JP5838805B2 - Surface coated cutting tool with excellent chipping resistance due to hard coating layer - Google Patents

Surface coated cutting tool with excellent chipping resistance due to hard coating layer Download PDF

Info

Publication number
JP5838805B2
JP5838805B2 JP2011287740A JP2011287740A JP5838805B2 JP 5838805 B2 JP5838805 B2 JP 5838805B2 JP 2011287740 A JP2011287740 A JP 2011287740A JP 2011287740 A JP2011287740 A JP 2011287740A JP 5838805 B2 JP5838805 B2 JP 5838805B2
Authority
JP
Japan
Prior art keywords
ticn
layer
fine
particle size
fine ticn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011287740A
Other languages
Japanese (ja)
Other versions
JP2013136114A (en
Inventor
翔 龍岡
翔 龍岡
直之 岩崎
直之 岩崎
長田 晃
晃 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2011287740A priority Critical patent/JP5838805B2/en
Priority to CN201210549776.XA priority patent/CN103182537B/en
Publication of JP2013136114A publication Critical patent/JP2013136114A/en
Application granted granted Critical
Publication of JP5838805B2 publication Critical patent/JP5838805B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、高熱発生を伴うとともに、切れ刃に断続的・衝撃的負荷が作用する各種の鋼や鋳鉄の高速断続切削加工において、硬質被覆層がすぐれた耐チッピング性を備えることにより、長期の使用に亘ってすぐれた切削性能を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   In the present invention, high-speed intermittent cutting of various steels and cast irons with high heat generation and intermittent / impact loads acting on the cutting edge, the hard coating layer has excellent chipping resistance, which makes it possible to The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent cutting performance over use.

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された工具基体(以下、これらを総称して工具基体という)の表面に、
(a)下部層が、いずれも化学蒸着形成された、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなるTi化合物層、
(b)上部層が、化学蒸着形成された酸化アルミニウム層、
以上(a)および(b)で構成された硬質被覆層を形成してなる被覆工具が知られており、この被覆工具は、各種の鋼や鋳鉄などの切削加工に用いられていることが知られている。
ただ、前記被覆工具は、切れ刃に大きな負荷がかかる切削条件では、チッピング等を発生しやすく、工具寿命が短命であるという問題があるため、これを解消するために、従来からいくつかの提案がなされている。
Conventionally, the surface of a tool substrate (hereinafter collectively referred to as a tool substrate) generally composed of tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet. In addition,
(A) Ti carbide (hereinafter referred to as TiC) layer, nitride (hereinafter also referred to as TiN) layer, carbonitride (hereinafter referred to as TiCN) layer formed by chemical vapor deposition of the lower layers. A Ti compound layer consisting of one or more of a carbon oxide (hereinafter referred to as TiCO) layer and a carbonitride oxide (hereinafter referred to as TiCNO) layer,
(B) the upper layer is an aluminum oxide layer formed by chemical vapor deposition;
A coated tool formed by forming a hard coating layer composed of (a) and (b) above is known, and this coated tool is known to be used for cutting various steels and cast irons. It has been.
However, the above-mentioned coated tool has a problem that chipping or the like is likely to occur under a cutting condition in which a heavy load is applied to the cutting edge, and the tool life is short-lived. Has been made.

例えば、特許文献1には、WC基超硬合金基体の表面に形成される硬質被覆層を、TiCNの単層または2層以上の積層で構成すると共に、これら構成層のうちの1層または2層以上を、(a)粒状結晶組織から縦長成長結晶組織へ変る結晶構造、(b)粒状結晶組織から縦長成長結晶組織へ、さらにこの縦長成長結晶組織から粒状結晶組織へ変る結晶構造、(c)縦長成長結晶組織から粒状結晶組織へ変る結晶構造のうちのいずれか、または2種以上の結晶構造で構成した耐チッピング性にすぐれる表面被覆WC基超硬合金製切削工具が開示されている。   For example, Patent Document 1 discloses that a hard coating layer formed on the surface of a WC-based cemented carbide substrate is composed of a single layer of TiCN or a laminate of two or more layers, and one or two of these constituent layers. (A) a crystal structure that changes from a granular crystal structure to a vertically grown crystal structure, (b) a crystal structure that changes from a granular crystal structure to a vertically grown crystal structure, and further changes from this vertically grown crystal structure to a granular crystal structure, (c ) Disclosed is a surface-coated WC-based cemented carbide cutting tool having excellent chipping resistance, which is composed of one of a crystal structure changing from a vertically grown crystal structure to a granular crystal structure, or two or more crystal structures. .

また、特許文献2には、超硬合金またはサーメットからなる基体表面にセラミック皮膜を形成した表面被覆切削工具であって、セラミック被覆が柱状晶のTiCN層を必ず含む単層または多層で構成され、TiCN層の上端からTiCN層の厚さの1/5の距離の位置におけるTiCN柱状結晶粒の水平方向の平均粒径d1と、TiCN層の下端からTiCN層の厚さの2/5の距離の位置におけるTiCN柱状結晶粒の水平方向の平均粒径d2の比が1≦d1/d2≦1.3である耐摩耗性、耐欠損性の両方にすぐれ、断続切削を含む長時間の切削加工に耐える表面被覆切削工具が開示されている。   Patent Document 2 discloses a surface-coated cutting tool in which a ceramic film is formed on the surface of a substrate made of a cemented carbide or cermet, and the ceramic coating is constituted by a single layer or a multilayer including a columnar TiCN layer. The horizontal average grain diameter d1 of the TiCN columnar crystal grains at a position that is 1/5 of the thickness of the TiCN layer from the upper end of the TiCN layer, and the distance of 2/5 of the thickness of the TiCN layer from the lower end of the TiCN layer. The ratio of the horizontal average grain size d2 of the TiCN columnar crystal grains at the position is 1 ≦ d1 / d2 ≦ 1.3, which is excellent in both wear resistance and fracture resistance, and for long-time cutting including intermittent cutting. A durable surface coated cutting tool is disclosed.

さらに、特許文献3には、基体の表面に少なくとも炭窒化チタン層と、その上層として酸化アルミニウム層を含む硬質被覆層を有する表面被覆切削工具であって、表面被覆切削工具の表面に硬質球を接触させた状態で硬質球がころがりながら自転するように表面被覆切削工具を局所的に摩耗させた摩耗痕の中心に基体が露出するように硬質被覆層を球曲面に摩耗させるカロテストの摩耗痕を観察した際に、摩耗痕の中心に存在する露出した基体の周囲に観察される炭窒化チタン層が、クラック幅がゼロまたは小さい下部組織と、下部組織の周囲に観察されて下部組織よりもクラック幅が大きい上部組織が存在する構成とした、断続切削等の工具切刃に強い衝撃がかかるような過酷な切削条件においても、TiCN層とAl層との間で剥離が発生することなく硬質被覆層の密着性を高めることができ、すぐれた耐欠損性および耐摩耗性を有する長寿命の切削工具が開示されている。 Further, Patent Document 3 discloses a surface-coated cutting tool having a hard coating layer including at least a titanium carbonitride layer on the surface of a substrate and an aluminum oxide layer as an upper layer, and hard spheres are formed on the surface of the surface-coated cutting tool. In the state of contact, the hard ball rolls around the spherical surface so that the substrate is exposed in the center of the wear mark where the surface-coated cutting tool is locally worn so that the hard ball rotates while rolling. When observed, the titanium carbonitride layer observed around the exposed substrate at the center of the wear scar is observed in the lower structure where the crack width is zero or smaller, and in the periphery of the lower structure, and cracked more than the lower structure. width is configured to large upper tissue is present, even in severe cutting conditions such as a strong impact according to the tool cutting edge, such as intermittent cutting, between the TiCN layer and the Al 2 O 3 layer It is possible to increase the adhesion of the hard coating layer, cutting tool life with excellent chipping resistance and wear resistance is disclosed without release occurs.

特開平6−8009号公報Japanese Patent Laid-Open No. 6-8009 特開平10−109206号公報JP-A-10-109206 特開2005−186221号公報JP 2005-186221 A

近年の切削加工における省力化および省エネ化の要求は強く、これに伴い、被覆工具は一段と過酷な条件下で使用されるようになってきているが、例えば、前記特許文献1乃至3に示される被覆工具においても、高熱発生を伴うとともに、より一段と切れ刃に断続的・衝撃的負荷が作用する高速断続切削加工に用いられた場合には、下部層の熱伝導率が高く、熱遮蔽効果が十分ではないために、切削加工時の高負荷によって切れ刃にチッピング、欠損が発生しやすく、その結果、比較的短時間で使用寿命に至るのが現状である。   In recent years, there is a strong demand for energy saving and energy saving in cutting, and along with this, coated tools have come to be used under severer conditions. For example, Patent Documents 1 to 3 show the above. Even when a coated tool is used for high-speed intermittent cutting with high heat generation and more intermittent and impact loads on the cutting edge, the thermal conductivity of the lower layer is high and the heat shielding effect is high. Since it is not sufficient, chipping and chipping are likely to occur on the cutting edge due to a high load during cutting, and as a result, the service life is reached in a relatively short time.

そこで、本発明者らは、前述のような観点から、高熱発生を伴い、かつ、切れ刃に断続的・衝撃的負荷が作用する高速断続切削加工に用いられた場合でも、硬質被覆層がすぐれた靭性を備え、その結果、長期の使用に亘ってすぐれた耐チッピング性、耐欠損性を発揮する被覆工具について鋭意研究を行った結果、以下の知見を得た。   In view of the above, the inventors of the present invention have an excellent hard coating layer even when used in high-speed intermittent cutting with high heat generation and intermittent and impact loads acting on the cutting edge. As a result of earnest research on coated tools that have excellent toughness and, as a result, excellent chipping resistance and fracture resistance over long-term use, the following findings were obtained.

即ち、従来の硬質被覆層として、少なくともTiの炭窒化物層を含む1層または2層以上からなるTi化合物層からなる下部層を形成したものにおいては、少なくとも1層のTiの炭窒化物層が基体的に垂直方向に柱状をなして形成されている。そのため、耐摩耗性は向上するが、その反面、Tiの炭窒化物層の異方性が高くなるほどTi化合物層の靭性が低下する。その結果、耐チッピング性、耐欠損性を発揮することができず、また、工具寿命も満足できるものであるとはいえなかった。   That is, as a conventional hard coating layer, at least one Ti carbonitride layer comprising a Ti compound layer comprising at least one Ti carbonitride layer or two or more Ti compound layers is formed. Is formed in a columnar shape in the vertical direction as a base. Therefore, although the wear resistance is improved, the toughness of the Ti compound layer decreases as the anisotropy of the Ti carbonitride layer increases. As a result, the chipping resistance and fracture resistance could not be exhibited, and the tool life could not be satisfied.

そこで、本発明者らは、硬質被覆層の下部層を構成するTi化合物層の中の特にTiの炭窒化物層について鋭意研究したところ、Ti化合物層中の少なくとも1層のTiの炭窒化物層中に微粒TiCNをバイモーダルな粒径分布で存在させることにより、主として粒径の大きな微粒TiCNがTi化合物層の異方性を緩和すると共に、粒径の小さな微粒TiCNがTi化合物層の熱伝導率を抑制し、熱遮蔽効果を向上させることができる。その結果、粒径の大きな微粒TiCNが奏する効果と粒径の小さな微粒TiCNが奏する効果との相乗効果により硬質被覆層の耐チッピング性、耐欠損性を飛躍的に向上させることができるという新規な知見を見出した。   Therefore, the present inventors have conducted intensive research on the Ti carbonitride layer in the Ti compound layer constituting the lower layer of the hard coating layer, and found that at least one Ti carbonitride in the Ti compound layer was obtained. By allowing fine TiCN to exist in the layer in a bimodal particle size distribution, the fine TiCN having a large particle size mainly relaxes the anisotropy of the Ti compound layer, and the fine TiCN having a small particle size makes the heat of the Ti compound layer The conductivity can be suppressed and the heat shielding effect can be improved. As a result, a novel effect that the chipping resistance and chipping resistance of the hard coating layer can be drastically improved by the synergistic effect of the effect produced by the fine TiCN having a large particle size and the effect produced by the fine TiCN having a small particle size. Finding findings.

具体的には、下部層を構成する少なくとも1層のTiの炭窒化物層を柱状縦長成長TiCN結晶組織で構成すると共に、その組織内に微粒TiCNをバイモーダルな粒径分布で存在させることにより、硬質被膜層の耐チッピング性、耐欠損性を向上させることができる。   Specifically, at least one Ti carbonitride layer constituting the lower layer is composed of a columnar vertically grown TiCN crystal structure, and fine TiCN is present in the structure in a bimodal particle size distribution. The chipping resistance and chipping resistance of the hard coating layer can be improved.

そして、前述のような構成のTiの炭窒化物層は、例えば、以下の化学蒸着法によって成膜することができる。   The Ti carbonitride layer having the above-described configuration can be formed by, for example, the following chemical vapor deposition method.

工具基体表面に、反応ガス組成(容量%)を、TiCl:1.7%、TDMAT(テトラキスジメチルアミノチタン):0.01〜0.1%、CHCN:0.7%、N:20%、H:残、として、反応雰囲気圧力を、5〜9kPaとして、反応雰囲気温度を、800〜930℃として、化学蒸着法を行うことにより柱状縦長成長TiCN結晶組織を成膜する工程中に、前記反応ガス中に、TDMAT(テトラキスジメチルアミノチタン)を高濃度(0.06〜0.1%)および低濃度(0.01〜0.05%)と交互に濃度を変えて添加することにより、バイモーダルの粒径分布を有する微粒TiCNが組織内に存在する柱状縦長成長TiCN結晶組織を得ることができる。この時、柱状縦長成長TiCN結晶組織内に微粒TiCNが存在する場合であっても微粒TiCNの最大粒径および粒径分布を制御することにより柱状縦長成長TiCN結晶組織が分断されることなく、柱状組織のまま成長することを見出した。その結果、柱状縦長成長TiCN結晶組織が有する靭性を低下させることなく、むしろバイモーダルな粒径分布を有する微粒TiCNの存在により柱状縦長成長TiCNの異方性が増加することにより、靱性が向上するとともに、熱伝導率が抑制され、熱遮蔽効果が向上する。そのため、硬質被覆層の耐チッピング性、耐欠損性を向上させることができる。 On the surface of the tool base, the reaction gas composition (volume%) is TiCl 4 : 1.7%, TDMAT (tetrakisdimethylaminotitanium): 0.01 to 0.1%, CH 3 CN: 0.7%, N 2 : 20%, H 2 : the rest, the reaction atmosphere pressure is 5 to 9 kPa, the reaction atmosphere temperature is 800 to 930 ° C., and the columnar vertically grown TiCN crystal structure is formed by chemical vapor deposition. Into the reaction gas, TDMAT (tetrakisdimethylaminotitanium) is added at high and low concentrations (0.06 to 0.1%) and low concentrations (0.01 to 0.05%). By doing so, a columnar vertically grown TiCN crystal structure in which fine TiCN having a bimodal particle size distribution is present in the structure can be obtained. At this time, even if fine TiCN exists in the columnar vertically grown TiCN crystal structure, the columnar vertically grown TiCN crystal structure is not divided by controlling the maximum grain size and particle size distribution of the fine TiCN. I have found that I can grow as an organization. As a result, the toughness is improved without increasing the anisotropy of the columnar vertically grown TiCN due to the presence of the fine TiCN having a bimodal particle size distribution without reducing the toughness of the columnar vertically grown TiCN crystal structure. At the same time, the thermal conductivity is suppressed and the heat shielding effect is improved. Therefore, the chipping resistance and chipping resistance of the hard coating layer can be improved.

さらに、本発明者らは、Tiの炭窒化物層中に存在させる微粒TiCNの粒径分布と硬質被覆層の諸特性の関係について、鋭意研究を重ねた結果、微粒TiCNの粒径分布が、次のようなバイモーダルな分布であるとき最もすぐれた効果が奏されることを確認した。   Furthermore, the present inventors have conducted extensive research on the relationship between the particle size distribution of the fine TiCN present in the Ti carbonitride layer and various properties of the hard coating layer, and as a result, the particle size distribution of the fine TiCN is: It was confirmed that the best effect was achieved when the distribution was bimodal as follows.

すなわち、本発明者らは、微粒TiCNの粒径分布と膜特性との関係を詳細に調べた結果、その粒径分布が、図2に示すように、第1ピークが10〜20nmに存在し、微粒TiCN径2nmごとに微粒TiCNを数えたときの第1ピークにおける微粒TiCN数密度が200〜500個/μmであって、第2ピークが50〜100nmに存在し、微粒TiCN径2nmごとに微粒TiCNを数えたときの第2ピークにおける微粒TiCN数密度が10〜30個/μmである時、最もすぐれた膜特性を示すことを見出した。 That is, as a result of examining the relationship between the particle size distribution of fine TiCN and the film characteristics in detail, the present inventors have found that the first peak exists at 10 to 20 nm as shown in FIG. When the fine TiCN is counted for every 2 nm of fine TiCN diameter, the fine TiCN number density at the first peak is 200 to 500 / μm 2 , the second peak is present at 50 to 100 nm, and the fine TiCN diameter is every 2 nm. It was found that when the fine TiCN number density in the second peak when counting fine TiCN was 10 to 30 / μm 2 , the best film characteristics were exhibited.

本発明は、前記知見に基づいてなされたものであって、
「(1) 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に硬質被覆層を設けた表面被覆切削工具において、
前記硬質被覆層が下部層と上部層とからなるとともに、
(a)前記下部層は、少なくとも1層のTiの炭窒化物層を含み、かつ、3〜20μmの合計平均層厚を有する1層または2層以上からなるTi化合物層、
(b)前記上部層は、2〜25μmの平均層厚を有する酸化アルミニウム層、
からなり、
前記(a)の下部層を構成する少なくとも1層のTiの炭窒化物層は、柱状縦長成長TiCN結晶組織を有しており、その組織内に微粒TiCNが存在しており、該微粒TiCNが粒状TiCN結晶相又はアモルファスTiCN相若しくは粒状TiCN結晶相とアモルファスTiCN相との混合相であり、柱状縦長成長TiCN結晶の最大粒子幅が50〜2000nm、該最大粒子幅と膜厚方向の最大粒子長さとのアスペクト比が5〜50であり、前記微粒TiCNの最大粒径が10〜150nmであり、該微粒TiCNの下部層中での粒径分布形態がバイモーダルな分布をとることを特徴とする表面被覆切削工具。
(2) 前記微粒TiCNの粒径分布の第1ピークが10〜20nmに存在し、微粒TiCN径2nmごとに微粒TiCNを数えたときの第1ピークにおける微粒TiCN数密度が200〜500個/μmであって、該微粒TiCNの第2ピークが50〜100nmに存在し、微粒TiCN径2nmごとに微粒TiCNを数えたときの第2ピークにおける微粒TiCN数密度が10〜30個/μmであることを特徴とする(1)に記載の表面被覆切削工具。」
に特徴を有するものである。
The present invention has been made based on the above findings,
“(1) In a surface-coated cutting tool in which a hard coating layer is provided on the surface of a tool base composed of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
Together with the hard coating layer is composed of a lower portion layer and the upper layer,
(A) The lower layer includes at least one Ti carbonitride layer, and has a total average layer thickness of 3 to 20 μm, a Ti compound layer composed of one layer or two or more layers,
(B) the upper layer is an aluminum oxide layer having an average layer thickness of 2 to 25 μm;
Consists of
The at least one Ti carbonitride layer constituting the lower layer of (a) has a columnar vertically grown TiCN crystal structure, in which fine TiCN exists, and the fine TiCN is It is a granular TiCN crystal phase or an amorphous TiCN phase or a mixed phase of a granular TiCN crystal phase and an amorphous TiCN phase. And the maximum particle size of the fine TiCN is 10 to 150 nm, and the particle size distribution in the lower layer of the fine TiCN has a bimodal distribution. Surface coated cutting tool.
(2) The first peak of the particle size distribution of the fine TiCN exists at 10 to 20 nm, and the fine TiCN number density in the first peak when the fine TiCN is counted for every 2 nm of the fine TiCN diameter is 200 to 500 / μm. 2 and the second peak of the fine TiCN exists at 50 to 100 nm, and the fine TiCN number density in the second peak when the fine TiCN is counted for every 2 nm of the fine TiCN diameter is 10 to 30 / μm 2 The surface-coated cutting tool according to (1), wherein "
It has the characteristics.

本発明について、以下に詳細に説明する。   The present invention will be described in detail below.

下部層のTi化合物層:
少なくとも1層のTiの炭窒化物層を含み、かつ、3〜20μmの合計平均層厚を有する1層または2層以上のTi化合物層からなる下部層は、通常の化学蒸着条件で形成することができるが、少なくとも1層のTiの炭窒化物層については後述するような別の方法によって形成する。下部層を構成するTi化合物層は、それ自体が高温強度を有し、これの存在によって硬質被覆層が高温強度を具備するようになるほか、工具基体と酸化アルミニウムからなる上部層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性向上に寄与する作用をもつが、その合計平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方、その合計平均層厚が20μmを越えると、チッピングを発生しやすくなることから、その合計平均層厚を3〜20μmと定めた。
Lower Ti compound layer:
The lower layer composed of one or more Ti compound layers including at least one Ti carbonitride layer and having a total average layer thickness of 3 to 20 μm should be formed under normal chemical vapor deposition conditions. However, at least one Ti carbonitride layer is formed by another method as described later. The Ti compound layer constituting the lower layer itself has a high temperature strength, and the presence of the Ti compound layer makes the hard coating layer have a high temperature strength, as well as both the tool base and the upper layer made of aluminum oxide. It has an effect of firmly adhering, and thus contributing to an improvement in the adhesion of the hard coating layer to the tool substrate. However, when the total average layer thickness is less than 3 μm, the above-mentioned effect cannot be exhibited sufficiently, while the total When the average layer thickness exceeds 20 μm, chipping tends to occur. Therefore, the total average layer thickness is set to 3 to 20 μm.

下部層中の少なくとも1層のTiの炭窒化物層:
下部層中の少なくとも1層のTiの炭窒化物層は、柱状縦長成長TiCN結晶組織を有しており、その組織内に微粒TiCN結晶が分散分布している構成とする。このような構成にすることによって、靭性が向上し、すぐれた耐チッピング性を示すようになる。ところが、柱状縦長成長TiCN結晶の最大粒子幅が50nmよりも小さいと、長期の使用にわたっての耐摩耗性を確保できず、一方、2000nmを超えると、粒子の粗大化により耐チッピング性、耐欠損性が低下する。したがって、柱状縦長成長TiCN結晶の最大粒子幅は、50〜2000nmとすることが好ましい。また、前記最大粒子幅と膜厚方向の最大粒子長さとのアスペクト比が5より小さいと、柱状縦長成長TiCNの特徴である高い耐摩耗性を確保できず、一方、50を超えると、かえって靭性が低下し、耐チッピング性、耐欠損性が低下する。したがって、柱状縦長成長TiCN結晶の最大粒子幅と膜厚方向の最大粒子長さとのアスペクト比は5〜50とすることが望ましい。ここで、最大粒子幅と最大粒子長さとは、柱状縦長成長TiCN結晶の1つの粒子を計測したとき、粒子の幅(短辺)で最も大きい値を最大粒子幅と呼び、一方、粒子の高さ(長辺)で最も大きい値を最大粒子長さと呼ぶ。
At least one Ti carbonitride layer in the lower layer:
At least one Ti carbonitride layer in the lower layer has a columnar vertically grown TiCN crystal structure, and fine TiCN crystals are dispersed and distributed in the structure. By adopting such a configuration, toughness is improved and excellent chipping resistance is exhibited. However, if the maximum grain width of the columnar vertically grown TiCN crystal is smaller than 50 nm, the wear resistance over a long period of use cannot be ensured. Decreases. Therefore, the maximum particle width of the columnar vertically grown TiCN crystal is preferably 50 to 2000 nm. Further, if the aspect ratio between the maximum grain width and the maximum grain length in the film thickness direction is smaller than 5, the high wear resistance characteristic of the columnar vertically grown TiCN cannot be secured, whereas if it exceeds 50, the toughness is rather Decreases, and chipping resistance and chipping resistance decrease. Therefore, it is desirable that the aspect ratio between the maximum grain width of the columnar vertically grown TiCN crystal and the maximum grain length in the film thickness direction is 5-50. Here, the maximum particle width and the maximum particle length are, when one particle of columnar vertically grown TiCN crystal is measured, the largest value of the particle width (short side) is called the maximum particle width, The largest value (long side) is called the maximum particle length.

さらに、微粒TiCNの最大粒径が10nmより小さいと、微粒TiCNを分散分布させることの効果が発揮されず、一方、150nmを超えると、かえって靭性が低下する。したがって、微粒TiCNの最大粒径は、10〜150nmとすることが好ましい。 Furthermore, when the maximum particle size of the fine TiCN is smaller than 10 nm, the effect of dispersing and distributing the fine TiCN is not exhibited, whereas when it exceeds 150 nm, the toughness is lowered. Therefore, the maximum particle size of the fine TiCN is preferably 10 to 150 nm.

また、本発明は、前記の構成に加えて、以下の条件を併せ持つとき、より一層、すぐれた効果を発揮する。すなわち、前記微粒TiCNの下部層中での粒径分布がバイモーダルな粒径分布形態をとるとき下部層のTi化合物層は前述の効果を一層発揮する。特に好ましい分布形態としては、微粒TiCNの分布の第1ピークが10〜20nmに存在し、微粒TiCN径2nmごとに微粒TiCNを数えたときの第1ピークにおける微粒TiCN数密度が200〜500個/μmであるとともに微粒TiCNの第2ピークが50〜100nmに存在し、微粒TiCN径2nmごとに微粒TiCNを数えたときの第2ピークにおける微粒TiCN数密度が50〜100個/μmである。ここで、バイモーダルな粒径分布形態の第1ピークおよび第2ピークにおける粒径および数密度を前記のように定めた理由は、第1ピークの粒径が10nmより小さいと熱遮蔽効果を十分に向上させることができなくなり、一方、20nmを超えると膜の熱伝導率を十分に抑制することができなくなるからである。また、第2ピークの粒径が50nmより小さいと靭性を十分に向上させることができなくなり、一方、100nmを超えると耐チッピング性を十分に向上させることができなくなるからである。 In addition to the above-described configuration, the present invention exhibits a further excellent effect when it has the following conditions. That is, when the particle size distribution in the lower layer of the fine TiCN is a bimodal particle size distribution, the lower Ti compound layer further exhibits the above-described effects. As a particularly preferred distribution form, the first peak of the distribution of fine TiCN exists at 10 to 20 nm, and the fine TiCN number density at the first peak when the fine TiCN is counted for every 2 nm of the fine TiCN diameter is 200 to 500 / present in the second peak 50~100nm the fine TiCN with a [mu] m 2, fine TiCN number density in the second peak when the counted fine TiCN every fine TiCN diameter 2nm is at 50 to 100 / [mu] m 2 . Here, the reason why the particle size and the number density in the first peak and the second peak of the bimodal particle size distribution form are determined as described above is that the heat shielding effect is sufficiently obtained when the particle size of the first peak is smaller than 10 nm. On the other hand, if the thickness exceeds 20 nm, the thermal conductivity of the film cannot be sufficiently suppressed. Further, if the particle size of the second peak is smaller than 50 nm, the toughness cannot be sufficiently improved, and if it exceeds 100 nm, the chipping resistance cannot be sufficiently improved.

上部層の酸化アルミニウム層:
上部層を構成する酸化アルミニウム層が、高温硬さと耐熱性を備えることは既に良く知られているが、その平均層厚が2μm未満では、長期の使用に亘っての耐摩耗性を確保することができず、一方、その平均層厚が25μmを越えると酸化アルミニウム結晶粒が粗大化し易くなり、その結果、高温硬さ、高温強度の低下に加え、高速断続切削加工時の耐チッピング性、耐欠損性が低下することから、その平均層厚を2〜25μmと定めた。
Upper aluminum oxide layer:
It is well known that the aluminum oxide layer constituting the upper layer has high-temperature hardness and heat resistance. However, if the average layer thickness is less than 2 μm, it should ensure wear resistance over a long period of use. On the other hand, when the average layer thickness exceeds 25 μm, the aluminum oxide crystal grains are likely to be coarsened. As a result, in addition to the decrease in high-temperature hardness and high-temperature strength, the chipping resistance, Since the deficiency deteriorates, the average layer thickness is determined to be 2 to 25 μm.

なお、本発明における微粒TiCNとは、粒状TiCN結晶相又はアモルファスTiCN相若しくは粒状TiCN結晶相とアモルファスTiCN相との混合相であって、最大粒径が150nm以下のものを総称して呼んでいる。 The fine TiCN in the present invention is a generic term that refers to a granular TiCN crystal phase, an amorphous TiCN phase, or a mixed phase of a granular TiCN crystal phase and an amorphous TiCN phase, and having a maximum particle size of 150 nm or less. .

バイモーダルな粒径分布形態をとる微粒TiCNの形成:
本発明の微粒TiCNは、通常の化学蒸着条件で成膜した下部層の形成過程中に次の条件による化学蒸着法を行うことによって形成することができる。
すなわち、微粒TiCNの核となるTDMATを反応ガス中に低濃度(A条件)と高濃度(B条件)の2つの条件で交互に切り替えながら添加することによって、バイモーダルな粒径分布を持つ微粒TiCNが形成される。
反応ガス組成(容量%):
TiCl:1.7%、
TDMAT A条件:0.01〜0.05% B条件:0.06〜0.10%
CHCN:0.7%、
:20%、
:残、
反応雰囲気圧力:5〜9kPa
反応雰囲気温度:800〜930℃
Formation of fine TiCN with a bimodal particle size distribution:
The fine TiCN of the present invention can be formed by performing chemical vapor deposition under the following conditions during the formation process of the lower layer formed under normal chemical vapor deposition conditions.
That is, TDMAT, which is the core of fine TiCN, is added to the reaction gas while alternately switching between two conditions of low concentration (A condition) and high concentration (B condition), thereby providing fine particles having a bimodal particle size distribution. TiCN is formed.
Reaction gas composition (volume%):
TiCl 4 : 1.7%,
TDMAT A condition: 0.01-0.05% B condition: 0.06-0.10%
CH 3 CN: 0.7%,
N 2 : 20%
H 2 : remaining,
Reaction atmosphere pressure: 5-9 kPa
Reaction atmosphere temperature: 800-930 ° C

本発明で、柱状縦長成長TiCN結晶組織内に微粒TiCNがバイモーダルな粒径分布している構造は、粒径の大きな微粒TiCNの存在によって、柱状縦長成長TiCN結晶組織に力が加わった際に、1つ1つの柱状縦長成長TiCN結晶にずれが生じるため、大きな靭性を生じることとなり、すぐれた耐チッピング性を示す。また、粒径の小さな微粒TiCNの存在によって、膜の熱伝導率が抑制されるため、熱遮蔽効果が向上する。   In the present invention, the structure in which the fine TiCN is distributed in the columnar vertically grown TiCN crystal structure has a bimodal particle size distribution when force is applied to the columnar vertically grown TiCN crystal structure due to the presence of the fine grained TiCN. Since each columnar vertically grown TiCN crystal is displaced, a large toughness is generated and excellent chipping resistance is exhibited. In addition, the presence of fine TiCN having a small particle size suppresses the thermal conductivity of the film, thereby improving the heat shielding effect.

本発明の被覆工具は、硬質被覆層下部層と上部層とからなり、
(a)下部層は、少なくとも1層のTiの炭窒化物層を含み、かつ、3〜20μmの合計平均層厚を有する1層または2層以上からなるTi化合物層、
(b)上部層は、2〜25μmの平均層厚を有する酸化アルミニウム層、
からなり、(a)の下部層を構成する少なくとも1層のTiの炭窒化物層は、柱状縦長成長TiCN結晶組織を有しており、その組織内に微粒TiCNが存在しており、該微粒TiCNが粒状TiCN結晶相又はアモルファスTiCN相若しくは粒状TiCN結晶相とアモルファスTiCN相との混合相であり、柱状縦長成長TiCN結晶の最大粒子幅が50〜2000nm、該最大粒子幅と膜厚方向の最大粒子長さとのアスペクト比が5〜50であり、微粒TiCNの最大粒径が10nm〜150nmであり、該微粒TiCNの下部層中での粒径分布形態がバイモーダルな分布をとることにより、硬質被膜層の靱性が向上するとともに、熱伝導率が抑制され、熱遮蔽効果が向上するので、鋼や鋳鉄等の高熱発生を伴い、しかも、切れ刃に断続的・衝撃的高負荷が作用する高速断続切削加工に用いた場合でも、耐チッピング性、耐欠損性にすぐれ、その結果、長期の使用に亘ってすぐれた耐摩耗性を発揮し、被覆工具の長寿命化が達成されるものである。
The coated tool of the present invention, the hard coating layer consists of a lower layer and an upper layer,
(A) The lower layer includes at least one Ti carbonitride layer, and has a total average layer thickness of 3 to 20 μm, a Ti compound layer composed of one layer or two or more layers,
(B) the upper layer is an aluminum oxide layer having an average layer thickness of 2 to 25 μm;
The at least one Ti carbonitride layer constituting the lower layer of (a) has a columnar vertically grown TiCN crystal structure, in which fine TiCN exists, and the fine particles TiCN is a granular TiCN crystal phase or an amorphous TiCN phase or a mixed phase of a granular TiCN crystal phase and an amorphous TiCN phase. The aspect ratio with the particle length is 5 to 50, the maximum particle size of the fine TiCN is 10 nm to 150 nm, and the particle size distribution form in the lower layer of the fine TiCN has a bimodal distribution. As the toughness of the coating layer is improved, the thermal conductivity is suppressed, and the heat shielding effect is improved, resulting in high heat generation of steel, cast iron, etc. Even when used for high-speed interrupted cutting where high loads and impacts are applied, it has excellent chipping resistance and fracture resistance. As a result, it exhibits excellent wear resistance over a long period of use. Long life is achieved.

本発明の下部層のTi化合物層を構成する少なくとも1層のTiの炭窒化物層の柱状縦長成長TiCN結晶組織の成長状態とTiの炭窒化物層に存在する微粒TiCNの存在形態を模式的に表した膜構成模式図である。The growth state of the columnar vertically grown TiCN crystal structure of at least one Ti carbonitride layer constituting the lower Ti compound layer of the present invention and the existence form of fine TiCN existing in the Ti carbonitride layer are schematically shown. FIG. 本発明の下部層を構成するTi化合物層に存在する微粒TiCNの粒径分布図である。It is a particle size distribution map of the fine TiCN which exists in the Ti compound layer which comprises the lower layer of this invention. 比較例の下部層のTi化合物層を構成する少なくとも1層のTiの炭窒化物層の柱状縦長成長TiCN結晶組織の成長状態を模式的に表した膜構成模式図である。It is the film | membrane structure schematic diagram which represented typically the growth state of the columnar vertically-grown TiCN crystal structure of the at least 1 layer of Ti carbonitride which comprises the lower Ti compound layer of a comparative example.

つぎに、本発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG120408に規定するインサート形状をもったWC基超硬合金製の工具基体A〜Eをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, and Co powder each having an average particle diameter of 1 to 3 μm are prepared. The raw material powder is blended in the blending composition shown in Table 1, added with wax, ball mill mixed in acetone for 24 hours, dried under reduced pressure, and press-molded into a green compact of a predetermined shape at a pressure of 98 MPa. The green compact is vacuum-sintered in a vacuum of 5 Pa at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour. After sintering, the cutting edge is subjected to a honing process of R: 0.07 mm. Thus, tool bases A to E made of WC-base cemented carbide having an insert shape specified in ISO · CNMG120408 were manufactured.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG120408のインサート形状をもったTiCN基サーメット製の工具基体a〜eを形成した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after the sintering, the cutting edge portion was subjected to a honing process of R: 0.07 mm. Tool bases a to e made of TiCN-based cermet having an insert shape of standard / CNMG120408 were formed.

つぎに、これらの工具基体A〜Eおよび工具基体a〜eの表面に、通常の化学蒸着装置を用い、
(a)硬質被覆層の下部層として、表3および表4に示される条件かつ表6に示される目標層厚でTi化合物層を蒸着形成する。
(b)この時、表4に示されるk〜o条件でTi化合物層を構成するTiの炭窒化物層を成膜する際に、表4に示されるTDMAT(容量%)を2つの異なる濃度(A条件、B条件)で交互に切り替えながら添加することによりTiの炭窒化物層の組織内にバイモーダルな粒径分布をとる微粒TiCNを形成することにより本発明被覆工具1〜15を製造した。
(c)次いで、表6に示される目標層厚の上部層(酸化アルミニウム層)からなる硬質被覆層を蒸着形成する。
Next, a normal chemical vapor deposition apparatus is used on the surfaces of these tool bases A to E and tool bases a to e,
(A) As a lower layer of the hard coating layer, a Ti compound layer is formed by vapor deposition under the conditions shown in Tables 3 and 4 and the target layer thickness shown in Table 6.
(B) At this time, when the Ti carbonitride layer constituting the Ti compound layer was formed under the k to o conditions shown in Table 4, the TDMAT (volume%) shown in Table 4 was set at two different concentrations. The coated tools 1 to 15 of the present invention are manufactured by forming fine TiCN having a bimodal particle size distribution in the structure of the Ti carbonitride layer by alternately switching under (A condition, B condition). did.
(C) Next, a hard coating layer composed of an upper layer (aluminum oxide layer) having a target layer thickness shown in Table 6 is formed by vapor deposition.

前記本発明被覆工具1〜15の下部層のTi化合物層を構成するTiの炭窒化物層について、走査型電子顕微鏡(倍率50000倍)を用いて複数視野にわたって観察したところ、いずれも、図1に示した膜構成模式図に示される柱状結晶の粒界および粒内にバイモーダルな粒径分布をとる微粒TiCNが存在する膜構造が確認された。   The Ti carbonitride layer constituting the Ti compound layer of the lower layer of the inventive coated tools 1 to 15 was observed over a plurality of fields using a scanning electron microscope (magnification 50000 times). The film structure in which fine TiCN having a bimodal particle size distribution exists in the grain boundaries and in the grains of the columnar crystals shown in the schematic diagram of the film configuration shown in FIG.

さらに、前記本発明被覆工具1〜15の下部層のTi化合物層を構成するTiの炭窒化物層に存在する微粒TiCNの数を、工具基体と垂直方向は下部層のTi化合物層を構成するTiの炭窒化物層膜厚分の厚さに亘って、工具基体と水平方向は長さ合計10μmに亘って、走査型電子顕微鏡(倍率50000倍)及び透過電子顕微鏡(倍率200000倍)を用いて測定し、粒径2nmごとに微粒TiCNの数密度(個/μm2)を求めたところ、図2に示した粒径分布図に示される粒径分布形態が確認された。   Further, the number of fine TiCN present in the Ti carbonitride layer constituting the lower Ti compound layer of the coated tools 1 to 15 of the present invention, and the lower Ti compound layer in the direction perpendicular to the tool base. Using a scanning electron microscope (magnification 50000 times) and a transmission electron microscope (magnification 200000 times), the tool base and the horizontal direction are 10 μm in total in the thickness of Ti carbonitride layer thickness. The number density of fine TiCN (particles / μm 2) was determined for each particle size of 2 nm, and the particle size distribution form shown in the particle size distribution diagram shown in FIG. 2 was confirmed.

さらに、前記本発明被覆工具1〜15の下部層を構成するTi化合物層を構成するTiの炭窒化物層について、透過型電子顕微鏡(倍率200000倍)を用いて複数の視野にわたって観察したところ、前記微粒TiCNは、粒状TiCN結晶相又はアモルファスTiCN相若しくは粒状TiCN結晶相とアモルファスTiCN相の混合相であることが確認された。 Furthermore, when the Ti carbonitride layer constituting the Ti compound layer constituting the lower layer of the inventive coated tools 1 to 15 was observed over a plurality of fields of view using a transmission electron microscope (magnification 200000 times), The fine TiCN was confirmed to be a granular TiCN crystal phase, an amorphous TiCN phase, or a mixed phase of a granular TiCN crystal phase and an amorphous TiCN phase.

また、比較の目的で、工具基体A〜Eおよび工具基体a〜eの表面に、表3及び表5に示される条件かつ表7に示される目標層厚で本発明被覆工具1〜15と同様に、硬質被覆層の下部層としてのTi化合物層を蒸着形成した。次いで、硬質被覆層の上部層として、表3および表5に示される条件かつ表7に示される目標層厚で酸化アルミニウム層からなる上部層を蒸着形成した。この時には、TDMATを添加せず、柱状縦長成長TiCN結晶組織を形成することにより、表7の比較被覆工具1〜15を作製した。
また、前記比較被覆工具1〜15の下部層のTi化合物層を構成するTiの炭窒化物層について、走査型電子顕微鏡(倍率50000倍)を用いて複数視野に亘って観察したところ、いずれも、図3に示した膜構成模式図に示される柱状縦長成長TiCN結晶組織からなる膜構造が確認された。
For comparison purposes, the surfaces of the tool bases A to E and the tool bases a to e are the same as the coated tools 1 to 15 of the present invention under the conditions shown in Tables 3 and 5 and the target layer thicknesses shown in Table 7. Then, a Ti compound layer as a lower layer of the hard coating layer was formed by vapor deposition. Next, an upper layer composed of an aluminum oxide layer was formed by vapor deposition as the upper layer of the hard coating layer under the conditions shown in Tables 3 and 5 and the target layer thicknesses shown in Table 7. At this time, comparative coated tools 1 to 15 shown in Table 7 were produced by forming columnar vertically grown TiCN crystal structures without adding TDMAT.
Moreover, about the Ti carbonitride layer which comprises the Ti compound layer of the lower layer of the said comparative coating tool 1-15, when it observed over multiple visual fields using the scanning electron microscope (50000 times magnification), all are The film structure consisting of the columnar vertically grown TiCN crystal structure shown in the schematic diagram of the film structure shown in FIG. 3 was confirmed.

また、本発明被覆工具1〜15および比較被覆工具1〜15の各構成層の断面を、走査型電子顕微鏡(倍率5000倍)を用いて測定し平均層厚を求めたところ、いずれも表6および表7に示される目標層厚と実質的に同じ平均層厚を示した。   Moreover, when the cross section of each structural layer of this invention coated tool 1-15 and comparative coated tool 1-15 was measured using the scanning electron microscope (magnification 5000 times) and average layer thickness was calculated | required, all are Table 6 And an average layer thickness substantially the same as the target layer thickness shown in Table 7.

また、本発明被覆工具1〜15および比較被覆工具1〜15については、同じく走査型電子顕微鏡(倍率5000倍)を用いて、下部層のTi化合物層に含まれるTiの炭窒化物層を構成する柱状縦長成長TiCN結晶の最大粒子幅及び膜厚方向の最大粒子長さを、工具基体と水平方向に長さ合計10μmの範囲に存在する柱状縦長成長TiCN結晶の各々について測定し、それらの平均をとることによって最大粒子幅及び膜厚方向の最大粒子長さの平均値を求め、それらの比からアスペクト比を求めた。 Moreover, about this invention coated tool 1-15 and comparative coated tool 1-15, similarly using the scanning electron microscope (magnification 5000 times), it comprises the Ti carbonitride layer contained in the Ti compound layer of a lower layer The maximum grain width and the maximum grain length in the film thickness direction of the columnar vertically grown TiCN crystal are measured for each of the columnar vertically grown TiCN crystals existing in a total length of 10 μm in the horizontal direction with respect to the tool base, and the average The average value of the maximum particle width and the maximum particle length in the film thickness direction was determined, and the aspect ratio was determined from these ratios.

つぎに、本発明被覆工具1〜15および比較被覆工具1〜15について、表8に示す条件で切削加工試験を実施し、いずれの切削試験でも切刃の逃げ面摩耗幅(mm)を測定した。
表9に、この測定結果を示した。
Next, cutting test was carried out on the present coated tools 1 to 15 and comparative coated tools 1 to 15 under the conditions shown in Table 8, and the flank wear width (mm) of the cutting edge was measured in any cutting test. .
Table 9 shows the measurement results.

表6および表9に示される結果から、本発明の被覆工具は、硬質被覆層の下部層のTi化合物層を構成するTiの炭窒化物層が、柱状縦長成長TiCN結晶組織を有しており、その組織内にバイモーダルな粒径分布をとる微粒TiCNが存在していることにより、靱性が向上し、熱伝導率が抑制され熱遮蔽効果が向上するため、鋼や鋳鉄等の高熱発生を伴い、しかも、切れ刃に断続的・衝撃的高負荷が作用する高速断続切削加工に用いた場合でも、耐チッピング性、耐欠損性にすぐれ、その結果、長期の使用に亘ってすぐれた耐摩耗性を発揮することが明らかである。   From the results shown in Tables 6 and 9, in the coated tool of the present invention, the Ti carbonitride layer constituting the Ti compound layer of the lower layer of the hard coating layer has a columnar vertically grown TiCN crystal structure. The presence of fine TiCN with a bimodal particle size distribution in the structure improves toughness, suppresses thermal conductivity, and improves the heat shielding effect. In addition, even when used for high-speed intermittent machining where intermittent and shocking high loads act on the cutting edge, it has excellent chipping resistance and chipping resistance, resulting in excellent wear resistance over a long period of use. It is clear that it exhibits sex.

これに対して、硬質被覆層の下部層のTi化合物層を構成するTiの炭窒化物層にバイモーダルな粒径分布をとる微粒TiCNが存在していない比較被覆工具1〜15については、高熱発生を伴い、しかも、切れ刃に断続的・衝撃的高負荷が作用する高速断続切削加工に用いた場合、チッピング、欠損等の発生により短時間で寿命にいたることが明らかである。   On the other hand, for the comparative coated tools 1 to 15 in which the fine TiCN having a bimodal particle size distribution is not present in the Ti carbonitride layer constituting the Ti compound layer of the lower layer of the hard coating layer, In addition, when used in high-speed intermittent cutting with intermittent and shocking high loads acting on the cutting edge, it is apparent that the lifetime is reached in a short time due to the occurrence of chipping, chipping and the like.

前述のように、本発明の被覆工具は、例えば、鋼や鋳鉄等の高熱発生を伴い、かつ、切れ刃に断続的・衝撃的高負荷が作用する高速断続切削加工において、すぐれた耐チッピング性、耐欠損性を発揮し、使用寿命の延命化を可能とするものであるが、高速断続切削加工条件ばかりでなく、高速切削加工条件、高切込み、高送りの高速重切削加工条件等で使用することも勿論可能である。   As described above, the coated tool of the present invention has excellent chipping resistance in high-speed intermittent cutting with high heat generation such as steel and cast iron and intermittent and impact high load acting on the cutting edge. Demonstrate fracture resistance and extend the service life, but not only for high-speed interrupted cutting conditions, but also for high-speed cutting conditions, high cutting depth, high-feed, high-speed heavy cutting conditions, etc. Of course, it is also possible.

