JP2009248237A - Titanium carbonitride-based cermet cutting tool excellent in wear resistance - Google Patents

Titanium carbonitride-based cermet cutting tool excellent in wear resistance Download PDF

Info

Publication number
JP2009248237A
JP2009248237A JP2008098393A JP2008098393A JP2009248237A JP 2009248237 A JP2009248237 A JP 2009248237A JP 2008098393 A JP2008098393 A JP 2008098393A JP 2008098393 A JP2008098393 A JP 2008098393A JP 2009248237 A JP2009248237 A JP 2009248237A
Authority
JP
Japan
Prior art keywords
phase
area
carbide
carbonitride
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008098393A
Other languages
Japanese (ja)
Inventor
Masashi Fukumura
昌史 福村
Satoshi Takahashi
高橋  慧
Toshiyuki Taniuchi
俊之 谷内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2008098393A priority Critical patent/JP2009248237A/en
Publication of JP2009248237A publication Critical patent/JP2009248237A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a titanium carbonitride-based cermet cutting tool having a hard coating layer exhibiting excellent wear resistance during high-speed cutting. <P>SOLUTION: This cutting tool has a texture structure made of a mixing composition having 20-30% tungsten carbide, 5-10% one or more of tantalum carbide, niobium carbide, and vanadium carbide, 10-20% cobalt and the remainder made of titanium carbonitride and inevitable impurities, a body hard phase of a core structure and a metal bonding phase. In the metal bonding phase, a 2-20 area% tungsten carbide phase of hexagonal crystal crystalline structure is present, or 1-20 area% fine deposited and dispersed hard phase comprising a compound carbide of tungsten and cobalt of cubical structure is present, and the remainder is formed of a metal bonding phase formed mainly of Co. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、例えば、各種鋼や鋳鉄などの高熱発生を伴う高速切削に用いた場合に、耐熱衝撃性、耐欠損性にすぐれ、長期に亘ってすぐれた耐摩耗性を発揮する炭窒化チタン基(TiCN基)サーメット製切削工具(以下、単にサーメット工具という)に関するものである。   This invention, for example, is a titanium carbonitride base that exhibits excellent thermal shock resistance and fracture resistance and excellent wear resistance over a long period of time when used for high-speed cutting with high heat generation such as various steels and cast iron. The present invention relates to a (TiCN-based) cermet cutting tool (hereinafter simply referred to as a cermet tool).

従来、サーメット工具として、Ti炭窒化物、Tiを主体とする炭窒化物、またはTiとMを主体とする炭窒化物(ただし、MはTa、Nb、およびVのうちの1種または2種以上を示す、以下同じ)からなる芯部と、TiとWとMを主体とする炭窒化物からなる周辺部で構成された有芯構造の硬質相:70〜95面積%、を含有し、残りがCoとWを主体とする結合相および不可避不純物からなる炭窒化チタン基(TiCN基)サーメット(以下、単にサーメットという)で構成されたサーメット工具が知られている。
そして、上記のサーメット工具の耐熱衝撃性を改善するために、1400〜1600℃の温度範囲において、所定圧力のHe、N、Ar、CO、CO雰囲気中で焼成し、WCoC,WCoC,WCoC,WCo等の低級炭化物を含むη相を生成させることが知られている。
また、上記のサーメット工具の耐摩耗性を改善するために、1400〜1550℃の温度範囲かつ20〜500TorrのN雰囲気中で保持し急冷した後、1100〜1250℃で加熱し、(W,Co)Cからなる微細析出分散硬質相を分散析出させることも知られている。
特開2000−135606号公報 特開2000−237903号公報
Conventionally, as a cermet tool, Ti carbonitride, carbonitride mainly composed of Ti, or carbonitride mainly composed of Ti and M (where M is one or two of Ta, Nb, and V) A core composed of a core composed of a core composed of Ti, W and M as a main component, and 70 to 95 area%. There is known a cermet tool that is composed of a titanium carbonitride group (TiCN group) cermet (hereinafter simply referred to as cermet) composed of a binder phase mainly composed of Co and W and inevitable impurities.
Then, in order to improve the thermal shock resistance of the cermet tool, in the temperature range of 1400 to 1600 ° C., at a predetermined pressure He, and fired at N 2, Ar, CO, CO 2 atmosphere, W 6 Co 6 C , W 3 Co 3 C, W 4 Co 2 C, and W 9 Co 3 C 4 are known to produce η phases containing lower carbides.
Further, in order to improve the wear resistance of the cermet tool, it is kept in a temperature range of 1400 to 1550 ° C. and in an N 2 atmosphere of 20 to 500 Torr, quenched, and then heated at 1100 to 1250 ° C. (W, It is also known to disperse and precipitate a fine precipitation-dispersed hard phase composed of Co) C.
JP 2000-135606 A JP 2000-237903 A

近年、切削加工における省力化、省エネ化、高効率化、低コスト化の要請は強く、切削装置の高性能化には目ざましいものがあり、その一方、工作機械の性能向上に伴い、工具にとっての切削条件は益々過酷なものとなってきており、サーメット工具には使用寿命の一段の延命化が望まれている。
サーメット工具は、一般的に、超硬工具に比して、耐熱衝撃性、耐欠損性が不十分であり、特に、耐摩耗性を向上させようとした場合には、耐熱衝撃性、耐欠損性のさらなる劣化が生じやすいことから、サーメット工具の使用寿命の延命化のためには、耐熱衝撃性、耐欠損性を低下させることなしに耐摩耗性の向上を図ることが必要とされるが、上記従来のサーメット工具は、耐熱衝撃性、耐欠損性および耐摩耗性のいずれかが劣るものであり、これらの特性を相兼ね備えたものであるとはいえない。
In recent years, there has been a strong demand for labor-saving, energy-saving, high-efficiency, and low-cost cutting, and there has been a remarkable improvement in the performance of cutting devices. Cutting conditions have become increasingly severe, and cermet tools are expected to have a longer service life.
Cermet tools are generally insufficient in thermal shock resistance and fracture resistance compared to carbide tools, especially when trying to improve wear resistance, thermal shock resistance and fracture resistance. In order to prolong the service life of cermet tools, it is necessary to improve wear resistance without reducing thermal shock resistance and fracture resistance. The conventional cermet tool is inferior in any of thermal shock resistance, fracture resistance and wear resistance, and cannot be said to have these characteristics in combination.

そこで、本発明者等は、上述のような観点から、耐熱衝撃性、耐欠損性を低下させることなくすぐれた耐摩耗性を備えるサーメット工具について鋭意研究を行った結果、サーメット工具の組織及びこの組織を生成するための条件等について、以下の知見を得た。   In view of the above, the present inventors have conducted intensive research on a cermet tool having excellent wear resistance without deteriorating thermal shock resistance and fracture resistance. The following knowledge was acquired about the conditions etc. for producing | generating a structure | tissue.

(a)上記従来技術(以下、上記特許文献1、2記載の技術を、それぞれ「従来技術1」、「従来技術2」という)によれば、サーメットの焼成温度である1400〜1600℃の任意の温度において、He、N、Ar、CO、COの少なくともいずれかのガスを760Torr以下の圧力で導入し、WCoC,WCoC,WCoC,WCo等の低級炭化物を含むη相を生成させることにより、熱衝撃性の改善を図り(従来技術1)、また、1400〜1550℃の温度範囲かつ20〜500TorrのN雰囲気中でサーメットを焼成保持後急冷し、1100〜1250℃で加熱し、(W,Co)Cからなる微細析出分散硬質相を分散析出させることにより、耐摩耗性の改善を図っている(従来技術2)。
しかし、サーメット原料粉末の焼成に際し、例えば、
(イ)常温から焼結温度(1480〜1600℃)までは、真空雰囲気中で加熱昇温し、
(ロ)該焼結温度で、真空雰囲気中で5〜30分間加熱保持した後、
(ハ)窒素と炭化水素の混合ガス(例えば、N−CH混合ガス)を導入し、該窒素と炭化水素の混合ガス雰囲気中(200〜400Torr)でさらに30〜60分間加熱保持し、
(ニ)真空に引いた後、室温まで冷却する、
という条件で焼成を行うと、
芯部と周辺部で構成された有芯構造の主体硬質相(70〜95面積%)と、結合相(30〜5面積%)からなる焼結組織が形成され、
さらに、上記結合相(30〜5面積%)には、六方晶構造の炭化タングステン(以下、h−WCで示す)相が、主体硬質相間の間隙を充填し、主体硬質相相互を結合するような形態で形成され、あるいはさらに、立方晶構造のタングステンとコバルトの複合炭化物(以下、(W,Co)Cで示す)からなる硬質相(前記従来技術1におけるη相、あるいは、前記従来技術2における(W,Co)Cからなる微細析出分散硬質相に相当)が微細に析出分散し、残部は、コバルトを主体とする金属結合相からなること。
(A) According to the above prior art (hereinafter, the techniques described in Patent Documents 1 and 2 are referred to as “prior art 1” and “prior art 2”, respectively), an arbitrary cermet firing temperature of 1400 to 1600 ° C. At least one of He, N 2 , Ar, CO, and CO 2 is introduced at a pressure of 760 Torr or less, and W 6 Co 6 C, W 3 Co 3 C, W 4 Co 2 C, and W 9 are introduced. By generating an η phase containing a lower carbide such as Co 3 C 4 , thermal shock resistance is improved (prior art 1), and in a temperature range of 1400 to 1550 ° C. and in an N 2 atmosphere of 20 to 500 Torr. The cermet is rapidly cooled after being fired and heated at 1100 to 1250 ° C. to improve the wear resistance by dispersing and precipitating a fine precipitation-dispersed hard phase composed of (W, Co) C (conventional technology). 2).
However, when firing the cermet raw material powder, for example,
(B) From room temperature to sintering temperature (1480-1600 ° C.), the temperature is raised in a vacuum atmosphere.
(B) After holding at the sintering temperature for 5 to 30 minutes in a vacuum atmosphere,
(C) introducing a mixed gas of nitrogen and hydrocarbon (for example, N 2 —CH 4 mixed gas), and heating and holding in the mixed gas atmosphere of nitrogen and hydrocarbon (200 to 400 Torr) for 30 to 60 minutes;
(D) After pulling vacuum, cool to room temperature,
When firing under the condition of
A sintered structure composed of a main hard phase (70 to 95 area%) having a core structure composed of a core part and a peripheral part and a binder phase (30 to 5 area%) is formed;
Further, in the binder phase (30 to 5 area%), a tungsten carbide (hereinafter referred to as h-WC) phase having a hexagonal structure fills the gap between the main hard phases and bonds the main hard phases to each other. Or a hard phase (hereinafter referred to as (W, Co) C) composed of a composite carbide of tungsten and cobalt having a cubic structure (hereinafter referred to as (W, Co) C) or the prior art 2 (Corresponding to a fine precipitation-dispersed hard phase composed of (W, Co) C) in (1), finely precipitated and dispersed, and the balance is composed of a metal-bonded phase mainly composed of cobalt.

(b)上記の焼成条件で結合相中に形成されるh−WC相は、前記従来技術1において形成される立方晶構造のη相、あるいは、前記従来技術2において形成される立方晶構造の(W,Co)Cからなる微細析出分散硬質相とは全く異なる六方晶結晶構造を有し、強靭な硬質相であり、h−WC相の形成によってサーメットの靭性が向上すると同時に、h−WC相が、主体硬質相間の間隙を充填し、主体硬質相相互を結合するような形態で存在することによって、主体硬質相の靭性にすぐれたネットワークが形成され、サーメット全体としての耐塑性変形性が大幅に向上すること。 (B) The h-WC phase formed in the binder phase under the above firing conditions is the cubic structure η phase formed in the prior art 1 or the cubic structure formed in the prior art 2. This is a tough hard phase having a hexagonal crystal structure completely different from the fine precipitation-dispersed hard phase composed of (W, Co) C, and the toughness of the cermet is improved by the formation of the h-WC phase. When the phases exist in a form that fills the gaps between the main hard phases and bonds the main hard phases, a network with excellent toughness of the main hard phases is formed, and the plastic deformation resistance of the cermet as a whole is improved. Great improvement.

(c)したがって、芯部と周辺部で構成された有芯構造の主体硬質相と、結合相および該結合相中にあって、主体硬質相間の間隙を充填し、主体硬質相相互を結合するような形態で存在する強靭・硬質なh−WC相からなる組織構造を有するサーメット工具は、各種鋼や鋳鉄などの高熱発生を伴う高速切削に用いた場合にも、耐熱衝撃性、耐欠損性にすぐれるとともに、長期に亘ってすぐれた耐摩耗性を発揮するようになること。 (C) Therefore, the main hard phase having a core structure composed of the core portion and the peripheral portion, the binder phase and the binder phase, the gap between the main hard phases is filled, and the main hard phases are bonded to each other. A cermet tool having a tough and hard h-WC phase structure that exists in such a form can be used for high-speed cutting with high heat generation such as various steels and cast irons. As well as excellent wear resistance over a long period of time.

この発明は、上記の知見に基づいてなされたものであって、
「(1)
(a)重量%で、
炭化タングステン:20〜30%、
炭化タンタル、炭化ニオブおよび炭化バナジウムのうちの1種又は2種以上:5〜10%、
コバルト:10〜20%
炭窒化チタンおよび不可避不純物:残部、
の配合組成を有し、
(b)走査型電子顕微鏡による組織観察において、
チタン炭窒化物、チタンを主体とする炭窒化物またはチタンとM(ただし、Mは、タンタル、ニオブおよびバナジウムのうちの1種又は2種以上を示す)を主体とする炭窒化物からなる芯部と、チタンとタングステンとM(ただし、Mは、タンタル、ニオブおよびバナジウムのうちの1種又は2種以上を示す)を主体とする炭窒化物からなる周辺部で構成された有芯構造の主体硬質相:70〜95面積%、
残部が、結合相:30〜5面積%からなる組織構造を有し、
(c)上記結合相は、結合相の面積%を100%とした場合、2〜20面積%の面積割合の六方晶構造を有する炭化タングステン(h−WC)相と、残部がコバルトを主体とする金属結合相とからなる、
ことを特徴とする炭窒化チタン基サーメット製切削工具。
(2)
前記(1)の炭窒化チタン基サーメット製切削工具において、
前記(c)の結合相は、結合相の面積%を100%とした場合、2〜20面積%の面積割合の六方晶構造を有する炭化タングステン(h−WC)相と、1〜20面積%の面積割合の立方晶構造を有するタングステンとコバルトの複合炭化物((W,Co)C)からなる微細析出分散硬質相と、残部がコバルトを主体とする金属結合相とからなる、
ことを特徴とする前記(1)の炭窒化チタン基サーメット製切削工具。」
に特徴を有するものである。
This invention has been made based on the above findings,
“(1)
(A)% by weight
Tungsten carbide: 20-30%
One or more of tantalum carbide, niobium carbide and vanadium carbide: 5 to 10%,
Cobalt: 10-20%
Titanium carbonitride and inevitable impurities: balance,
Having a composition of
(B) In structure observation with a scanning electron microscope,
Titanium carbonitride, carbonitride mainly composed of titanium, or a core composed of carbonitride mainly composed of titanium and M (where M is one or more of tantalum, niobium and vanadium) A cored structure composed of a carbonitride mainly composed of a portion, titanium, tungsten, and M (where M represents one or more of tantalum, niobium, and vanadium). Main hard phase: 70-95 area%,
The balance has a structure consisting of a binder phase: 30-5 area%,
(C) The binder phase is mainly composed of a tungsten carbide (h-WC) phase having a hexagonal crystal structure with an area ratio of 2 to 20 area%, with the balance being cobalt, where the area% of the binder phase is 100%. Consisting of a metal bonded phase,
A titanium carbonitride-based cermet cutting tool characterized by that.
(2)
In the (1) titanium carbonitride-based cermet cutting tool,
The binder phase (c) is composed of a tungsten carbide (h-WC) phase having a hexagonal crystal structure with an area ratio of 2 to 20 area%, and 1 to 20 area% when the area% of the binder phase is 100%. A fine precipitation-dispersed hard phase composed of a composite carbide of tungsten and cobalt ((W, Co) C) having a cubic structure with an area ratio of: and a metal binder phase mainly composed of cobalt.
The titanium carbonitride-based cermet cutting tool according to (1) above. "
It has the characteristics.

この発明のサーメット工具において、その配合組成、組織等を上記の通りに限定した理由を以下に説明する。
炭化タングステン(WC);
この発明のサーメットでは、WCの配合割合が20重量%未満ではCoを主体とする結合相(結合相)中のW含有割合が不足して、所望の高温硬さを保持することができず、一方、その配合割合が30%を越えると、六方晶構造を有する炭化タングステン(h−WC)相が、粒子状に形成されるようになり、主体硬質相相互を結合するような形態をとらなくなるため、耐塑性変形性が急激に低下し、これが原因で刃先に塑性変形が発生しやすくなることから、その配合割合を20〜30重量%と定めた。
In the cermet tool of the present invention, the reason why the blending composition, structure and the like are limited as described above will be described below.
Tungsten carbide (WC);
In the cermet of this invention, if the blending ratio of WC is less than 20% by weight, the W content ratio in the binder phase (bonding phase) mainly comprising Co is insufficient, and the desired high-temperature hardness cannot be maintained, On the other hand, if the blending ratio exceeds 30%, the tungsten carbide (h-WC) phase having a hexagonal crystal structure is formed in the form of particles and does not take a form that bonds the main hard phases to each other. For this reason, the plastic deformation resistance is drastically lowered, and plastic deformation is likely to occur at the cutting edge due to this, so the blending ratio was determined to be 20 to 30% by weight.

炭化タンタル、炭化ニオブおよび炭化バナジウム(TaC/NbC/VC)のうちの1種又は2種以上;
TaC、NbCおよびVCは、その一部が、焼結時に結合相形成成分であるCo成分中に固溶し、また、他の一部は、主体硬質相の周辺部および芯部に固溶含有され、主体硬質相の高温強度を向上させる作用を有するが、その配合割合(TaC、NbCおよびVCの合計量)が5重量%未満では前記作用に所望の向上効果が得られず、一方、その含有割合が10%を越えると硬質相中の含有割合が高くなり過ぎ、これが主体硬質相の硬さ低下の原因となることから、その配合割合(TaC、NbCおよびVCの合計量)を5〜10重量%と定めた。
One or more of tantalum carbide, niobium carbide and vanadium carbide (TaC / NbC / VC);
A part of TaC, NbC and VC is dissolved in the Co component which is a binder phase forming component during sintering, and the other part is dissolved in the periphery and core of the main hard phase. However, if the blending ratio (total amount of TaC, NbC, and VC) is less than 5% by weight, the desired improvement effect cannot be obtained in the above-described operation, If the content ratio exceeds 10%, the content ratio in the hard phase becomes too high, and this causes a decrease in the hardness of the main hard phase, so the blending ratio (total amount of TaC, NbC and VC) is 5 to 5%. It was determined as 10% by weight.

コバルト(Co);
Coには、焼結性を向上させ、Coを主体とする金属結合相を形成して、サーメットの強度を向上させる作用があるが、その配合割合が10重量%未満では所望の焼結性を確保することができず、一方、その配合割合が20重量%を越えると摩耗が急激に進行するようなることから、その配合割合を10〜20重量%に定めた。
Cobalt (Co);
Co has the effect of improving the sinterability and forming a metallic binder phase mainly composed of Co to improve the strength of the cermet. However, if the blending ratio is less than 10% by weight, the desired sinterability is obtained. On the other hand, when the blending ratio exceeds 20% by weight, wear rapidly progresses. Therefore, the blending ratio is set to 10 to 20% by weight.

炭窒化チタン(TiCN);
TiCNには、焼結時に主体硬質相を形成して、サーメット工具の硬さを向上させ、もって耐摩耗性向上に寄与する作用があるが、その配合割合が40重量%未満では、所望の硬さを確保することができず、一方、その配合割合が65%を越えると、切削工具の強度が急激に低下し、切削時に欠損、チッピングが発生し易くなることから、その配合割合を40〜65重量%とすることが望ましく、また、50〜55重量%とすることがさらに望ましい。
Titanium carbonitride (TiCN);
TiCN has the effect of forming a main hard phase during sintering and improving the hardness of the cermet tool, thereby contributing to the improvement of wear resistance. However, if the blending ratio is less than 40% by weight, the desired hardness is obtained. On the other hand, if the blending ratio exceeds 65%, the strength of the cutting tool is drastically reduced, and chipping and chipping are likely to occur during cutting. It is desirable to set it as 65 weight%, and it is still more desirable to set it as 50 to 55 weight%.

主体硬質相;
主体硬質相は、チタン炭窒化物、チタンを主体とする炭窒化物またはチタンとM(ただし、Mは、タンタル、ニオブおよびバナジウムのうちの1種又は2種以上を示す)を主体とする炭窒化物(以下、これらを総称して、(Ti,M)CNで示す)からなる芯部と、チタンとタングステンとM(ただし、Mは、タンタル、ニオブおよびバナジウムのうちの1種又は2種以上を示す)を主体とする炭窒化物(以下、(Ti,W,M)CNで示す)からなる周辺部で構成される有芯構造の硬質相からなるが、主体硬質相の面積割合が70面積%未満では、相対的に結合相の割合が多くなりすぎて耐摩耗性が低下してしまい、一方、その面積割合が95面積%を超えると、反対に結合相の割合が少なくなりすぎて焼結性の低下、強度低下が生じるようになることから、主体硬質相の面積割合を70〜95面積%と定めた。
Main hard phase;
The main hard phase is titanium carbonitride, carbonitride mainly composed of titanium or titanium and M (wherein M represents one or more of tantalum, niobium and vanadium). A core made of nitride (hereinafter collectively referred to as (Ti, M) CN), titanium, tungsten, and M (where M is one or two of tantalum, niobium, and vanadium) It consists of a hard phase with a core structure composed of a peripheral part composed of a carbonitride (hereinafter referred to as (Ti, W, M) CN) mainly composed of the above, but the area ratio of the principal hard phase is If the area ratio is less than 70 area%, the ratio of the binder phase is relatively too large and wear resistance is lowered. On the other hand, if the area ratio exceeds 95 area%, the ratio of the binder phase is too small. Sinterability and strength decrease. From becoming, defining the area ratio of the main hard phase and 70-95 area%.

結合相;
結合相の面積割合は、上記主体硬質相の場合と同様な理由、即ち、結合相の面積%が30面積%を超えると、耐摩耗性が低下し、一方、結合相の面積%が5面積%未満であると焼結性の低下、強度低下が生じることから、結合相の面積割合は30〜5面積%と定めた。
なお、この発明では、結合相は、サーメットを構成する主体硬質相以外の相をいい、Co中にW、Ta、Nb、Vを固溶するCo基固溶体相からなる金属結合相の他、主体硬質相間の間隙を充填し、主体硬質相相互を結合するような形態で存在する六方晶結晶構造のWC(h−WC)相、あるいはさらに、立方晶結晶構造のWとCoの複合炭化物((W,Co)C)からなる微細析出分散硬質相も含めて結合相とよぶ。
Bonded phase;
The area ratio of the binder phase is the same as in the case of the main hard phase, that is, if the area percentage of the binder phase exceeds 30 area%, the wear resistance decreases, while the area percentage of the binder phase is 5 areas. If it is less than%, the sinterability decreases and the strength decreases, so the area ratio of the binder phase was determined to be 30-5 area%.
In the present invention, the binder phase refers to a phase other than the main hard phase constituting the cermet. In addition to the metal bond phase composed of a Co-based solid solution phase in which W, Ta, Nb, and V are dissolved in Co, the main phase is used. A hexagonal crystal structure WC (h-WC) phase that exists in a form that fills the gap between the hard phases and bonds the main hard phases to each other, or, further, a composite carbide of W and Co with a cubic crystal structure (( The fine precipitation-dispersed hard phase composed of W, Co) C) is also referred to as a binder phase.

h−WC相;
上記結合相中に存在する六方晶構造のh−WC相は、例えば、サーメットの焼成時、特に、サーメット原料粉末を真空下で焼結温度(1480〜1600℃)まで加熱昇温し、同じく真空雰囲気中で該焼結温度に5〜30分間加熱保持した後、窒素と炭化水素の混合ガス(例えば、N−CH混合ガス)を導入し、該窒素と炭化水素の混合ガス雰囲気中(200〜400Torr)でさらに30〜60分間加熱保持し、真空に引いた後、例えば、Arガス等の不活性ガス中で室温まで冷却することによって、溶融金属相中に溶け込んでいたWが炭化物として析出することによりh−WC相が形成される。しかし、1480〜1600℃の範囲内の温度で、該窒素と炭化水素の混合ガス雰囲気中(200〜400Torr)でさらに30〜60分間の加熱保持が行われないような場合には、従来技術1で示される立方晶構造のη相が形成されるか、従来技術2で示される立方晶構造の(W,Co)Cからなる微細析出分散硬質相が形成されるのみであって、この発明における六方晶構造のh−WC相が形成されることはない。なお、上記h−WC相形成のメカニズムは充分解明されているわけではないが、h−WC相が六方晶の結晶構造を有することは、透過式電子顕微鏡を用いたエネルギー分散型X線分析(TEM−EDS)によって本発明者らは確認している。
そして、上記h−WC相は、強靭な硬質相であって、しかも、図1に概略図示されるように、主体硬質相間の間隙を充填し、主体硬質相相互を結合するような形態で存在するため、サーメット工具の靭性を向上させると同時に、サーメット工具の耐塑性変形性を大幅に向上させる。ただ、結合相中に占めるh−WC相の面積割合が2面積%未満の場合には、靭性、耐塑性変形性向上効果を期待できず、一方、h−WC相の面積割合が20面積%を超える場合には、サーメットの焼結性の低下、強度低下が生じるため、結合相中に占めるh−WC相の面積割合、即ち、結合相の面積%を100%とした場合に、結合相中に占めるh−WC相の面積割合は2〜20面積%と定めた。
h-WC phase;
The h-WC phase having a hexagonal structure existing in the binder phase is, for example, heated at a cermet raw material powder under a vacuum to a sintering temperature (1480 to 1600 ° C.), particularly when cermet is fired. After heating and holding at the sintering temperature for 5 to 30 minutes in an atmosphere, a mixed gas of nitrogen and hydrocarbon (for example, N 2 —CH 4 mixed gas) is introduced, and the mixed gas atmosphere of nitrogen and hydrocarbon ( 200 to 400 Torr) is further heated and held for 30 to 60 minutes, vacuumed, and then cooled to room temperature in an inert gas such as Ar gas, so that W dissolved in the molten metal phase is converted into carbide. By precipitation, an h-WC phase is formed. However, in the case where heating and holding for 30 to 60 minutes is not performed in a mixed gas atmosphere of nitrogen and hydrocarbon (200 to 400 Torr) at a temperature within the range of 1480 to 1600 ° C., the conventional technique 1 In this invention, a cubic structure η phase represented by (3) is formed, or a fine precipitation-dispersed hard phase composed of (W, Co) C having a cubic structure represented by prior art 2 is formed. A h-WC phase having a hexagonal crystal structure is not formed. Although the mechanism of the formation of the h-WC phase is not sufficiently elucidated, the fact that the h-WC phase has a hexagonal crystal structure means that energy dispersive X-ray analysis using a transmission electron microscope ( The present inventors have confirmed by (TEM-EDS).
The h-WC phase is a tough hard phase, and, as schematically shown in FIG. 1, fills the gap between the main hard phases and bonds the main hard phases to each other. Therefore, the toughness of the cermet tool is improved and the plastic deformation resistance of the cermet tool is greatly improved. However, when the area ratio of the h-WC phase in the binder phase is less than 2 area%, the effect of improving toughness and plastic deformation resistance cannot be expected, while the area ratio of the h-WC phase is 20 area%. Exceeding the sinterability of the cermet and the strength decrease, the h-WC phase area ratio in the binder phase, that is, when the binder phase area percentage is 100%, the binder phase The area ratio of the h-WC phase occupying inside was determined to be 2 to 20 area%.

WとCoの複合炭化物((W,Co)C)からなる微細析出分散硬質相;
サーメットの焼成に際し、前記1520〜1600℃の温度範囲、かつ、窒素と炭化水素の混合ガス雰囲気中での焼結、加熱保持を行った後、冷却すると、溶融金属相中に溶け込んでいたWが炭化物として析出してh−WC相が主体硬質相間隙に析出形成されるが、Coが多くWC配合割合が少ない(Co15〜20かつWC20〜25重量%)サーメットの場合には、溶融金属相中に溶け込んでいたWの一部が、WとCoの複合炭化物((W,Co)C)として結合相中に微細に析出分散するようになる。そして、この(W,Co)Cからなる微細析出分散相は立方晶結晶構造を有する硬質相であって、サーメット工具の耐摩耗性を一段と向上させるが、結合相中に占める上記(W,Co)C微細析出分散硬質相の面積割合が20面積%を超えると、靭性が急激に低下し、切刃に欠損が発生しやすくなり、一方、結合相中に占める上記(W,Co)C微細析出分散硬質相の面積割合が1面積%未満では、耐摩耗性向上効果を期待できないことから、結合相に占める立方晶結晶構造を有し(W,Co)Cからなる微細析出分散硬質相の面積割合を1〜20面積%と定めた。
なお、以下の実施例に示す条件等で焼成を行うことにより、h−WC相が結合相中に2〜20面積%、あるいはさらに、(W,Co)Cからなる微細析出分散硬質相が結合相中に1〜20面積%存在し、残部がCoを主体とする金属結合相からなる結合相の組織構造を得ることができる。
A fine precipitation-dispersed hard phase comprising a composite carbide of W and Co ((W, Co) C);
When the cermet is fired, after sintering and heating and holding in the temperature range of 1520 to 1600 ° C. and in a mixed gas atmosphere of nitrogen and hydrocarbon, when cooled, W dissolved in the molten metal phase is obtained. In the case of a cermet in which the h-WC phase is precipitated as carbide and precipitated in the main hard phase gap, but there is a large amount of Co and the proportion of WC is small (Co 15-20 and WC 20-25% by weight) A part of W dissolved in the metal is finely precipitated and dispersed in the binder phase as a composite carbide of W and Co ((W, Co) C). The fine precipitation dispersed phase composed of (W, Co) C is a hard phase having a cubic crystal structure, which further improves the wear resistance of the cermet tool. ) If the area ratio of the C fine precipitation-dispersed hard phase exceeds 20 area%, the toughness is drastically reduced and the cutting edge is liable to be damaged, while the (W, Co) C fine occupying the binder phase. When the area ratio of the precipitation-dispersed hard phase is less than 1 area%, the effect of improving the wear resistance cannot be expected. Therefore, the fine precipitated-dispersed hard phase having a cubic crystal structure in the binder phase and made of (W, Co) C. The area ratio was defined as 1 to 20 area%.
In addition, by performing firing under the conditions shown in the following examples, the h-WC phase is 2 to 20% by area in the binder phase, or further, a fine precipitation dispersed hard phase composed of (W, Co) C is bonded. It is possible to obtain a bonded phase structure in which 1 to 20% by area is present in the phase and the balance is a metal bonded phase mainly composed of Co.

この発明のサーメット工具は、その組織を、芯部と周辺部で構成された有芯構造の主体硬質相と、残部結合相で構成し、また、該結合相は、六方晶結晶構造を有するh−WC相を、主体硬質相間の間隙を充填し、主体硬質相相互を結合するような形態で存在させ、あるいはさらに、立方晶結晶構造を有する(W,Co)Cからなる微細析出分散硬質相を存在させ、残部は、Coを主体とする金属結合相から構成することにより、これを、各種鋼や鋳鉄などの高熱発生を伴う高速切削に用いた場合にも、すぐれた耐塑性変形性、耐熱衝撃性、耐欠損性を示し、長期に亘ってすぐれた耐摩耗性を発揮するものである。   In the cermet tool of the present invention, the structure is composed of a main hard phase having a core structure composed of a core portion and a peripheral portion, and the remaining binder phase, and the binder phase has a hexagonal crystal structure. -The WC phase is present in such a form that the gap between the main hard phases is filled and the main hard phases are bonded to each other, or further, a fine precipitation dispersed hard phase comprising (W, Co) C having a cubic crystal structure. And the remainder is composed of a metallic binder phase mainly composed of Co, which is excellent in plastic deformation resistance even when used for high-speed cutting with high heat generation such as various steels and cast iron. It exhibits thermal shock resistance and fracture resistance, and exhibits excellent wear resistance over a long period of time.

つぎに、この発明のサーメット工具を実施例により具体的に説明する。   Next, the cermet tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも0.5〜2μmの平均粒径を有する、TiCN粉末、WC粉末、TaC粉末、NbC粉末、VC粉末、Co粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、200MPaの圧力でTNGA形状の圧粉体にプレス成形し、この圧粉体を、以下の焼結条件、すなわち、
(1)常温から表2に示す加熱温度まで、真空雰囲気中で加熱昇温し、
(2)真空雰囲気下で該加熱温度に、表2に示される時間(表2では、ガス導入時間(min)として示す)だけ加熱保持した後、
(3)表2に示す窒素と炭化水素の混合ガスを焼結炉内に導入し、同じく表2に示す窒素−炭化水素混合ガス雰囲気中(表2では、焼結雰囲気圧力(Torr)として示す)で、同じく表2に示す時間(表2では、加熱保持時間(min)として示す)だけ加熱保持を行い、
(4)上記焼結温度から、不活性ガスとしてArガスを用い、表2に示す冷却速度(℃/min)で室温にまで冷却する、
以上(1)〜(4)の工程からなる条件で焼結し、表3に示されるISO規格・TNGA160408のチップ形状で、切刃部分にR:0.07mmのホーニング加工を施した本発明サーメット工具1〜10をそれぞれ製造した。
TiCN powder, WC powder, TaC powder, NbC powder, VC powder, and Co powder, all having an average particle diameter of 0.5 to 2 μm, are prepared as raw material powders, and these raw material powders are blended as shown in Table 1. Compounded in the composition, wet mixed in a ball mill for 24 hours, dried, and then pressed into a TNGA-shaped green compact at a pressure of 200 MPa. The green compact was subjected to the following sintering conditions:
(1) From room temperature to the heating temperature shown in Table 2, the temperature is raised in a vacuum atmosphere.
(2) After heating and holding at the heating temperature in a vacuum atmosphere for the time shown in Table 2 (shown as gas introduction time (min) in Table 2),
(3) A mixed gas of nitrogen and hydrocarbons shown in Table 2 was introduced into the sintering furnace, and similarly shown in Table 2 as a nitrogen-hydrocarbon mixed gas atmosphere (in Table 2, shown as sintering atmosphere pressure (Torr)) ), And held for heating only for the time shown in Table 2 (shown as heating holding time (min) in Table 2),
(4) From the sintering temperature, using Ar gas as an inert gas, cooling to room temperature at a cooling rate (° C./min) shown in Table 2.
The cermet of the present invention, which is sintered under the conditions consisting of the above steps (1) to (4), is subjected to honing processing of R: 0.07 mm on the cutting edge portion in the ISO standard / TNGA160408 chip shape shown in Table 3 Tools 1-10 were produced respectively.

比較の目的で、表1で示される配合組成の圧粉体を、表4に示される種々の条件(例えば、焼結炉内の雰囲気ガスをN雰囲気あるいはAr雰囲気に変更、雰囲気ガス圧力を低下させる、ガス雰囲気中での加熱保持時間を長時間にする、冷却終了後に再加熱する等の条件)で焼結し、表5に示されるISO規格・TNGA160408のチップ形状で、切刃部分にR:0.07mmのホーニング加工を施した比較サーメット工具1〜10をそれぞれ製造した。 For the purpose of comparison, the green compact having the composition shown in Table 1 was changed to various conditions shown in Table 4 (for example, the atmosphere gas in the sintering furnace was changed to N 2 atmosphere or Ar atmosphere, and the atmosphere gas pressure was changed. The temperature is reduced, the heating and holding time in the gas atmosphere is extended, the reheating is performed after the cooling is completed), and the cutting edge portion is formed in the ISO standard / TNGA160408 chip shape shown in Table 5. R: Comparative cermet tools 1 to 10 subjected to honing of 0.07 mm were produced.

この結果得られた本発明サーメット工具1〜10および比較サーメット工具1〜10について、これを構成するサーメットの組織を走査型電子顕微鏡(SEM)で観察するとともに、また、結合相中に存在する各相の面積割合(但し、結合相の面積%を100%とした場合の面積割合)、結晶構造、形態を走査型電子顕微鏡を用いた電子線後方散乱回折装置(SEM−EBSD)で測定し、その測定結果をそれぞれ表3、5に示した。   For the cermet tools 1 to 10 and comparative cermet tools 1 to 10 obtained as a result, the structure of the cermet constituting the cermet tools 1 to 10 is observed with a scanning electron microscope (SEM), and each of the cermet tools present in the binder phase is observed. The area ratio of the phase (however, the area ratio when the area% of the binder phase is 100%), the crystal structure, and the morphology are measured with an electron beam backscattering diffractometer (SEM-EBSD) using a scanning electron microscope, The measurement results are shown in Tables 3 and 5, respectively.

つぎに、上記の本発明サーメット工具1〜10および比較サーメット工具1〜5,6〜10について、これをいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・S35Cの丸棒、
切削速度: 700 m/min、
切り込み: 0.5 mm、
送り: 0.08 mm/rev、
切削時間: 20 分、
の条件(切削条件Aという)での炭素鋼の湿式連続高速切削試験(通常の切削速度は、350m/min)、
被削材:JIS・SS330の丸棒、
切削速度: 900 m/min、
切り込み: 0.5 mm、
送り: 0.15 mm/rev、
切削時間: 25 分、
の条件(切削条件Bという)での軟鋼の湿式連続高速切削試験(通常の切削速度は、400m/min)、
被削材:JIS・FC250の丸棒、
切削速度: 800 m/min、
切り込み: 0.5 mm、
送り: 0.12 mm/rev、
切削時間: 12 分、
の条件(切削条件Cという)での鋳鉄の乾式連続高速切削試験(通常の切削速度は、350m/min)、
を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表6に示した。
Next, for the cermet tools 1 to 10 of the present invention and the comparative cermet tools 1 to 5 and 6 to 10, all of which are screwed to the tip of the tool steel tool with a fixing jig,
Work material: JIS / S35C round bar,
Cutting speed: 700 m / min,
Cutting depth: 0.5 mm,
Feed: 0.08 mm / rev,
Cutting time: 20 minutes,
Wet continuous high-speed cutting test (normal cutting speed is 350 m / min) of carbon steel under the conditions (referred to as cutting condition A),
Work material: JIS / SS330 round bar,
Cutting speed: 900 m / min,
Cutting depth: 0.5 mm,
Feed: 0.15 mm / rev,
Cutting time: 25 minutes,
Wet continuous high-speed cutting test (normal cutting speed is 400 m / min) of mild steel under the following conditions (referred to as cutting condition B),
Work material: JIS / FC250 round bar,
Cutting speed: 800 m / min,
Cutting depth: 0.5 mm,
Feed: 0.12 mm / rev,
Cutting time: 12 minutes,
A dry continuous high-speed cutting test of cast iron under the following conditions (referred to as cutting condition C) (normal cutting speed is 350 m / min),
In each cutting test, the flank wear width of the cutting edge was measured. The measurement results are shown in Table 6.

Figure 2009248237
Figure 2009248237

Figure 2009248237
Figure 2009248237

Figure 2009248237
Figure 2009248237

Figure 2009248237
Figure 2009248237

Figure 2009248237
Figure 2009248237

Figure 2009248237
Figure 2009248237

表3、5、6に示される結果から、本発明サーメット工具1〜10は、結合相中に、六方晶結晶構造を有する炭化タングステン(h−WC)相が2〜20面積%(但し、上記結合相の面積%を100%とした場合に、結合相中に占める面積割合)存在し、(あるいはさらに、立方晶結晶構造の(W,Co)Cからなる微細析出分散硬質相が存在し、)そして、特に、このh−WC相が、強靭な硬質相であって、しかも、h−WC相が、主体硬質相間の間隙を充填し、主体硬質相相互を結合するような形態で存在するため、サーメット工具の靭性、耐塑性変形性が大幅に改善される結果、各種鋼や鋳鉄などの高熱発生を伴う高速切削に用いた場合にも、すぐれた耐塑性変形性、耐熱衝撃性、耐欠損性を示すとともに、長期に亘ってすぐれた耐摩耗性を発揮するのに対して、比較サーメット工具1〜5においては、立方晶構造のη相のみが析出していることから、耐摩耗性には優れるものの、耐欠損性では劣り、一方、比較サーメット工具6〜10においては、立方晶構造の(W,Co)Cからなる微細析出分散硬質相の存在によって、耐摩耗性には優れるものの、耐熱衝撃性では劣り、いずれにしても、比較サーメット工具1〜10は、耐熱衝撃性、耐欠損性のいずれをも劣化させることなく耐摩耗性を向上させたものではなく、比較的短時間で使用寿命に至ることが明らかである。   From the results shown in Tables 3, 5, and 6, the cermet tools 1 to 10 of the present invention have a tungsten carbide (h-WC) phase having a hexagonal crystal structure in the binder phase in an amount of 2 to 20 area% (however, the above When the area% of the binder phase is 100%, the ratio of the area occupied in the binder phase is present (or, further, there is a fine precipitation dispersed hard phase composed of (W, Co) C having a cubic crystal structure, In particular, the h-WC phase is a tough hard phase, and the h-WC phase is present in a form that fills the gap between the main hard phases and bonds the main hard phases to each other. As a result, the toughness and plastic deformation resistance of cermet tools are greatly improved, and even when used for high-speed cutting with high heat generation such as various steels and cast iron, excellent plastic deformation resistance, thermal shock resistance, Abrasion resistance and long-lasting wear resistance In comparison cermet tools 1-5, only the cubic η phase is precipitated, so that the wear resistance is excellent, but the fracture resistance is inferior. In the cermet tools 6 to 10, although the wear resistance is excellent due to the presence of the fine precipitation-dispersed hard phase composed of (W, Co) C having a cubic structure, the thermal shock resistance is inferior. It is apparent that the tools 1 to 10 do not have improved wear resistance without deteriorating both thermal shock resistance and fracture resistance, and reach the service life in a relatively short time.

上述のように、この発明のサーメット工具は、各種の鋼や鋳鉄などの通常の条件での切削加工は勿論のこと、高熱発生を伴う厳しい切削条件である高速切削加工でもすぐれた耐塑性変形性、耐熱衝撃性、耐欠損性とともにすぐれた耐摩耗性を発揮し、使用寿命の延命化が実現され、その結果、切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the cermet tool of the present invention has excellent plastic deformation resistance not only in cutting processing under normal conditions such as various steels and cast iron, but also in high-speed cutting processing which is severe cutting conditions with high heat generation. Excellent heat resistance as well as thermal shock resistance and fracture resistance, and extended service life. As a result, it is possible to satisfy cutting and labor savings and cost reductions with sufficient satisfaction. It is.

本発明サーメット工具1において、h−WC相が、主体硬質相間の間隙を充填し、主体硬質相相互を結合するような形態で存在することを示す概略説明図である。In this invention cermet tool 1, it is a schematic explanatory drawing which shows that the h-WC phase exists in the form which fills the space | gap between main hard phases, and couple | bonds main hard phases.

Claims (2)

(a)重量%で、
炭化タングステン:20〜30%、
炭化タンタル、炭化ニオブおよび炭化バナジウムのうちの1種又は2種以上:5〜10%、
コバルト:10〜20%
炭窒化チタンおよび不可避不純物:残部、
の配合組成を有し、
(b)走査型電子顕微鏡による組織観察において、
チタン炭窒化物、チタンを主体とする炭窒化物またはチタンとM(ただし、Mは、タンタル、ニオブおよびバナジウムのうちの1種又は2種以上を示す)を主体とする炭窒化物からなる芯部と、チタンとタングステンとM(ただし、Mは、タンタル、ニオブおよびバナジウムのうちの1種又は2種以上を示す)を主体とする炭窒化物からなる周辺部で構成された有芯構造の主体硬質相:70〜95面積%、
残部が、結合相:30〜5面積%からなる組織構造を有し、
(c)上記結合相は、結合相の面積%を100%とした場合、2〜20面積%の面積割合の六方晶構造を有する炭化タングステン相と、残部がコバルトを主体とする金属結合相とからなる、
ことを特徴とする炭窒化チタン基サーメット製切削工具。
(A)% by weight
Tungsten carbide: 20-30%
One or more of tantalum carbide, niobium carbide and vanadium carbide: 5 to 10%,
Cobalt: 10-20%
Titanium carbonitride and inevitable impurities: balance,
Having a composition of
(B) In structure observation with a scanning electron microscope,
Titanium carbonitride, carbonitride mainly composed of titanium, or a core composed of carbonitride mainly composed of titanium and M (where M is one or more of tantalum, niobium and vanadium) A cored structure composed of a carbonitride mainly composed of a portion, titanium, tungsten, and M (where M represents one or more of tantalum, niobium, and vanadium). Main hard phase: 70-95 area%,
The balance has a structure consisting of a binder phase: 30-5 area%,
(C) The binder phase includes a tungsten carbide phase having a hexagonal crystal structure with an area ratio of 2 to 20 area% and a metal binder phase mainly composed of cobalt when the area% of the binder phase is 100%. Consist of,
A titanium carbonitride-based cermet cutting tool characterized by that.
請求項1記載の炭窒化チタン基サーメット製切削工具において、
前記(c)の結合相は、結合相の面積%を100%とした場合、2〜20面積%の面積割合の六方晶構造を有する炭化タングステン相と、1〜20面積%の面積割合の立方晶構造を有するタングステンとコバルトの複合炭化物からなる微細析出分散硬質相と、残部がコバルトを主体とする金属結合相とからなる、
ことを特徴とする請求項1記載の炭窒化チタン基サーメット製切削工具。
In the titanium carbonitride-based cermet cutting tool according to claim 1,
The binder phase (c) is composed of a tungsten carbide phase having a hexagonal crystal structure with an area ratio of 2 to 20 area% and a cubic with an area ratio of 1 to 20 area% when the area% of the binder phase is 100%. Consisting of a fine precipitation-dispersed hard phase composed of a composite carbide of tungsten and cobalt having a crystal structure, and a metal-bonded phase mainly composed of cobalt.
The titanium carbonitride-based cermet cutting tool according to claim 1.
JP2008098393A 2008-04-04 2008-04-04 Titanium carbonitride-based cermet cutting tool excellent in wear resistance Withdrawn JP2009248237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008098393A JP2009248237A (en) 2008-04-04 2008-04-04 Titanium carbonitride-based cermet cutting tool excellent in wear resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008098393A JP2009248237A (en) 2008-04-04 2008-04-04 Titanium carbonitride-based cermet cutting tool excellent in wear resistance

Publications (1)

Publication Number Publication Date
JP2009248237A true JP2009248237A (en) 2009-10-29

Family

ID=41309406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008098393A Withdrawn JP2009248237A (en) 2008-04-04 2008-04-04 Titanium carbonitride-based cermet cutting tool excellent in wear resistance

Country Status (1)

Country Link
JP (1) JP2009248237A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014515784A (en) * 2011-03-28 2014-07-03 エレメント、シックス、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング Cemented carbide material
JP2015203116A (en) * 2014-04-10 2015-11-16 三菱マテリアル株式会社 Carbonitride titanium-based cermet for chipsaw
CN107460389A (en) * 2016-06-03 2017-12-12 杨新跃 It is a kind of to prepare anti-sliding nail core composition and its method for preparing anti-sliding nail core
JPWO2019181791A1 (en) * 2018-03-20 2021-04-08 京セラ株式会社 Tools and cutting tools equipped with them
CN113182524A (en) * 2021-04-25 2021-07-30 赣州澳克泰工具技术有限公司 Titanium-based metal ceramic and manufacturing method thereof and cutting tool

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014515784A (en) * 2011-03-28 2014-07-03 エレメント、シックス、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング Cemented carbide material
JP2015203116A (en) * 2014-04-10 2015-11-16 三菱マテリアル株式会社 Carbonitride titanium-based cermet for chipsaw
CN107460389A (en) * 2016-06-03 2017-12-12 杨新跃 It is a kind of to prepare anti-sliding nail core composition and its method for preparing anti-sliding nail core
CN107460389B (en) * 2016-06-03 2019-06-14 杨新跃 A method of it preparing anti-sliding nail core composition and its is used to prepare anti-sliding nail core
JPWO2019181791A1 (en) * 2018-03-20 2021-04-08 京セラ株式会社 Tools and cutting tools equipped with them
JP7092867B2 (en) 2018-03-20 2022-06-28 京セラ株式会社 Tools and cutting tools equipped with them
CN113182524A (en) * 2021-04-25 2021-07-30 赣州澳克泰工具技术有限公司 Titanium-based metal ceramic and manufacturing method thereof and cutting tool

Similar Documents

Publication Publication Date Title
WO2011002008A1 (en) Cermet and coated cermet
WO2010104094A1 (en) Cermet and coated cermet
JP2009248237A (en) Titanium carbonitride-based cermet cutting tool excellent in wear resistance
JP5217417B2 (en) Titanium carbonitride-based cermet cutting tool with excellent wear resistance
JP5284684B2 (en) Super hard alloy
JP2004076049A (en) Hard metal of ultra-fine particles
JP6384098B2 (en) Titanium carbonitride-based cermet for chipsaw
JP2009066741A (en) Cutting tool made of wc-based cemented carbide excellent in chipping resistance
JP5273987B2 (en) Cermet manufacturing method
JP2012086297A (en) Wc-based cemented carbide cutting tool exercising superior chipping resistance and wear resistance in high speed intermittent cutting
JP7185844B2 (en) TiN-based sintered body and cutting tool made of TiN-based sintered body
JP5063129B2 (en) cermet
JP4172754B2 (en) TiCN-based cermet and method for producing the same
JP2012086298A (en) Cutting tool made of surface-coated wc-based cemented carbide exhibiting excellent defect resistance in high-speed intermittent cutting of steel
JP3318887B2 (en) Fine-grained cemented carbide and method for producing the same
JP6775694B2 (en) Composite sintered body
JP2011088253A (en) Cutting tool made of wc-based cemented carbide superior in thermal plastic deformation resistance and cutting tool made of surface-coated wc-based cemented carbide
JP7008906B2 (en) TiN-based sintered body and cutting tool made of TiN-based sintered body
JPS6020456B2 (en) High-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools
JPWO2020067138A1 (en) Surface-coated TiN-based cermet cutting tool with excellent chipping resistance due to the hard coating layer
JP7008249B2 (en) TiN-based sintered body and cutting tool made of TiN-based sintered body
JP2020033597A (en) TiN-BASED SINTERED BODY AND TiN-BASED SINTERED BODY-MADE CUTTING TOOL
WO2019159781A1 (en) Tin-based sintered body and cutting tool made of tin-based sintered body
JP2008156756A (en) TiCN CERMET
JP4510322B2 (en) Cemented carbide throwaway cutting tip that provides excellent wear resistance in high-speed cutting

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110607