JP2009066741A - Cutting tool made of wc-based cemented carbide excellent in chipping resistance - Google Patents

Cutting tool made of wc-based cemented carbide excellent in chipping resistance Download PDF

Info

Publication number
JP2009066741A
JP2009066741A JP2007240652A JP2007240652A JP2009066741A JP 2009066741 A JP2009066741 A JP 2009066741A JP 2007240652 A JP2007240652 A JP 2007240652A JP 2007240652 A JP2007240652 A JP 2007240652A JP 2009066741 A JP2009066741 A JP 2009066741A
Authority
JP
Japan
Prior art keywords
phase
cemented carbide
carbide
based cemented
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007240652A
Other languages
Japanese (ja)
Inventor
Toshiyuki Yanai
俊之 谷内
Tomonori Yasumi
智紀 安見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2007240652A priority Critical patent/JP2009066741A/en
Publication of JP2009066741A publication Critical patent/JP2009066741A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cutting tool made of WC-based cemented carbide, capable of achieving excellent chipping resistance in high-speed intermittent heavy cutting work in which high heat is generated, with large mechanical impact loads added repeatedly. <P>SOLUTION: The cutting tool made of surface-coated WC-based cemented carbide comprises a base member of WC-based cemented carbide having an average composition of 5-12% Co, 0.02-0.2% S, carbide-converted values of 1-5% TiC, 1-5% for one kind or two kinds of TaC and NbC, all in mass%, with WC for the rest. The inner side of the base member is substantially composed of a first hard phase comprising WC, a second hard phase comprising composite carbide solid solution and/or composite carbonitride solid solution of Ti, Ta and/or Nb and W, a dendritic carbosulfide precipitation phase, a binder phase, and unavoidable impurities. The surface side of the base member is composed of the first hard phase and the binder phase substantially, including less than 0.02% S. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、鋼や鋳鉄の切削加工、特に、高熱発生を伴い、切刃に対して繰り返し大きな機械的負荷・熱的衝撃がかかる高速断続重切削加工においても、WC基超硬合金からなる基体の内部組織中に析出する、樹枝状のTiおよび、TaおよびNbのうちのいずれか、または両方を含有する複合炭硫化物析出相[以下、(Ti,Ta/Nb)CS析出相で示す]が、WC基超硬合金基体中に発生したクラックの伝播進展を抑制することにより、すぐれた耐摩耗性と同時にすぐれた耐欠損性を発揮する表面被覆WC基超硬合金製切削工具(以下、被覆超硬工具という)に関するものである。   The present invention provides a substrate made of a WC-based cemented carbide even in cutting of steel or cast iron, particularly in high-speed intermittent heavy cutting that repeatedly generates a large mechanical load and thermal shock with high heat generation. A composite carbon sulfide precipitation phase containing one or both of dendritic Ti and Ta and Nb, which precipitates in the internal structure of the steel [hereinafter referred to as (Ti, Ta / Nb) CS precipitation phase] However, by suppressing the propagation of cracks generated in the WC-based cemented carbide substrate, a surface-coated WC-based cemented carbide cutting tool that exhibits excellent wear resistance and excellent fracture resistance (hereinafter referred to as the following) This is related to a coated carbide tool.

従来、WC基超硬合金からなる工具基体の表面に、少なくとも、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、窒酸化物層および炭窒酸化物層のうちの1種または2種以上からなるTi化合物層と、Al酸化物層とからなる硬質被覆層を蒸着形成した被覆超硬工具において、
(イ)WC基超硬合金からなる基体内部は、
WCからなる第1硬質相と、
TiとTaおよび/またはNbとWを主体金属成分とする複合炭化物固溶体および複合炭窒化物固溶体のうちの、いずれかまたは両方からなる第2硬質相と、
5〜12重量%のCoと0.2〜3重量%のCrを含有する結合相とで構成され、
(ロ)一方、WC基超硬合金からなる基体の基体表面から10〜50μmの幅の基体表面層は、
上記第2硬質相が存在せず、上記第1硬質相と結合相からなり、かつ、該結合相中には、基体内部のCo、Cr含有量との重量比で、それぞれ1.1〜1.5、1.2〜2.0のCoおよびCrが含有されている被覆超硬工具が知られ、そして、この被覆超硬工具を断続重切削加工に用いた場合に、すぐれた耐欠損性を発揮することが知られている。
特開2000−126905号公報
Conventionally, at least one of a Ti carbide layer, a nitride layer, a carbonitride layer, a carbonate layer, a nitride oxide layer, and a carbonitride oxide layer on the surface of a tool base made of a WC-based cemented carbide. Or in a coated carbide tool formed by vapor-depositing a hard coating layer composed of two or more Ti compound layers and an Al oxide layer,
(A) The inside of the substrate made of WC-based cemented carbide is
A first hard phase comprising WC;
A second hard phase composed of either or both of a composite carbide solid solution and a composite carbonitride solid solution containing Ti and Ta and / or Nb and W as main metal components;
Composed of a binder phase containing 5-12 wt% Co and 0.2-3 wt% Cr,
(B) On the other hand, the substrate surface layer having a width of 10 to 50 μm from the substrate surface of the substrate made of the WC-based cemented carbide is
The second hard phase does not exist, is composed of the first hard phase and a binder phase, and the binder phase contains 1.1 to 1 by weight ratio to the Co and Cr contents inside the substrate. Coated carbide tools containing Co, Cr of 0.5, 1.2 to 2.0 are known, and excellent fracture resistance when this coated carbide tool is used for intermittent heavy cutting It is known to exert.
JP 2000-126905 A

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに、高効率化、低コスト化の要求は強く、これに伴い、高送り、高切込み等の重切削加工も行われるようになってきたが、上記従来の被覆超硬工具を、より過酷な条件下での切削加工、即ち、高熱発生を伴うとともに、切刃部に極めて大きな繰り返しの機械的負荷・熱的衝撃が加わる高速断続重切削加工に用いた場合には、例えば、切刃稜線部に発生したクラックが伝播進展し、あるいは、工具基体中をクラックが貫通することによりチッピングや欠損が発生し、比較的短時間で使用寿命に至るのが現状である。   In recent years, the performance of cutting equipment has been remarkable. On the other hand, there are strong demands for labor saving and energy saving in cutting work, as well as high efficiency and low cost, and accordingly, heavy cutting such as high feed and high cutting. However, the above-mentioned conventional coated carbide tool is processed under severer conditions, that is, accompanied by high heat generation and extremely large mechanical load and heat on the cutting edge. When used for high-speed interrupted heavy cutting where a mechanical impact is applied, for example, the crack generated in the cutting edge ridge line propagates or progresses, or chipping and chipping occur due to the penetration of the crack in the tool base, At present, the service life is reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、被覆超硬工具を用いて高速断続重切削加工を行った場合にも、耐摩耗性と同時に優れた耐欠損性を発揮する被覆超硬工具について鋭意研究を行った結果、以下の知見を得た。   Therefore, from the above viewpoint, the present inventors have provided coated carbide that exhibits excellent wear resistance as well as wear resistance even when high-speed intermittent heavy cutting is performed using a coated carbide tool. As a result of earnest research on tools, the following knowledge was obtained.

(a)上記従来の被覆超硬工具(特許文献1参照)を、各種鋼や鋳鉄の通常の断続切削加工に用いた場合、すぐれた耐摩耗性、耐欠損性が発揮されるものの、より過酷な切削条件、例えば、高速条件下での断続重切削加工に用いた場合には、切刃稜線部に発生したクラックが工具基体中をも伝播進展し、さらに、このクラックが工具基体中を貫通してしまい、これが原因で、欠損やチッピングが発生するが、WC基超硬合金からなる工具基体(以下、超硬基体という)を焼結で製造するにあたり、特定の原料粉末を特定の配合割合で配合して得た圧粉体を、Sを1.5質量%以上含有する炭素が主成分のペーストを塗布した敷板に載置して焼結し、かつ、焼結後1200℃までの冷却速度を1.5〜3℃/minにコントロールした場合には、焼結により形成された超硬基体の内部(即ち、超硬基体(焼結体)表面から10〜50μmの範囲内の所定の幅より内部側)には、炭硫化物析出相((Ti,Ta/Nb)CS析出相)が樹枝状に析出した組織状態が得られ(図1参照)、一方、前記所定幅より焼結体の表面側には、上記炭硫化物析出相((Ti,Ta/Nb)CS析出相)の析出がなく、しかも、S含有量が0.02質量%未満である帯域が形成される(図2参照)こと。 (A) When the above conventional coated carbide tool (see Patent Document 1) is used for normal interrupted cutting of various steels and cast irons, although excellent wear resistance and fracture resistance are exhibited, it is more severe. When used for various cutting conditions such as intermittent heavy cutting under high-speed conditions, cracks generated at the edge of the cutting edge propagate and propagate through the tool base, and this crack penetrates through the tool base. This causes cracks and chipping, but when manufacturing a WC-based cemented carbide tool substrate (hereinafter referred to as a cemented carbide substrate) by sintering, a specific raw material powder is blended in a certain proportion. The green compact obtained by blending was placed on a base plate coated with a carbon-based paste containing S in an amount of 1.5% by mass or more, and cooled to 1200 ° C. after sintering. When the speed is controlled to 1.5-3 ° C / min In the inside of the cemented carbide substrate formed by sintering (that is, on the inner side of a predetermined width within a range of 10 to 50 μm from the surface of the cemented carbide substrate (sintered body)), a carbon sulfide precipitation phase ((Ti, Ta / Nb) CS precipitation phase) is obtained in a dendritic structure (see FIG. 1). On the other hand, the carbon sulfide precipitation phase ((Ti, There is no precipitation of Ta / Nb) CS precipitation phase), and a zone with an S content of less than 0.02% by mass is formed (see FIG. 2).

(b)そして、超硬基体の内部側と表面側で、上記のごとき異なった組織を有する超硬基体上に硬質被覆層を蒸着形成した被覆超硬工具は、高速断続重切削加工で、例え、被覆超硬工具にクラックが発生した場合であっても、超硬基体の内部に樹枝状(Ti,Ta/Nb)CS析出相が析出していることによってクラックの伝播進展が抑制されるため、切刃稜線部の欠損、チッピングの発生を防止することができ、一方、上記超硬基体の表面側には、(Ti,Ta/Nb)CS析出相がなく、しかも、S含有量が0.02質量%未満であるため超硬基体自体の耐摩耗性もすぐれ、さらに、超硬基体表面上には、例えば、Ti化合物層とAl酸化物層からなるそれ自体耐摩耗性にすぐれた硬質被覆層が蒸着形成されているために、十分な耐摩耗性も確保されること。 (B) A coated carbide tool in which a hard coating layer is formed by vapor deposition on a cemented carbide substrate having a different structure as described above on the inner side and the surface side of the cemented carbide substrate is, for example, a high-speed intermittent heavy cutting process. Even when cracks occur in the coated carbide tool, the propagation of cracks is suppressed by the precipitation of dendritic (Ti, Ta / Nb) CS precipitates inside the carbide substrate. In addition, it is possible to prevent the cutting edge ridge line portion from being chipped and chipping. On the other hand, there is no (Ti, Ta / Nb) CS precipitate phase on the surface side of the carbide substrate, and the S content is 0. Since it is less than 0.02% by mass, the carbide substrate itself has excellent wear resistance. Further, on the surface of the carbide substrate, for example, a hard material having excellent wear resistance itself, such as a Ti compound layer and an Al oxide layer. Sufficient wear resistance due to vapor deposition of coating layer It is also ensured.

(c)したがって、(Ti,Ta/Nb)CS析出相からなる樹枝状の炭硫化物を、超硬基体内部にのみ析出させた本発明の被覆超硬工具は、高熱発生を伴うとともに、切刃部に極めて大きな繰り返しの機械的負荷・熱的衝撃が加わる高速断続重切削加工に用いた場合であっても、すぐれた耐摩耗性とともに、すぐれた耐欠損性を示すようになること。 (C) Therefore, the coated carbide tool of the present invention in which the dendritic carbon sulfide composed of the (Ti, Ta / Nb) CS precipitate phase is precipitated only inside the carbide substrate is accompanied by high heat generation, Even when used for high-speed intermittent heavy cutting, where extremely large mechanical loads and thermal shocks are applied to the blade, it must exhibit excellent wear resistance and excellent fracture resistance.

この発明は、上記の知見に基づいてなされたものであって、
「(a)質量%で、
Co:5〜12%、
S:0.02〜0.2%
および、炭化物換算値で、
TiC:1〜5%、
TaCおよびNbCのうちの1種または2種:1〜5%、
WC:残り、
からなる平均組成を有する焼結体で構成されたWC基超硬合金基体の表面に、硬質被覆層を蒸着形成した表面被覆WC基超硬合金製切削工具において、
(b)断面で観察して、基体表面から10〜50μmの範囲内の所定の幅より内部側は、
WCからなる第1硬質相と、
TiとTaおよび/またはNbとWを主体金属成分とする複合炭化物固溶体および複合炭窒化物固溶体のうちの、いずれかまたは両方からなる第2硬質相と、
金属成分としてTiを含有し、さらに、TaおよびNbのうちのいずれかまたは両方を含有し、その金属成分と化合する非金属成分としてCおよびSを含有する樹枝状の炭硫化物析出相と、
結合相および不可避不純物からなる焼結体で構成され、
(c)基体表面から10〜50μmの範囲内の所定の幅より表面側は、
上記第1硬質相と結合相とからなり、かつ、S含有量が0.02質量%未満の帯域であり、上記第2硬質相と上記樹枝状の炭硫化物析出相は存在しない焼結体で構成されていること、
を特徴とする耐欠損性に優れた表面被覆WC基超硬合金製切削工具(被覆超硬工具)。」
に特徴を有するものである。
This invention has been made based on the above findings,
“(A)% by mass,
Co: 5-12%
S: 0.02-0.2%
And in carbide equivalent value,
TiC: 1-5%
One or two of TaC and NbC: 1 to 5%,
WC: The rest
In a surface-coated WC-based cemented carbide cutting tool in which a hard coating layer is vapor-deposited on the surface of a WC-based cemented carbide substrate composed of a sintered body having an average composition consisting of:
(B) When observed in a cross section, the inner side from the predetermined width within the range of 10 to 50 μm from the surface of the substrate is
A first hard phase comprising WC;
A second hard phase composed of either or both of a composite carbide solid solution and a composite carbonitride solid solution containing Ti and Ta and / or Nb and W as main metal components;
A dendritic carbon sulfide precipitation phase containing Ti as a metal component, further containing either or both of Ta and Nb, and containing C and S as non-metal components combined with the metal component;
It consists of a sintered body consisting of a binder phase and inevitable impurities,
(C) The surface side from the predetermined width within the range of 10 to 50 μm from the substrate surface is
A sintered body composed of the first hard phase and the binder phase and having an S content of less than 0.02% by mass, wherein the second hard phase and the dendritic carbon sulfide precipitation phase do not exist. Consist of
A surface-coated WC-based cemented carbide cutting tool (coated carbide tool) with excellent fracture resistance characterized by "
It has the characteristics.

この発明の被覆超硬工具について、以下に詳細に説明する。
(A)超硬基体の平均組成;
(a)WC
この発明の被覆超硬工具の工具基体である超硬基体は、例えば、
(イ)室温から焼結温度である1350〜1550℃までを100Pa以下の真空雰囲気中、1〜5℃/minの速度で昇温し、
(ロ)ついで、真空雰囲気中で、前記焼結温度に0.5〜2時間保持し、
(ハ)その後、上記焼結温度から1200℃までを1.5〜3℃/minの速度で徐冷する、
という焼結条件で製造することができる。
そして、上記焼結条件で製造された超硬基体(焼結体)において、その構成成分であるWCは第1硬質層を形成するとともに、Ti、Ta、Nb成分とともに複合炭化物固溶体、複合炭窒化物固溶体からなる第2硬質相を形成し、超硬基体の主として耐摩耗性向上に寄与する。
ただ、超硬基体中におけるWC含有割合が高くなりすぎると、結合相中のW成分の含有割合も高くなり、結合相自体の高温強度が低下するようになるため、超硬基体中のWC含有割合(平均組成)は、78〜93質量%(但し、炭化物換算値)とすることが望ましい。
The coated carbide tool of the present invention will be described in detail below.
(A) Average composition of the carbide substrate;
(A) WC
The carbide substrate that is the tool substrate of the coated carbide tool of the present invention is, for example,
(A) The temperature is raised from room temperature to 1350 to 1550 ° C., which is a sintering temperature, at a rate of 1 to 5 ° C./min in a vacuum atmosphere of 100 Pa or less
(B) Next, in a vacuum atmosphere, the sintering temperature is maintained for 0.5 to 2 hours,
(C) Thereafter, the sintering temperature is gradually cooled to 1200 ° C. at a rate of 1.5 to 3 ° C./min.
Can be produced under the sintering conditions.
In the cemented carbide substrate (sintered body) manufactured under the above-mentioned sintering conditions, WC as a constituent component forms a first hard layer, and a composite carbide solid solution, composite carbonitride together with Ti, Ta, and Nb components. A second hard phase composed of a solid solution is formed and contributes mainly to improvement of wear resistance of the cemented carbide substrate.
However, if the WC content ratio in the cemented carbide substrate is too high, the content ratio of the W component in the binder phase also increases, and the high-temperature strength of the binder phase itself decreases. The ratio (average composition) is desirably 78 to 93% by mass (however, in terms of carbide).

(b)TiC、TaC/NbC
TiC、TaCおよびNbCは、WC成分と同様、焼結時にCo主体の結合相中に固溶し、冷却時に、TiとTaおよび/またはNbとWを主体金属成分とする複合炭化物固溶体、複合炭窒化物固溶体を析出して第2硬質相を形成し、超硬基体の高温強度を向上させる作用を有するが、TiCの含有割合が1質量%未満、あるいは、TaCおよびNbCのうちの1種または2種の合計含有割合が1質量%未満では前記作用に所望の向上効果が得られず、一方、TiCの含有割合が5質量%を越えると、あるいは、TaCおよびNbCのうちの1種または2種の合計含有割合が5質量%を超えると、靭性が低下し、欠損が発生しやすくなることから、TiCの含有割合(平均組成)を1〜5質量%(但し、炭化物換算値)、また、TaCおよびNbCのうちの1種または2種の合計含有割合(平均組成)を1〜5質量%(但し、炭化物換算値)と、それぞれ定めた。
(B) TiC, TaC / NbC
TiC, TaC and NbC, like the WC component, are solid-solved in a binder phase mainly composed of Co at the time of sintering, and a composite carbide solid solution or composite charcoal containing Ti and Ta and / or Nb and W as main metal components at the time of cooling. The nitride solid solution is precipitated to form a second hard phase, and has an effect of improving the high temperature strength of the cemented carbide substrate. However, the TiC content is less than 1% by mass, or one of TaC and NbC or If the total content of the two types is less than 1% by mass, a desired improvement effect cannot be obtained in the above action. On the other hand, if the content of TiC exceeds 5% by mass, or one or two of TaC and NbC If the total content of the seeds exceeds 5% by mass, the toughness decreases and defects are likely to occur. Therefore, the content (average composition) of TiC is 1 to 5% by mass (however, in terms of carbide), , TaC and N 1 to 5 mass% of one or the total content of the (average composition) of C and (where carbides converted value) was determined, respectively.

(c)Co
Coには、焼結性を向上させ、結合相を形成して、超硬基体の強度を向上させる作用があるが、その含有割合が5質量%未満では所望の焼結性を確保することができず、一方、その含有割合が12質量%を越えると、摩耗が急激に進行するようなることから、その含有割合(平均組成)を5〜12質量%に定めた。
(C) Co
Co has the effect of improving the sinterability, forming a binder phase, and improving the strength of the cemented carbide substrate. However, if the content ratio is less than 5% by mass, the desired sinterability can be ensured. On the other hand, when the content ratio exceeds 12% by mass, wear proceeds rapidly, so the content ratio (average composition) is set to 5 to 12% by mass.

(d)S
超硬基体の構成成分としてのSは、基体の内部、即ち、超硬基体表面から10〜50μmの範囲内の所定の幅より内部側、に(Ti,Ta/Nb)CS析出相を樹枝状に析出し、そして、該炭硫化物析出相は、高速断続重切削加工で被覆超硬工具にクラックが発生したとしても、そのクラックの伝播進展を抑制するという作用を呈する。
しかし、Sの含有割合が0.02質量%未満では樹枝状析出物を形成しないため、クラックの伝播進展を抑制する効果がなく、一方、Sの含有割合が0.2質量%を超えると、超硬基体表面側にも(Ti,Ta/Nb)CS相が析出するようになり、その結果として超硬基体の耐摩耗性を低下させたり、あるいは、(Ti,Ta/Nb)CS析出相が凝集粗大化し、逆にクラック発生の起点となるので、Sの含有割合(平均組成)を0.02〜0.2質量%と定めた。
(D) S
S as a constituent component of the cemented carbide substrate is a dendritic (Ti, Ta / Nb) CS precipitate phase inside the substrate, that is, inside a predetermined width within a range of 10 to 50 μm from the surface of the carbide substrate. And even if a crack occurs in the coated cemented carbide tool by high-speed intermittent heavy cutting, the carbon sulfide precipitate phase exhibits an action of suppressing the propagation of the crack.
However, when the S content is less than 0.02% by mass, no dendritic precipitate is formed, so there is no effect of suppressing the propagation of cracks, while when the S content exceeds 0.2% by mass, The (Ti, Ta / Nb) CS phase is also precipitated on the surface of the carbide substrate, and as a result, the wear resistance of the carbide substrate is reduced, or the (Ti, Ta / Nb) CS precipitation phase. Is agglomerated and coarsened and, conversely, becomes a starting point for crack generation, the S content (average composition) was determined to be 0.02 to 0.2 mass%.

(B)超硬基体の表面側の組織、内部側の組織
超硬基体の表面側、即ち、超硬基体表面から10〜50μmの範囲内の所定の幅より表面側、は、実質的に、耐摩耗性を確保するための第1硬質層と結合相とから構成し、耐摩耗性を低下させることになる第2硬質相あるいは(Ti,Ta/Nb)CS相を存在させず、さらに、同じく耐摩耗性を低下させるS成分の含有割合を0.02質量%未満としなければならない。
一方、超硬基体表面から10〜50μmの範囲内の所定の幅より内部側は、第1硬質層、第2硬質相、(Ti,Ta/Nb)CS析出相および結合相で形成することにより、所定の耐摩耗性を保持したままで、所定の高温強度を維持し、さらに、高速断続重切削加工等により発生したクラックの伝播進展を、上記(Ti,Ta/Nb)CS析出相によって抑制し、もって、耐チッピング性、耐欠損性の向上を図る。
そして、上記のごとき、超硬基体の表面側の組織状態および内部側の組織状態は、例えば、超硬基体を焼結で製造するにあたり、Sを1.5質量%以上含有する炭素が主成分のペーストを塗布した敷板に焼結体を載置して焼結し、かつ、焼結後1200℃までの冷却速度を1.5〜3℃/minにコントロールすることによって得ることができる。
(B) Tissue on the surface side of the cemented carbide substrate, tissue on the inner side The surface side of the cemented carbide substrate, that is, the surface side from a predetermined width within a range of 10 to 50 μm from the surface of the cemented carbide substrate is substantially Consists of a first hard layer and a binder phase to ensure wear resistance, without the presence of a second hard phase or (Ti, Ta / Nb) CS phase that would reduce wear resistance, Similarly, the content of the S component that lowers the wear resistance must be less than 0.02% by mass.
On the other hand, the inner side from the predetermined width within the range of 10 to 50 μm from the surface of the carbide substrate is formed by the first hard layer, the second hard phase, the (Ti, Ta / Nb) CS precipitated phase and the binder phase. While maintaining the prescribed wear resistance, maintain the prescribed high-temperature strength, and also suppress the propagation of cracks generated by high-speed intermittent heavy cutting by the (Ti, Ta / Nb) CS precipitate phase. Therefore, chipping resistance and chipping resistance are improved.
As described above, the surface-side structure state and the internal-side structure state of the cemented carbide substrate are mainly composed of carbon containing 1.5% by mass or more of S in the production of the cemented carbide substrate by sintering. It can be obtained by placing a sintered body on a floor plate coated with the paste of No. 1 and sintering it, and controlling the cooling rate to 1200 ° C. after sintering to 1.5 to 3 ° C./min.

(C)超硬基体表面に蒸着形成する硬質被覆層
超硬基体の表面上には、高速断続重切削加工における、WC基超硬合金製切削工具の耐欠損性、耐摩耗性を高め、長期間の使用に亘ってすぐれた工具特性を発揮できるようにするため硬質被覆層を蒸着形成するが、硬質被覆層の種類、形成方法等については、既によく知られている各種の材質、方法を用いることができ、特に制限されるものではない。
例えば、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、窒酸化物層、炭窒酸化物層のうちの1種または2種以上からなるTi化合物層を下部層とし、また、Al酸化物層を上部層とする硬質被覆層を蒸着形成することができるが、この場合、硬質被覆層の全体層厚が3μm以下では、すぐれた耐摩耗性を発揮することができず、また、全体層厚が25μmを超えると、チッピング、欠損を発生しやすくなることから、硬質被覆層の全体層厚は3〜25μmとすることが望ましい。
(C) Hard coating layer formed by vapor deposition on the surface of the cemented carbide substrate On the surface of the cemented carbide substrate, the fracture resistance and wear resistance of the WC-based cemented carbide cutting tool in high-speed intermittent heavy cutting are improved. Hard coating layer is vapor-deposited so that excellent tool characteristics can be exhibited over the period of use, but for the kind and formation method of hard coating layer, various well-known materials and methods are used. It can be used and is not particularly limited.
For example, a Ti compound layer composed of one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer, nitride oxide layer, and carbonitride oxide layer is used as the lower layer. In this case, when the total thickness of the hard coating layer is 3 μm or less, excellent wear resistance cannot be exhibited. Further, if the total layer thickness exceeds 25 μm, chipping and defects are likely to occur. Therefore, the total layer thickness of the hard coating layer is preferably 3 to 25 μm.

この発明の被覆超硬工具は、これを構成する超硬基体の内部側に存在する樹枝状の(Ti,Ta/Nb)CS析出相が、切削加工時に発生したクラックの伝播進展を抑制する作用を有し、また、超硬基体の表面側は、(Ti,Ta/Nb)CS析出相が存在せずしかもS含有量が0.02質量%未満であるため、すぐれた耐摩耗性を有し、さらに、超硬基体上に蒸着形成された硬質被覆層自体もすぐれた耐摩耗性を有することから、高熱発生を伴うとともに、切刃に対して繰り返し大きな機械的負荷・熱的衝撃がかかる高速断続重切削加工に用いた場合においても、すぐれた耐摩耗性とともにすぐれた耐欠損性を発揮するものである。   In the coated carbide tool of the present invention, the dendritic (Ti, Ta / Nb) CS precipitation phase present on the inner side of the cemented carbide substrate constituting the same suppresses the propagation of cracks generated during cutting. In addition, the surface side of the cemented carbide substrate has no (Ti, Ta / Nb) CS precipitated phase and has an S content of less than 0.02% by mass, and thus has excellent wear resistance. Furthermore, since the hard coating layer itself formed by vapor deposition on the carbide substrate has excellent wear resistance, it is accompanied by high heat generation, and a large mechanical load and thermal shock are repeatedly applied to the cutting edge. Even when used in high-speed intermittent heavy cutting, it exhibits excellent wear resistance as well as excellent fracture resistance.

つぎに、この発明の切削工具を実施例により具体的に説明する。   Next, the cutting tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも0.5〜2μmの平均粒径を有する、Co粉末、TiC粉末、TaC粉末、NbC粉末、WC粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を、Sを2.1質量%含有した炭素粉末をメタノールに溶いてペースト状にしたものを塗布した敷板上に載置し、以下の焼結条件、すなわち、
(a)室温から1350〜1550℃の範囲の所定の焼結温度までの昇温を、100Pa以下の真空雰囲気中、2℃/min.の速度で昇温し、
(b)前記焼結温度に1.5時間保持を100Pa以下の真空雰囲気で行い、
(c)上記焼結温度から1200℃までを2℃/minの速度で徐冷する、
以上(a)〜(c)の工程からなる条件で焼結し、表2に示される平均組成をもつISO規格・CNMG120408のチップ形状で、切刃部分にR:0.07mmのホーニング加工を施した本発明超硬基体1〜10をそれぞれ製造した。
Co powder, TiC powder, TaC powder, NbC powder, and WC powder, all having an average particle diameter of 0.5 to 2 μm, are prepared as raw material powders, and these raw material powders are blended in the composition shown in Table 1. The mixture was wet mixed in a ball mill for 24 hours, dried, and pressed into a green compact at a pressure of 98 MPa. This green compact was dissolved in carbon powder containing 2.1% by mass of S in methanol to give a paste. Placed on the coated base plate, the following sintering conditions, that is,
(A) The temperature is raised from room temperature to a predetermined sintering temperature in the range of 1350 to 1550 ° C. in a vacuum atmosphere of 100 Pa or less at 2 ° C./min. The temperature is increased at a rate of
(B) Holding at the sintering temperature for 1.5 hours in a vacuum atmosphere of 100 Pa or less,
(C) Slow cooling from the sintering temperature to 1200 ° C. at a rate of 2 ° C./min.
Sintering is performed under the conditions consisting of the steps (a) to (c) above, and an ISO standard / CNMG120408 chip shape having the average composition shown in Table 2 is applied, and the cutting edge portion is subjected to a honing process of R: 0.07 mm. The cemented carbide substrates 1 to 10 of the present invention were produced.

また、比較の目的で、表1に示される配合組成の圧粉体を、S含有のない敷板に載置し、上記焼結条件(c)の冷却速度を5℃/min以上の急冷とした以外は、上記実施例と実質的に同一の条件で、表3に示される平均組成をもつ比較超硬基体1〜10をそれぞれ製造した。   In addition, for comparison purposes, the green compact having the composition shown in Table 1 was placed on a base plate not containing S, and the cooling rate of the sintering condition (c) was rapidly cooled to 5 ° C./min or more. Except for the above, comparative carbide substrates 1 to 10 having the average composition shown in Table 3 were produced under substantially the same conditions as in the above examples.

この結果得られた本発明超硬基体1〜10および比較超硬基体1〜10について、これを構成する超硬基体の内部側、表面側の炭硫化物の析出状態、超硬基体の表面側における第2硬質相の有無、S含有量をエネルギー分散型X線分析装置(EDS)で測定し、その測定結果をそれぞれ表2、3に示した。   With respect to the obtained cemented carbide substrates 1 to 10 and comparative cemented carbide substrates 1 to 10 obtained as a result, the inside of the cemented carbide substrate constituting this, the precipitation state of carbon sulfide on the surface side, the surface side of the cemented carbide substrate The presence or absence of the second hard phase and the S content were measured with an energy dispersive X-ray analyzer (EDS), and the measurement results are shown in Tables 2 and 3, respectively.

ついで、これらの本発明超硬基体1〜10および比較超硬基体1〜10のそれぞれを、通常の化学蒸着装置に装入し、表4(表4中のl−TiCNは特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される条件にて、表5に示される目標層厚のTi化合物層およびAl酸化物層からなる硬質被覆層を蒸着形成することにより、本発明被覆超硬工具1〜10および比較被覆超硬工具1〜10をそれぞれ製造した。   Next, each of the superhard substrates 1 to 10 of the present invention and the comparative superhard substrates 1 to 10 were charged into a normal chemical vapor deposition apparatus. Table 4 (l-TiCN in Table 4 is disclosed in JP-A-6-8010). Table 5 shows the conditions for forming a TiCN layer having a vertically grown crystal structure described in the publication No., and the other conditions for forming a normal granular crystal structure. The coated carbide tools 1 to 10 of the present invention and the comparative coated carbide tools 1 to 10 were produced by vapor-depositing a hard coating layer composed of a Ti compound layer and an Al oxide layer having the target layer thicknesses shown.

つぎに、上記の本発明被覆超硬工具1〜10および比較被覆超硬工具1〜10について、これをいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・SCM440の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 300 m/min、
切り込み: 2.0 mm、
送り: 0.8 mm/rev、
切削時間: 5 分、
の条件(切削条件Aという)での合金鋼の乾式高速断続高送り切削試験(通常の切削速度および送りは、それぞれ、150m/min、0.3mm/rev)、
被削材:JIS・S20Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度: 400 m/min、
切り込み: 6.0 mm、
送り: 0.4 mm/rev、
切削時間: 5 分、
の条件(切削条件Bという)での炭素鋼の乾式高速断続高切込み切削試験(通常の切削速度および切込みは、それぞれ、200m/min、3.0mm)、
被削材:JIS・FC300の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 400 m/min、
切り込み: 3.0 mm、
送り: 0.4 mm/rev、
切削時間: 5 分、
の条件(切削条件Cという)での鋳鉄の乾式高速断続高送り・高切込み切削試験(通常の切削速度、送りおよび切り込みは、それぞれ、200m/min、0.2mm/rev、1.5mm、)、
を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表6に示した。
Next, for the above-described coated carbide tools 1 to 10 and comparative coated carbide tools 1 to 10 above, all of them are screwed to the tip of the tool steel tool with a fixing jig,
Work material: JIS · SCM440 lengthwise equidistant 4 vertical grooved round bar,
Cutting speed: 300 m / min,
Cutting depth: 2.0 mm,
Feed: 0.8 mm / rev,
Cutting time: 5 minutes,
Dry high-speed intermittent high-feed cutting test of alloy steel under the following conditions (referred to as cutting condition A) (normal cutting speed and feed are 150 m / min and 0.3 mm / rev, respectively)
Work material: JIS / S20C lengthwise equidistant round bars with 4 vertical grooves,
Cutting speed: 400 m / min,
Cutting depth: 6.0 mm,
Feed: 0.4 mm / rev,
Cutting time: 5 minutes,
Of carbon steel under the above conditions (referred to as cutting conditions B), high-speed intermittent high-cut cutting test (normal cutting speed and cutting are 200 m / min and 3.0 mm, respectively),
Work material: JIS / FC300 lengthwise equidistant 4 bars with vertical grooves,
Cutting speed: 400 m / min,
Cutting depth: 3.0 mm,
Feed: 0.4 mm / rev,
Cutting time: 5 minutes,
Cast iron dry high-speed intermittent high-feed / high-cut cutting test under normal conditions (referred to as cutting condition C) (normal cutting speed, feed and cutting are 200 m / min, 0.2 mm / rev, 1.5 mm, respectively) ,
In each cutting test, the flank wear width of the cutting edge was measured. The measurement results are shown in Table 6.

Figure 2009066741
Figure 2009066741

Figure 2009066741
Figure 2009066741

Figure 2009066741
Figure 2009066741

Figure 2009066741
Figure 2009066741

Figure 2009066741
Figure 2009066741

Figure 2009066741
Figure 2009066741

表2、3、6に示される結果から、本発明被覆超硬工具1〜10は、これを構成する超硬基体の断面で観察して、特に、表面から10〜50μmの範囲内の所定の幅より内部側に、(Ti,Ta/Nb)CS析出相が、樹枝状に析出し(図1)、また、表面から10〜50μmの範囲内の所定の幅より表面側は、第2硬質相および(Ti,Ta/Nb)CS析出相がなく、また、S含有量が0.02%未満の帯域である(図2)ことから、高熱発生を伴うとともに、切刃に対して繰り返し大きな機械的負荷・熱的衝撃がかかる高速断続重切削加工においても、すぐれた耐摩耗性とすぐれた耐欠損性を発揮するのに対して、比較被覆超硬工具1〜10においては、これを構成する超硬基体の内部側にクラックの伝播進展を防止する樹枝状(Ti,Ta/Nb)CS析出相が存在しない(図3)ため、欠損・チッピングの発生により、比較的短時間で使用寿命に至ることが明らかである。   From the results shown in Tables 2, 3, and 6, the coated carbide tools 1 to 10 of the present invention are observed in a section of the cemented carbide substrate constituting the same, and in particular, a predetermined range of 10 to 50 μm from the surface. The (Ti, Ta / Nb) CS precipitate phase is precipitated in a dendritic shape on the inner side from the width (FIG. 1), and the second hard side on the surface side from a predetermined width within a range of 10 to 50 μm from the surface. Phase and (Ti, Ta / Nb) CS precipitate phase, and the S content is less than 0.02% of the zone (FIG. 2). Even in high-speed intermittent heavy machining with mechanical loads and thermal shocks, it exhibits excellent wear resistance and excellent fracture resistance, whereas the comparative coated carbide tools 1 to 10 constitute this. Dendritic structure (Ti, which prevents the propagation of cracks to the inner side of the cemented carbide substrate Since there is no Ta / Nb) CS precipitate phase (FIG. 3), it is apparent that the service life is reached in a relatively short time due to the occurrence of defects and chipping.

上述のように、この発明の被覆超硬工具は、各種の鋼や鋳鉄などの通常の条件での切削加工は勿論のこと、高熱発生を伴い、かつ、切刃に対して繰り返し大きな機械的負荷・熱的衝撃がかかる高速断続重切削加工でもすぐれた耐摩耗性とともにすぐれた耐欠損性を発揮し、切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated carbide tool of the present invention has high heat generation as well as cutting under normal conditions such as various steels and cast iron, and is repeatedly subjected to a large mechanical load on the cutting edge. -It exhibits excellent wear resistance and excellent fracture resistance even in high-speed intermittent heavy cutting that is subject to thermal shock, and can fully satisfy the labor saving and energy saving of cutting work and further cost reduction.

本発明被覆超硬工具の超硬基体内部側における樹枝状(Ti,Ta/Nb)CS析出相の分布状況を示す金属組織写真(エッチング液:村上氏試薬、倍率:1000倍)である。It is a metallographic photograph (etching solution: Murakami reagent, magnification: 1000 times) showing a distribution state of dendritic (Ti, Ta / Nb) CS precipitation phase on the inside of the carbide substrate of the coated carbide tool of the present invention. 本発明被覆超硬工具の超硬基体表面側においては樹枝状(Ti,Ta/Nb)CS析出相と第2硬質相が存在しないことを示す金属組織写真(エッチング液:村上氏試薬、倍率:1000倍)である。Metal structure photograph showing that dendritic (Ti, Ta / Nb) CS precipitation phase and second hard phase do not exist on the surface of the carbide substrate of the coated carbide tool of the present invention (etching solution: Murakami reagent, magnification: 1000 times). 比較被覆超硬工具の超硬基体内部側を示す金属組織写真(エッチング液:村上氏試薬、倍率:1000倍)である。It is a metal structure photograph (etching liquid: Mr. Murakami reagent, magnification: 1000 times) showing the inside of the carbide substrate of the comparative coated carbide tool.

Claims (1)

(a)質量%で、
Co:5〜12%、
S:0.02〜0.2%
および、炭化物換算値で、
TiC:1〜5%、
TaCおよびNbCのうちの1種または2種:1〜5%、
WC:残り、
からなる平均組成を有する焼結体で構成されたWC基超硬合金基体の表面に、硬質被覆層を蒸着形成した表面被覆WC基超硬合金製切削工具において、
(b)断面で観察して、基体表面から10〜50μmの範囲内の所定の幅より内部側は、
WCからなる第1硬質相と、
TiとTaおよび/またはNbとWを主体金属成分とする複合炭化物固溶体および複合炭窒化物固溶体のうちの、いずれかまたは両方からなる第2硬質相と、
金属成分としてTiを含有し、さらに、TaおよびNbのうちのいずれかまたは両方を含有し、その金属成分と化合する非金属成分としてCおよびSを含有する樹枝状の炭硫化物析出相と、
結合相および不可避不純物からなる焼結体で構成され、
(c)基体表面から10〜50μmの範囲内の所定の幅より表面側は、
上記第1硬質相と結合相とからなり、かつ、S含有量が0.02質量%未満の帯域であり、上記第2硬質相と上記樹枝状の炭硫化物析出相は存在しない焼結体で構成されていること、
を特徴とする耐欠損性に優れた表面被覆WC基超硬合金製切削工具。
(A) In mass%,
Co: 5-12%
S: 0.02-0.2%
And in carbide equivalent value,
TiC: 1-5%
One or two of TaC and NbC: 1 to 5%,
WC: The rest
In a surface-coated WC-based cemented carbide cutting tool in which a hard coating layer is vapor-deposited on the surface of a WC-based cemented carbide substrate composed of a sintered body having an average composition consisting of:
(B) When observed in a cross section, the inner side from the predetermined width within the range of 10 to 50 μm from the surface of the substrate is
A first hard phase comprising WC;
A second hard phase composed of either or both of a composite carbide solid solution and a composite carbonitride solid solution containing Ti and Ta and / or Nb and W as main metal components;
A dendritic carbon sulfide precipitation phase containing Ti as a metal component, further containing either or both of Ta and Nb, and containing C and S as non-metal components combined with the metal component;
It consists of a sintered body consisting of a binder phase and inevitable impurities,
(C) The surface side from the predetermined width within the range of 10 to 50 μm from the substrate surface is
A sintered body composed of the first hard phase and the binder phase and having an S content of less than 0.02% by mass, wherein the second hard phase and the dendritic carbon sulfide precipitation phase do not exist. Consist of
A surface-coated WC-based cemented carbide cutting tool with excellent fracture resistance characterized by
JP2007240652A 2007-09-18 2007-09-18 Cutting tool made of wc-based cemented carbide excellent in chipping resistance Withdrawn JP2009066741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007240652A JP2009066741A (en) 2007-09-18 2007-09-18 Cutting tool made of wc-based cemented carbide excellent in chipping resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007240652A JP2009066741A (en) 2007-09-18 2007-09-18 Cutting tool made of wc-based cemented carbide excellent in chipping resistance

Publications (1)

Publication Number Publication Date
JP2009066741A true JP2009066741A (en) 2009-04-02

Family

ID=40603540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007240652A Withdrawn JP2009066741A (en) 2007-09-18 2007-09-18 Cutting tool made of wc-based cemented carbide excellent in chipping resistance

Country Status (1)

Country Link
JP (1) JP2009066741A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011131318A (en) * 2009-12-24 2011-07-07 Kyocera Corp Cutting tool
CN102220531A (en) * 2011-05-31 2011-10-19 武汉新科冶金设备制造有限公司 Metal-ceramic tool bit material of reamer for molten steel outlet in convertor steelmaking
CN102220532A (en) * 2011-05-24 2011-10-19 苏州新锐硬质合金有限公司 Extra-coarse crystal grain carbide alloy material used for cutting pick or road excavation teeth, and its preparation method
CN102994853A (en) * 2012-11-30 2013-03-27 株洲普瑞克硬质合金有限公司 Hard alloy raw material, hard alloy for cutting tool as well as preparation method of hard alloy
CN105715266A (en) * 2016-01-29 2016-06-29 柳州市安龙机械设备有限公司 Mine hard alloy cutting pick
WO2019123989A1 (en) * 2017-12-19 2019-06-27 日立金属株式会社 Powder material, powder material for additive manufacturing, and method for producing powder material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011131318A (en) * 2009-12-24 2011-07-07 Kyocera Corp Cutting tool
CN102220532A (en) * 2011-05-24 2011-10-19 苏州新锐硬质合金有限公司 Extra-coarse crystal grain carbide alloy material used for cutting pick or road excavation teeth, and its preparation method
CN102220531A (en) * 2011-05-31 2011-10-19 武汉新科冶金设备制造有限公司 Metal-ceramic tool bit material of reamer for molten steel outlet in convertor steelmaking
CN102994853A (en) * 2012-11-30 2013-03-27 株洲普瑞克硬质合金有限公司 Hard alloy raw material, hard alloy for cutting tool as well as preparation method of hard alloy
CN105715266A (en) * 2016-01-29 2016-06-29 柳州市安龙机械设备有限公司 Mine hard alloy cutting pick
WO2019123989A1 (en) * 2017-12-19 2019-06-27 日立金属株式会社 Powder material, powder material for additive manufacturing, and method for producing powder material
JPWO2019123989A1 (en) * 2017-12-19 2020-11-19 日立金属株式会社 Powder material, powder material for additional manufacturing, and method of manufacturing powder material
US11713496B2 (en) 2017-12-19 2023-08-01 Proterial, Ltd. Powder material, powder material for additive manufacturing, and method for producing powder material

Similar Documents

Publication Publication Date Title
KR102326622B1 (en) Surface-coated cutting tool with excellent chipping resistance and wear resistance
JP5328653B2 (en) Ti-based cermet, coated cermet and cutting tool
JP5838769B2 (en) Surface coated cutting tool
JP2014128837A (en) Surface-coated cutting tool with hard coating layer exerting excellent anti-chipping properties
JP2009066741A (en) Cutting tool made of wc-based cemented carbide excellent in chipping resistance
JP5029825B2 (en) Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high speed heavy cutting
WO2016084939A1 (en) Surface-coated cutting tool with excellent chipping resistance and wear resistance
JP3972299B2 (en) Surface coated cermet cutting tool with excellent chipping resistance in high speed heavy cutting
JP2017159409A (en) Surface-coated cutting tool exerting excellent wear resistance
JP2009154224A (en) Titanium carbonitride based cermet cutting tool excellent in wear resistance
JP5023896B2 (en) Surface coated cutting tool
JP2012192480A (en) Surface-coated cutting tool with hard coating layer for exhibiting excellent abnormal damage resistance
JP5561607B2 (en) Surface-coated WC-based cemented carbide insert
JP2012086298A (en) Cutting tool made of surface-coated wc-based cemented carbide exhibiting excellent defect resistance in high-speed intermittent cutting of steel
JP2000126905A (en) Surface-covered tungsten carbide group cemented carbide cutting tool excellent in chipping resistance
JP4210930B2 (en) Surface-coated throw-away tip that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP5613888B2 (en) Surface-coated WC-based cemented carbide insert
JP5088481B2 (en) Surface coated cutting tool with excellent wear resistance with hard coating layer in heavy cutting
JP4210931B2 (en) Surface-coated throw-away tip that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP2012143829A (en) Surface-coated wc-based cemented carbide cutting tool
JP5838805B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP4235904B2 (en) Surface-coated cutting tool with excellent wear resistance with a hard coating layer in high-speed cutting
JP2008307622A (en) Cutting tool made of titanium carbonitride base cermet having excellent chipping resistance
JP2016064470A (en) Surface coat cutting tool excellent in chipping resistance and wear resistance
JP2011177830A (en) Surface-coated wc-based cemented carbide cutting tool

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20101207