Claims (2)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に硬質被覆層を設けた表面被覆切削工具において、
前記硬質被覆層が下部層と上部層とからなるとともに、
(a)前記下部層は、少なくとも1層のTiの炭窒化物層を含み、かつ、3〜20μmの合計平均層厚を有する1層または2層以上からなるTi化合物層、
(b)前記上部層は、2〜25μmの平均層厚を有する酸化アルミニウム層、
からなり、
前記(a)の下部層を構成する少なくとも1層のTiの炭窒化物層は、柱状縦長成長TiCN結晶組織を有しており、その組織内に微粒TiCNが存在しており、該微粒TiCNが粒状TiCN結晶相又はアモルファスTiCN相若しくは粒状TiCN結晶相とアモルファスTiCN相との混合相であり、柱状縦長成長TiCN結晶の最大粒子幅が50〜2000nm、該最大粒子幅と膜厚方向の最大粒子長さとのアスペクト比が5〜50であり、前記微粒TiCNの最大粒径が10〜150nmであり、該微粒TiCNの下部層中での粒径分布形態がバイモーダルな分布をとることを特徴とする表面被覆切削工具。
In a surface-coated cutting tool in which a hard coating layer is provided on the surface of a tool base composed of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
Together with the hard coating layer is composed of a lower portion layer and the upper layer,
(A) The lower layer includes at least one Ti carbonitride layer, and has a total average layer thickness of 3 to 20 μm, a Ti compound layer composed of one layer or two or more layers,
(B) the upper layer is an aluminum oxide layer having an average layer thickness of 2 to 25 μm;
Consists of
The at least one Ti carbonitride layer constituting the lower layer of (a) has a columnar vertically grown TiCN crystal structure, in which fine TiCN exists, and the fine TiCN is It is a granular TiCN crystal phase or an amorphous TiCN phase or a mixed phase of a granular TiCN crystal phase and an amorphous TiCN phase. And the maximum particle size of the fine TiCN is 10 to 150 nm, and the particle size distribution in the lower layer of the fine TiCN has a bimodal distribution. Surface coated cutting tool.
前記微粒TiCNの粒径分布の第1ピークが10〜20nmに存在し、微粒TiCN径2nmごとに微粒TiCNを数えたときの第1ピークにおける微粒TiCN数密度が200〜500個/μmであって、該微粒TiCNの第2ピークが50〜100nmに存在し、微粒TiCN径2nmごとに微粒TiCNを数えたときの第2ピークにおける微粒TiCN数密度が10〜30個/μmであることを特徴とする請求項1に記載の表面被覆切削工具。
The first peak of the particle size distribution of the fine TiCN exists at 10 to 20 nm, and the fine TiCN number density at the first peak when the fine TiCN is counted every 2 nm of the fine TiCN diameter is 200 to 500 / μm 2. The second peak of the fine TiCN exists at 50 to 100 nm, and the fine TiCN number density at the second peak when the fine TiCN is counted for every 2 nm of the fine TiCN diameter is 10 to 30 / μm 2. The surface-coated cutting tool according to claim 1, wherein
JP2011287740A 2011-12-28 2011-12-28 Surface coated cutting tool with excellent chipping resistance due to hard coating layer Expired - Fee Related JP5838805B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011287740A JP5838805B2 (en) 2011-12-28 2011-12-28 Surface coated cutting tool with excellent chipping resistance due to hard coating layer
CN201210549776.XA CN103182537B (en) 2011-12-28 2012-12-17 Hard coating layer plays the excellent resistance to surface-coated cutting tool collapsing cutter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011287740A JP5838805B2 (en) 2011-12-28 2011-12-28 Surface coated cutting tool with excellent chipping resistance due to hard coating layer

Publications (2)

Publication Number Publication Date
JP2013136114A JP2013136114A (en) 2013-07-11
JP5838805B2 true JP5838805B2 (en) 2016-01-06

Family

ID=48674123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011287740A Expired - Fee Related JP5838805B2 (en) 2011-12-28 2011-12-28 Surface coated cutting tool with excellent chipping resistance due to hard coating layer

Country Status (2)

Country Link
JP (1) JP5838805B2 (en)
CN (1) CN103182537B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018180911A1 (en) * 2017-03-30 2018-10-04 京セラ株式会社 Cutting insert and cutting tool

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000054133A (en) * 1998-08-04 2000-02-22 Mitsubishi Materials Corp Throw-away cut tip made of surface-coated sintered hard alloy with its thickened hard coating layer exhibiting excellent chipping resistance
JP4437353B2 (en) * 2000-03-30 2010-03-24 株式会社タンガロイ Coated cutting tool and manufacturing method thereof
JP3462859B2 (en) * 2001-02-01 2003-11-05 住友電気工業株式会社 Coated cutting tool
JP4466841B2 (en) * 2004-06-30 2010-05-26 三菱マテリアル株式会社 A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4518258B2 (en) * 2004-08-11 2010-08-04 三菱マテリアル株式会社 A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4779611B2 (en) * 2005-12-02 2011-09-28 三菱マテリアル株式会社 Manufacturing method of surface coated cutting insert
JP5217305B2 (en) * 2006-09-05 2013-06-19 株式会社タンガロイ Coated cutting tool and manufacturing method thereof
ES2426582T5 (en) * 2006-09-05 2016-11-22 Tungaloy Corporation Coated cutting tool and method to produce it
JP2010207930A (en) * 2009-03-09 2010-09-24 Mitsubishi Materials Corp Surface coated cutting tool
JP5499650B2 (en) * 2009-11-16 2014-05-21 三菱マテリアル株式会社 Diamond-coated tools with excellent peeling and wear resistance
JP2011152602A (en) * 2010-01-27 2011-08-11 Mitsubishi Materials Corp Surface-coated cutting tool provided with hard coated layer demonstrating superior chipping resistance

Also Published As

Publication number Publication date
CN103182537B (en) 2016-06-08
CN103182537A (en) 2013-07-03
JP2013136114A (en) 2013-07-11

Similar Documents

Publication Publication Date Title
JP5590335B2 (en) Surface coated cutting tool with excellent chipping resistance and chipping resistance with excellent hard coating layer
JP5582409B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP2013139065A (en) Surface-coated cutting tool with hard coating layer exhibiting superior chipping resistance in high-speed intermittent cutting work
JP5590329B2 (en) Surface coated cutting tool with excellent chipping resistance and chipping resistance with excellent hard coating layer
JP5935562B2 (en) Surface-coated cutting tool with excellent initial coating and chipping resistance with excellent hard coating layer
JP5854321B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP5246518B2 (en) Surface coated cutting tool with excellent toughness and chipping resistance due to hard coating layer
JP5003308B2 (en) Surface coated cutting tool
JP5023896B2 (en) Surface coated cutting tool
JP5838805B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5850402B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5176787B2 (en) Surface coated cutting tool with excellent chipping resistance and wear resistance due to hard coating layer
JP5838806B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5831704B2 (en) Surface coated cutting tool with excellent chipping resistance and chipping resistance with excellent hard coating layer
JP2013116548A (en) Surface coated cutting tool with hard coating layer exhibiting superior chipping resistance
JP2008055526A (en) Surface coated cutting tool with hard coating layer exhibiting superior chipping resistance
JP5928807B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5928806B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5636971B2 (en) Surface coated cutting tool with excellent toughness and chipping resistance due to hard coating layer
JP5892335B2 (en) Surface coated cutting tool with excellent chipping resistance with hard coating layer
JP5686294B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP2010207930A (en) Surface coated cutting tool
JP4857950B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting
JP2006218546A (en) Surface-coated cermet cutting tool with hard coating layer exerting excellent chipping resistance in high-speed intermittent cutting
JP2015182155A (en) Surface-coated cutting tool with hard coating layer exhibiting superior chipping resistance in intermittent cutting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151026

R150 Certificate of patent or registration of utility model

Ref document number: 5838805

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees