phase is less than 50%, the desired high-temperature wear resistance and high-temperature strength cannot be obtained, so that 50% by weight is obtained. ~ 95% by weight. The reason why the double carbonitride having the predetermined double cored structure is set to 70% or more of the total hard layer is that the presence of particles having no double cored structure may be unavoidable due to the production. It was above. If the content of TiC is less than 10%, the wear resistance of the alloy deteriorates, and if the content exceeds 40%, the toughness deteriorates, so that 10%
~ 40%. TiN contributes to finer particles and improved toughness, but less than 5% has little effect, and more than 20% may cause defects in the sintered body.
20%. WC is a component that improves toughness and high-temperature strength. However, if it is less than 10%, its effect is small, and if it exceeds 35%, wear resistance deteriorates. Since the amount of microstructure formation increases and the toughness deteriorates, the content is set to 10 to 35%. TaC is a component that improves toughness and high-temperature strength similarly to WC, but its effect is small when it is less than 5%, and when it exceeds 30%, on the contrary, the amount of peripheral structure formation increases and toughness deteriorates. 30%. Mo 2 C
Is a component that improves wettability and contributes to improvement in toughness and grain refinement. However, the hardness of Mo 2 C itself is soft, and therefore, the content was set to 1.5 to 4.5% of the minimum necessary amount for improving wettability. If the content exceeds 4.5%, the wear resistance at high temperatures is significantly deteriorated.
Since NbC has the effect of improving the strength at high temperatures and the plastic deformation resistance, in order to improve the tool performance more than TaC especially under the conditions used at high temperatures, a part or all of TaC is NbC.
It may be better to replace it with bC. If the content is less than 5%, the effect is small, and if the content exceeds 30%, the toughness is deteriorated similarly to TaC. When the partial substitution amount of TiC is less than 0.5%, the effect on the high temperature strength is small, and
If the content is less than 0%, the toughness is deteriorated, so
It was less than 10%. EXAMPLES The present invention will be described below based on examples. Example 1 In preparing a raw material double carbonitride, a commercially available average particle size was used.
1.0 μm WC powder, 1.2 μm TiC 0.7 N 0.3 powder, 1.1 μm
μm TaC powder, 1.2 μm NbC powder, 1.0 μm Mo 2 C
Powder, 1.5 μm VC powder, 1.2 μm ZrC powder, 1.3 μm
using HfC powder [mu] m, weighed so that a predetermined double carbonitride composition, after wet mixing, N 2 partial pressure at 1800 ° C. 20
A solid solution treatment was performed at 3030 Torr for 1 hour. After the solid solution treatment, it was pulverized by an attritor to obtain a starting material multi-element double carbonitride. By this step, the present invention alloy a~i and comparative alloys 1 to 5 of the formulation tissue shown in Table 1 at N 2 partial pressure 1 Torr 1
It was produced by sintering at 400 ° C. for 1 hour. The compounding specifications in Table 1 show the double carbonitride used and the externally added components. Table 1 also shows the physical properties of the alloy of the present invention and the comparative alloy. The contact ratio in Table 1 is obtained by measuring the contact area of double carbonitrides / the total area of double carbonitrides by the method of Gorland. The high-temperature strength is a high-temperature short-time creep (stress of 80 kg / m2).
(m 2 , temperature 960 ° C.). In addition, the crack resistance is a value obtained by pressing the Vickers indentation with a load of 50 kg and reducing the load by the length of the crack generated from the corner, Indicates the load required to generate a 1 mm crack, and the fracture toughness value K 1c
Has a correlation with From Table 1, TiN or T
As described above, the alloy of the present invention in which iCN is added from the outside and the layer structure is reversed has, as described above, a low contact ratio and a remarkably excellent fracture toughness value, and at the same time, the W into the binder phase of double carbonitrides. It is recognized that the time to rupture in high-temperature short-time creep is extremely long due to solid solution strengthening of the bonding metal based on discharge. Table 2 shows the results of cutting tests of the alloy of the present invention and the comparative alloy. Chipping rate is 10mm in depth, 1mm in width, and peripheral speed in end milling of DAC (H Rc 44) with φ10mm.
It is expressed as (chipping length / total cutting edge length) × 100 when cutting is performed for 15 minutes in a dry system under the conditions of 150 m / min and feed of 0.05 mm per tooth. Tool life is SNGN432, SNCM8 (H B ) 270 round bar cutting speed 100m /
Min and 250 m / min, the time when the maximum flank wear reached 0.3 mm. In this case, the feed per rotation is 0.3 mm. Table 2 shows that the alloy of the present invention is remarkably excellent in chipping resistance and has a remarkably long life especially in high-temperature cutting at a high cutting speed. Example 2 N 2 content 2.0%, C content 8.1%, composition 25TiCN-30WC-15TaC-10N
bC-5Mo 2 C-7.5Co-7.5Ni alloy j, k, comparative alloy 6,7
Table 3 shows the results of composition analysis of the central portion and the peripheral portion of the double cored structure. In the analysis, the metal element was quantitatively analyzed using a transmission analysis electron microscope. In the alloy of the present invention, it is recognized that the center portion is relatively poor in Ti and rich in W, and the peripheral portion is poor in Ti rich. Example 3 In the same manner as in Example 1, alloys m and n of the present invention and comparative alloys 8 and 9 were produced, and the evaluation results are shown in Table 4. As in Example 1, it is recognized that the alloy of the present invention is excellent in chipping resistance and high-temperature strength. [Effects of the Invention] According to the present invention, it is possible to apply a cermet alloy to an end mill tool, which has been impossible with a conventional cermet because of its difficulty in chipping resistance, and at the same time, wear resistance and strength at high temperatures. The cermet can be applied to the field of cutting hardened materials. Further, even in cutting at a higher speed, a very long life can be achieved.
【図面の簡単な説明】
第1図は従来サーメット合金のSEMによる金属組織写
真、第2図は本発明サーメット合金のSEMによる金属組
織写真である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a SEM micrograph of a conventional cermet alloy, and FIG. 2 is a SEM micrograph of a cermet alloy of the present invention.
Claims (1)
硬質相と結合金属相からなり、硬質相形成成分とし、重
量比でTiC 10〜40%、TiN 5〜20%、WC 10〜35%、TaC
5〜30%、Mo2C 1.5〜4.5%からなり、結合相としてFe族
金属の1種または2種以上5〜30%の成分からなるサー
メット合金において、 硬質相を形成する複炭窒化物が2重有芯構造を形成し、
この2重有芯構造は相対的にTiに乏しくWに富む複炭窒
化物が、相対的にTiに富みWに乏しい複炭窒化物で包囲
された構造をもち、該が2重有芯構造を有する複炭窒化
物硬質相が、全硬質相に対し、50〜95%存在することを
特徴とするサーメット合金。 2.特許請求の範囲第1項記載のサーメット合金におい
て、TaCの一部をNbCで置き換えたことを特徴とするサー
メット合金。 3.特許請求の範囲第1項または第2項記載のサーメッ
ト合金において、TiCの0.5〜10%をZrC、HfCの1種また
は2種の炭化物で置き換えたことを特徴とするサーメッ
ト合金。(57) [Claims] Consists of a B1 type hard phase composed of double carbonitrides of groups 4a, 5a and 6a of the periodic table and a binding metal phase, and is used as a hard phase forming component. TiC 10-40%, TiN 5-20%, WC 10-35%, TaC
In a cermet alloy composed of 5 to 30%, Mo 2 C 1.5 to 4.5%, and one or more of the Fe group metals as a binder phase, and a component of 5 to 30%, a double carbonitride forming a hard phase is formed. Forming a double cored structure,
This double cored structure has a structure in which a double carbonitride relatively rich in Ti and rich in W is surrounded by a double carbonitride relatively rich in Ti and poor in W, which is a double cored structure. A cermet alloy characterized in that a double carbonitride hard phase having a content of 50 to 95% of the total hard phase is present. 2. 2. The cermet alloy according to claim 1, wherein a part of TaC is replaced with NbC. 3. The cermet alloy according to claim 1 or 2, wherein 0.5 to 10% of TiC is replaced with one or two kinds of carbides of ZrC and HfC.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22588987A JP2710937B2 (en) | 1987-09-09 | 1987-09-09 | Cermet alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22588987A JP2710937B2 (en) | 1987-09-09 | 1987-09-09 | Cermet alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6468441A JPS6468441A (en) | 1989-03-14 |
JP2710937B2 true JP2710937B2 (en) | 1998-02-10 |
Family
ID=16836459
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22588987A Expired - Lifetime JP2710937B2 (en) | 1987-09-09 | 1987-09-09 | Cermet alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2710937B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01116050A (en) * | 1987-10-27 | 1989-05-09 | Hitachi Metals Ltd | Cermet alloy |
-
1987
- 1987-09-09 JP JP22588987A patent/JP2710937B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS6468441A (en) | 1989-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4857108A (en) | Cemented carbonitride alloy with improved plastic deformation resistance | |
JP2710934B2 (en) | Cermet alloy | |
JP2004292905A (en) | Compositionally graded sintered alloy and method of producing the same | |
JPS6256224B2 (en) | ||
JP2004076049A (en) | Hard metal of ultra-fine particles | |
JP2710937B2 (en) | Cermet alloy | |
JP4172754B2 (en) | TiCN-based cermet and method for producing the same | |
JP5079940B2 (en) | Tungsten carbide cemented carbide composite material sintered body | |
JPH07278719A (en) | Particulate plate crystal cemented carbide containing wc and its production | |
JP6775694B2 (en) | Composite sintered body | |
JPH0450373B2 (en) | ||
JPS6059195B2 (en) | Manufacturing method of hard sintered material with excellent wear resistance and toughness | |
JPH10324943A (en) | Ultra-fine cemented carbide, and its manufacture | |
JPH08218145A (en) | Cemented carbide for tool for working woody hard material | |
JP4126451B2 (en) | Cemented carbide | |
JP2002029845A (en) | Super-hard sintered compact | |
JP4540791B2 (en) | Cermet for cutting tools | |
JPH01116050A (en) | Cermet alloy | |
JPH0121857B2 (en) | ||
JP7473871B2 (en) | WC-based cemented carbide cutting tool with excellent wear resistance and chipping resistance and surface-coated WC-based cemented carbide cutting tool | |
JP3264064B2 (en) | Cermet cutting tools for high speed milling | |
JP4244108B2 (en) | CUTTING TOOL CUTTING PART OF Cubic Boron Nitride-Based Sintered Material with Excellent Chipping Resistance | |
JP4172752B2 (en) | TiCN-based cermet and method for producing the same | |
JPS636618B2 (en) | ||
JPH0813077A (en) | Nitrogen-containing sintered hard alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |