JP3462859B2 - Coated cutting tool - Google Patents
Coated cutting toolInfo
- Publication number
- JP3462859B2 JP3462859B2 JP2001025126A JP2001025126A JP3462859B2 JP 3462859 B2 JP3462859 B2 JP 3462859B2 JP 2001025126 A JP2001025126 A JP 2001025126A JP 2001025126 A JP2001025126 A JP 2001025126A JP 3462859 B2 JP3462859 B2 JP 3462859B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- titanium
- cutting tool
- coated cutting
- crystal structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Chemical Vapour Deposition (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、基材表面に硬質被
膜を有する被覆切削工具とその製造方法に関するもので
ある。特に、過酷な切削加工条件下にあって硬質被膜の
柱状結晶組織の粒界強度を増し、亀裂の進展を抑制する
ことにより優れた耐摩耗性を維持しつつ、耐剥離性を向
上させた被覆切削工具に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coated cutting tool having a hard coating on the surface of a base material and a method for manufacturing the same. In particular, a coating with improved peel resistance while maintaining excellent wear resistance by increasing the grain boundary strength of the columnar crystal structure of the hard coating and suppressing the development of cracks under severe cutting conditions. It relates to cutting tools.
【0002】[0002]
【従来の技術】近年被覆超硬工具は省エネ化、省力化等
から切削加工が高速化に向かい、使用される環境がます
ます過酷になっており、一段と優れた耐摩耗性を備える
必要がある。そのため、耐摩耗性向上に効果のある縦長
成長結晶組織(以下、縦長成長結晶を柱状結晶と呼ぶ)
を有する炭窒化チタンの硬度を高め、耐摩耗性能を上げ
るため微細柱状結晶にする傾向がある。[Prior Art] In recent years, coated carbide tools have become more and more severe in terms of cutting speed due to energy saving, labor saving, etc., and the environment in which they are used is becoming more and more severe, and it is necessary to have even greater wear resistance. . Therefore, a vertically grown crystal structure that is effective in improving wear resistance (hereinafter, the vertically grown crystal is referred to as a columnar crystal)
In order to increase the hardness and wear resistance of titanium carbonitride having, there is a tendency to form fine columnar crystals.
【0003】微細柱状結晶を有する炭窒化チタンを製造
するためには、特開平11−172464号公報等にあるように
アセトニトリル等の有機CNを用いた柱状結晶組織を有す
る炭窒化チタン層の下部層に同じ柱状結晶組織を有する
炭窒酸化チタン層を介在させることが提案されている。
この公報によれば、炭窒酸化チタンの微細組織につづき
炭窒化チタンを核生成させるため、相対的に炭窒化チタ
ンが微細な柱状結晶になり耐摩耗性向上に寄与するとあ
る。In order to manufacture titanium carbonitride having fine columnar crystals, a lower layer of titanium carbonitride layer having a columnar crystal structure using an organic CN such as acetonitrile as disclosed in JP-A-11-172464. It has been proposed to interpose a titanium oxycarbonitride layer having the same columnar crystal structure.
According to this publication, titanium carbonitride is nucleated following the fine structure of titanium carbonitride oxide, so that titanium carbonitride becomes a relatively fine columnar crystal and contributes to improvement of wear resistance.
【0004】[0004]
【発明が解決しようとする課題】しかし、この微細柱状
結晶組織の炭窒化チタンは柱状結晶粒界に亀裂が進展し
易く、被膜の剥離に起因するという欠点がある。硬質合
金基材上に粒状結晶組織の窒化チタン、窒酸化チタン、
炭化チタン、炭酸化チタン、炭窒化チタンを少なくとも
1層以上を被覆させると被覆表面が円筒状のドーム型に
なる。このドーム形状効果により、アセトニトリル等の
有機CNを用いた化学蒸着法による柱状炭窒酸化チタン
は、成長方向である上部にいく程広がった組織のテーパ
ー型の柱状組織になり易い。そのため、成膜が進むにつ
れて柱状結晶間に微細な空隙を生じる。この空隙は結晶
間の結合力を弱め切削加工時に膜中に発生するクラック
進展を助長し、耐剥離性を減じる要因となる。However, this titanium carbonitride having a fine columnar crystal structure has a drawback that cracks are likely to develop at the columnar grain boundaries, resulting in peeling of the coating film. Titanium nitride, titanium oxynitride with a granular crystal structure on a hard alloy substrate,
At least titanium carbide, titanium carbonate, and titanium carbonitride
When one or more layers are coated, the coated surface becomes a cylindrical dome shape. Due to this dome-shaped effect, columnar titanium oxycarbonitride produced by the chemical vapor deposition method using an organic CN such as acetonitrile is likely to have a tapered columnar structure with a structure that widens toward the upper part in the growth direction. Therefore, as the film formation progresses, fine voids are generated between the columnar crystals. These voids weaken the bonding force between crystals and promote the development of cracks that occur in the film during cutting, which is a factor that reduces peeling resistance.
【0005】また、柱状結晶組織を有する炭窒酸化チタ
ンがテーパー形状になると、その最表面は凹凸形状にな
り、上部に核生成し成膜する同じく柱状結晶組織を有す
る炭窒化チタンもテーパー状になる。結果的に炭窒化チ
タンも炭窒酸化チタンと同様に柱状結晶粒界に微細な空
隙を生じて粒界の結合力が弱くなり、耐剥離性を減じる
こととなる。When titanium oxycarbonitride having a columnar crystal structure has a tapered shape, the outermost surface thereof has an uneven shape, and titanium carbonitride also having a columnar crystal structure, which is nucleated and film-formed above, also has a tapered shape. Become. As a result, titanium carbonitride also produces fine voids in the columnar grain boundaries, weakening the bond strength of the grain boundaries and reducing the peeling resistance, like titanium oxycarbonitride.
【0006】一方、特開平2-31202号公報(特許第28761
30号)等では、柱状結晶組織の亀裂伝播を防ぐ目的で粒
状結晶と柱状結晶の混在結晶組織にして耐摩耗性を維持
しつつ耐剥離性も向上させることが提案されている。こ
の技術は、柱状結晶を生成させてから炉内圧力を上げて
過飽和状態にし、柱状粒界に粒状結晶を析出させること
で炭窒酸化チタンを柱状結晶と粒状結晶の混在結晶組織
にしている。On the other hand, JP-A-2-31202 (Patent No. 28761)
No. 30) and the like, it has been proposed to improve the peeling resistance while maintaining wear resistance by making a mixed crystal structure of granular crystals and columnar crystals for the purpose of preventing crack propagation of the columnar crystal structure. In this technique, after the columnar crystals are generated, the pressure in the furnace is increased to a supersaturated state, and the granular crystals are precipitated at the columnar grain boundaries, whereby titanium oxycarbonitride has a mixed crystal structure of the columnar crystals and the granular crystals.
【0007】しかし、先に柱状結晶組織を析出するた
め、炭窒酸化チタンの結晶がテーパー状になり、その影
響で上部の炭窒化チタンもテーパー状になり、結局優れ
た耐摩耗性を持ちうる微細柱状結晶組織の炭窒化チタン
の耐剥離性を向上させるには至らない。However, since the columnar crystal structure is deposited first, the titanium oxycarbonitride crystals are tapered, and due to this, the titanium carbonitride in the upper part is also tapered, which may result in excellent wear resistance. It cannot reach the improvement of the peeling resistance of titanium carbonitride having a fine columnar crystal structure.
【0008】更に付け加えると、耐摩耗性と耐剥離性の
両方を兼ね備えるため粒状結晶と柱状結晶の混合組織の
炭窒化チタン層としたとしても、近年の高速切削加工条
件においては、耐摩耗性で明かに微細柱状結晶組織の炭
窒化チタンに遠く及ばない。In addition, even if a titanium carbonitride layer having a mixed structure of granular crystals and columnar crystals is used because it has both wear resistance and peeling resistance, it does not show wear resistance under recent high-speed cutting conditions. Obviously, it is far behind titanium carbonitride, which has a fine columnar crystal structure.
【0009】また、炭窒化チタンの下層における粒状結
晶のドーム効果が炭窒化チタンの柱状結晶をテーパー状
にするというなら、硬質合金基材を平滑にして直接炭窒
化チタンを成膜するという方法もある。しかし、硬質合
金基材と炭窒化チタン膜との密着力が弱く、優れた切削
工具とはなり得ない。Further, if the dome effect of the granular crystals in the lower layer of titanium carbonitride causes the columnar crystals of titanium carbonitride to taper, there is also a method in which the hard alloy base material is smoothed and titanium carbonitride is directly formed. is there. However, the adhesion between the hard alloy base material and the titanium carbonitride film is weak, and it cannot be an excellent cutting tool.
【0010】従って、本発明の主目的は、テーパー状の
柱状結晶粒間からの亀裂による炭窒化チタンの剥離を抑
制し、優れた耐剥離性能を具える被覆切削工具とその製
造方法を提供することにある。Therefore, the main object of the present invention is to provide a coated cutting tool having excellent peeling resistance, which suppresses peeling of titanium carbonitride due to cracks between tapered columnar crystal grains, and a manufacturing method thereof. Especially.
【0011】[0011]
【課題を解決するための手段】本発明者は上記問題点に
対し研究を重ねたところ、以下の知見を得て本発明をな
し得るに至った。The inventor of the present invention has made extensive studies on the above-mentioned problems, and has obtained the following knowledge, and thus has completed the present invention.
【0012】a:粒状結晶の窒化チタンの上層に炭窒酸
化チタンの粒状結晶と柱状結晶が同時に析出する反応を
起こし、その炭窒酸化チタンの含有酸素濃度と膜厚が規
定範囲になるように成膜を施す。これにより、炭窒酸化
チタンの成膜反応の各過程で発生する凹部に粒状結晶が
優先的に埋まって平坦度が増すように成膜できる。A: To cause a reaction in which titanium oxycarbonitride granular crystals and columnar crystals are simultaneously deposited on the upper layer of the titanium oxynitride granular particles, so that the oxygen concentration and film thickness of the titanium oxycarbonitride are within the specified ranges. A film is formed. As a result, it is possible to form a film so that the granular crystals are preferentially filled in the recesses generated in each process of the film formation reaction of titanium oxycarbonitride to increase the flatness.
【0013】b:炭窒酸化チタン表面の平坦度が増す
と、それに伴い成膜速度の速い柱状結晶生成が優先的に
なり、同時に析出する粒状組織の結晶は、その表面がド
ーム形状となる効果を示さなくなる程微細になる。B: When the flatness of the surface of titanium oxycarbonitride is increased, the columnar crystals having a high film formation rate are preferentially generated, and the crystals of the grain structure which precipitate at the same time have a dome-shaped surface. It becomes so fine that it does not show.
【0014】c:平滑になった炭窒酸化チタンの上層に
核生成、成膜する炭窒化チタンは、炭窒酸化チタンの直
上に成長する柱状結晶粒界が密で粒界結合力が強く亀裂
が進展し難い組織にすることができる。C: Titanium carbonitride formed by nucleating and forming a film on the smoothed titanium oxycarbonitride has dense columnar crystal grain boundaries growing directly on the titanium oxycarbonitride and a strong grain boundary bonding force. Can be an organization that is hard to develop.
【0015】d:炭窒酸化チタンの柱状結晶が微細にな
り、混在する粒状結晶も非常に微細になることで、相対
的に上層の炭窒化チタンも微細になり、優れた耐摩耗性
を維持することが可能になる。D: The columnar crystals of titanium oxycarbonitride become fine, and the mixed granular crystals become very fine, so that the titanium carbonitride in the upper layer becomes relatively fine, and excellent wear resistance is maintained. It becomes possible to do.
【0016】即ち、本発明は、硬質合金基材と、その表
面に形成される硬質被膜とを具える被覆切削工具におい
て、前記硬質被膜が下記の構成を有することを特徴とす
る。
前記基材表面に形成され、窒化チタン、炭化チタン、
炭酸化チタン、窒酸化チタン、炭窒化チタンおよび硼窒
化チタンの単層または複数層からなる第一層。
第一層の直上に形成され、粒状結晶と柱状結晶の混在
結晶構造の炭窒酸化チタンで、その膜中の酸素含有濃度
が原子%の最大値で0.1%〜15%を満たし、かつ平均膜
厚が0.2以上2.0μm以下である第二層。
第二層の直上に形成される柱状結晶構造の炭窒化チタ
ンである第三層。That is, the present invention provides a coated cutting tool comprising a hard alloy substrate and a hard coating formed on the surface thereof, wherein the hard coating has the following constitution. Formed on the surface of the base material, titanium nitride, titanium carbide,
A first layer consisting of a single layer or multiple layers of titanium carbonate, titanium oxynitride, titanium carbonitride, and titanium boronitride. The titanium oxycarbonitride formed directly on the first layer and having a mixed crystal structure of granular crystals and columnar crystals, the oxygen content concentration in the film satisfies 0.1% to 15% at the maximum atomic%, and the average film A second layer having a thickness of 0.2 or more and 2.0 μm or less. The third layer, which is titanium carbonitride having a columnar crystal structure formed directly on the second layer.
【0017】ここで、さらに以下の少なくとも1つの構
成を具えることが好ましい。Here, it is preferable to further include at least one of the following configurations.
【0018】(A)前記第一層の膜結晶組織が粒状組織を
有する。(A) The film crystal structure of the first layer has a granular structure.
【0019】(B)前記第二層の平均膜厚が0.3μm〜1.5μ
mで、その酸素含有濃度が原子%の最大値で1%〜6%を満
たす。(B) The average film thickness of the second layer is 0.3 μm to 1.5 μm.
At m, its oxygen content concentration is 1% to 6% at the maximum of atomic%.
【0020】(C)前記基材の刃先稜線部付近における第
三層の結晶粒がアスペクト比6以上ある。(C) The crystal grain of the third layer near the edge of the cutting edge of the base material has an aspect ratio of 6 or more.
【0021】(D)前記第三層の平均膜厚が2〜20μmを満
たす。(D) The average film thickness of the third layer satisfies 2 to 20 μm.
【0022】(E)前記硬質被膜は、前記第三層の上方に
形成される1層以上からなる第四層を具える。この第四
層は、チタン化合物で化学式Ti(Cw'Nx'Oy'Bz'){w'+
x'+y'+z'=1,0≦w',x',y',z'≦1}、酸化アルミニウ
ム、酸化ジルコニウムおよび酸化ハフニウムから選ばれ
る1種以上からなる。そして、硬質被膜全体の膜厚が平
均膜厚で2.5〜30μmである。(E) The hard coating film includes a fourth layer composed of one or more layers formed above the third layer. This fourth layer is a titanium compound and has the chemical formula Ti (Cw'Nx'Oy'Bz ') {w' +
x ′ + y ′ + z ′ = 1,0 ≦ w ′, x ′, y ′, z ′ ≦ 1}, one or more selected from aluminum oxide, zirconium oxide and hafnium oxide. The average film thickness of the entire hard coating is 2.5 to 30 μm.
【0023】(F)前記基材が超硬合金またはサーメット
である。(F) The base material is cemented carbide or cermet.
【0024】(G)前記基材の刃先稜線部近傍の表面粗さ
が、基材断面から観測する方法によって測定される基準
長さ5μmに対してRmaxで0.2〜1.3μmである。(G) The surface roughness in the vicinity of the edge of the cutting edge of the base material is 0.2 to 1.3 μm in Rmax with respect to the reference length of 5 μm measured by the method of observing from the cross section of the base material.
【0025】(H)前記硬質被覆膜の刃先稜線部近傍が基
準長さ5μmに対して面粗さRmaxで0.2μm以下の滑らかな
面で実質的に構成されている。(H) The vicinity of the cutting edge ridge of the hard coating film is substantially constituted by a smooth surface having a surface roughness Rmax of 0.2 μm or less with respect to a reference length of 5 μm.
【0026】上記の各構成要件について詳述する。Each of the above constituent elements will be described in detail.
【0027】<炭窒酸化チタン(第二層)における柱状
結晶と粒状結晶の同時生成>第二層である炭窒酸化チタ
ンの柱状結晶と粒状結晶を同時に生成するには、まず、
柱状結晶構造の有機CN系ガスを用いたTiCN反応と、粒状
結晶構造を持つTiCO反応を同時に進行させる。そして、
反応過程で発生する活性なO,N原子をそれぞれ固溶反応
させることにより、柱状結晶のTiCNOと粒状結晶のTiCNO
を同時生成させる。<Simultaneous Generation of Columnar Crystals and Granular Crystals in Titanium Carbonitride Oxide (Second Layer)> In order to simultaneously generate columnar crystals and granular crystals of titanium oxycarbonitride as the second layer, first,
A TiCN reaction using an organic CN-based gas having a columnar crystal structure and a TiCO reaction having a granular crystal structure are simultaneously advanced. And
By performing solid solution reaction of active O and N atoms generated in the reaction process, columnar crystal TiCNO and granular crystal TiCNO
Are generated simultaneously.
【0028】TiCNO成膜過程における膜表面の凹部にそ
の粒状結晶が析出する理由は、反応ガスが成膜過程の膜
表面を移動していく際、凸部に比較的反応の速い有機CN
系ガスを用いた柱状結晶が析出し、反応ガスが凹部に到
達するころには有機CN系ガスが少なくなり粒状結晶の生
成が支配的になるためである。The reason why the granular crystals are deposited in the recesses on the film surface during the TiCNO film formation process is that the reaction gas moves on the film surface during the film formation process, and when the reaction gas moves on the film surface, the convex portion of the organic CN reacts relatively quickly.
This is because the columnar crystals using a system gas are deposited, and when the reaction gas reaches the recesses, the amount of the organic CN system gas decreases and the generation of granular crystals becomes dominant.
【0029】これにより、粒状結晶が凹部を埋めて膜表
面が平坦になっていく。平坦になるに従って比較的反応
の速い有機CN系ガスを用いた柱状結晶は表面形状効果を
受けなくなって優先的に生成する。同時に粒状結晶生成
は減じられ、その粒状組織は微細化していき、第一層の
ドーム形状による第二層における柱状結晶のテーパー状
成長が抑制される。As a result, the granular crystals fill the recesses and the film surface becomes flat. The columnar crystals using the organic CN gas, which has a relatively fast reaction as the surface becomes flatter, are not affected by the surface shape effect and preferentially forms. At the same time, the generation of granular crystals is reduced, the granular structure is becoming finer, and the tapered growth of columnar crystals in the second layer due to the dome shape of the first layer is suppressed.
【0030】<炭窒酸化チタン(第二層)の含有酸素濃
度規定>炭窒酸化チタン膜の含有酸素濃度を規定した理
由は、酸素原子%の最大値が0.1atm%未満では柱状結晶
効果が強く表れ、凹部に柱状結晶が十分析出せず、逆に
15atm%を超えると粒状結晶の析出が多くなり、上部に
成膜する柱上結晶組織のTiCN(第三層)がテーパー状に
成長するためである。より好ましい範囲は1〜6atm%で
ある。<Defining Oxygen Concentration of Titanium Carbonitride Oxide (Second Layer)> The reason for defining the oxygen concentration of titanium oxycarbonitride film is that when the maximum oxygen atom% is less than 0.1 atm%, the columnar crystal effect occurs. It appears strongly and columnar crystals do not fully precipitate in the recesses.
This is because if it exceeds 15 atm%, the precipitation of granular crystals increases, and the TiCN (third layer) of the pillar-shaped crystal structure formed on top grows in a taper shape. A more preferable range is 1 to 6 atm%.
【0031】<炭窒酸化チタン(第二層)の膜厚規定>
炭窒酸化チタンの膜厚を規定した理由は、その厚みが0.
2μm未満では下層の粒状結晶の影響を受けるため炭窒酸
化チタンが十分平坦化せず、逆に2.0μmを超えるとその
炭窒酸化チタンの平坦化が飽和され、更に積層する意味
がないからである。より好ましい範囲は0.3〜1.5μmで
ある。<Definition of film thickness of titanium oxycarbonitride (second layer)>
The reason for defining the film thickness of titanium oxycarbonitride is that the thickness is 0.
If it is less than 2 μm, the titanium oxycarbonitride will not be sufficiently flattened because it will be affected by the granular crystals in the lower layer, and if it exceeds 2.0 μm, the flattening of the titanium oxycarbonitride will be saturated and there is no point in further stacking. is there. A more preferable range is 0.3 to 1.5 μm.
【0032】<第一層と第二層の配置>柱状結晶と粒状
結晶の混在結晶の炭窒酸化チタン層(第二層)が、粒状
結晶層(第一層)直上に被覆されていれば、さらに硬質被
膜の基材に対する密着性を高くし、切削工具として耐剥
離性を改善することができるからである。<Arrangement of First Layer and Second Layer> If the titanium oxycarbonitride layer (second layer) of mixed crystals of columnar crystals and granular crystals is coated directly on the granular crystal layer (first layer). Further, it is possible to further improve the adhesion of the hard coating to the base material and improve the peeling resistance as a cutting tool.
【0033】<炭窒化チタン(第三層)のアスペクト比
の規定>まず、アスペクト比について説明する。図1に
示すように、工具の破断面で柱状結晶TiCNの膜厚Aの中
心線を基準として膜厚Aの70%の厚みDに相当する上端位
置と下端位置を求め、各位置における水平方向の上端側
粒径Bと下端側粒径Cを求める。そして、D/{(B+C)/2}
をアスペクト比とする。アスペクト比を規定した理由
は、柱状結晶組織の炭窒化チタンの結晶粒が硬質合金基
材の刃先稜線部付近において、そのアスペクト比が6以
上あれば切削性能が上がり望ましいからである。<Definition of Aspect Ratio of Titanium Carbonitride (Third Layer)> First, the aspect ratio will be described. As shown in Fig. 1, in the fracture surface of the tool, the upper end position and the lower end position corresponding to the thickness D of 70% of the film thickness A with reference to the center line of the film thickness A of the columnar crystal TiCN are obtained, and the horizontal direction at each position is calculated. The particle size B at the upper end and the particle size C at the lower end of And D / {(B + C) / 2}
Is the aspect ratio. The reason for defining the aspect ratio is that if the crystal grains of titanium carbonitride having a columnar crystal structure have an aspect ratio of 6 or more near the cutting edge ridge of the hard alloy base material, the cutting performance is desired to be increased.
【0034】<炭窒化チタン(第三層)の平均膜厚>炭
窒化チタンの膜厚が平均膜厚で2.0μm以下では優れた耐
摩耗性が発揮できず、逆に20μmを超えると耐剥離性が
落ちることから第三層の平均膜厚を2.0〜20μmとした。<Average Thickness of Titanium Carbonitride (Third Layer)> When the average thickness of titanium carbonitride is 2.0 μm or less, excellent wear resistance cannot be exhibited, and conversely, when it exceeds 20 μm, peeling resistance is increased. The average film thickness of the third layer was set to 2.0 to 20 μm because of poor performance.
【0035】<第四層の形成>第三層の外層にチタン化
合物で化学式Ti(Cw'Nx'Oy'Bz'){w'+x'+y'+z'≦1,0
≦w',x',y',z'≦1}、酸化アルミニウム、酸化ジルコニ
ウム、酸化ハフニウムから選ばれる1種以上の単層また
は多層膜を被覆することによってより耐摩耗性が向上し
切削工具として好ましい。そして、その際の硬質被膜全
体の平均膜厚が2.0〜30μmであれば、耐摩耗性および耐
クレーター性のバランスが良くなり長期にわたり優れた
性能を発揮できる。<Formation of Fourth Layer> The chemical formula Ti (Cw'Nx'Oy'Bz ') {w' + x '+ y' + z'≤1,0 is used for the outer layer of the third layer and is a titanium compound.
≦ w ', x', y ', z' ≦ 1}, aluminum oxide, zirconium oxide, hafnium oxide by coating one or more single-layer or multi-layer coating, wear resistance is further improved and cutting tools Is preferred as If the average film thickness of the entire hard coating at that time is 2.0 to 30 μm, the wear resistance and crater resistance are well balanced, and excellent performance can be exhibited for a long period of time.
【0036】<基材材料>基材が超硬合金もしくはサー
メットであれば優れた性能を発揮することが可能であ
る。超硬合金はWCを主体とする硬質相とCoを主体とする
結合相とからなるものが一般に用いられる。サーメット
にはTiC基、Cr3C2基、Al2O3基サーメットなどがある。<Base Material> If the base material is cemented carbide or cermet, excellent performance can be exhibited. A cemented carbide is generally used that is composed of a hard phase mainly composed of WC and a binder phase mainly composed of Co. Cermets include TiC-based, Cr 3 C 2 -based, Al 2 O 3 -based cermets.
【0037】<基材表面粗さ>被覆切削工具における基
材の刃先稜線部近傍の表面粗さが、基材断面から観測し
て測定される基準長さ5μmに対してRmaxで0.2〜1.3μm
であれば、更に切削性能が上がり望ましいからである。<Substrate surface roughness> The surface roughness in the vicinity of the cutting edge ridge of the substrate in the coated cutting tool is 0.2 to 1.3 μm in Rmax with respect to the reference length of 5 μm observed from the cross section of the substrate.
If so, the cutting performance is further increased, which is desirable.
【0038】<硬質被膜の表面粗さ>被覆切削工具にお
ける硬質被覆膜の刃先稜線部近傍の面粗さが、基材断面
からしてRmaxが0.2μm以下の滑らかな面で実質的に構成
されていると、更に切削性能が上がり望ましいからであ
る。<Surface Roughness of Hard Coating> The surface roughness in the vicinity of the cutting edge ridge of the hard coating in the coated cutting tool is substantially a smooth surface having Rmax of 0.2 μm or less from the cross section of the substrate. This is because the cutting performance is further improved and is desirable.
【0039】<製造方法>本発明切削工具における硬質
合金基材は、公知の焼結方法により製造することができ
る。硬質被覆は化学的蒸着法(CVD法)により形成する
ことができる。CVD法には、熱CVD法、プラズマCVD法、
光CVD法などが挙げられる。第一層、第三層、第四層
は、これらのCVD法により公知の条件にて形成すれば良
い。また、膜厚の制御は成膜時間により調整を行う。上
部が平坦で柱状結晶と粒状結晶の混在結晶構造をもつ炭
窒酸化チタン(第二層)は、特に熱CVD法により下記の
条件で形成することが好ましい。<Manufacturing Method> The hard alloy base material in the cutting tool of the present invention can be manufactured by a known sintering method. The hard coating can be formed by a chemical vapor deposition method (CVD method). The CVD method includes a thermal CVD method, a plasma CVD method,
An optical CVD method and the like can be mentioned. The first layer, the third layer, and the fourth layer may be formed by these CVD methods under known conditions. The film thickness is controlled by adjusting the film forming time. The titanium oxycarbonitride (second layer) having a flat upper portion and a mixed crystal structure of columnar crystals and granular crystals is preferably formed by the thermal CVD method under the following conditions.
【0040】反応ガス組成(容量%) TiCl4:0.4〜4.0% CH3CN:0.1〜2.0% CO:1.0〜3.0% N2:3.0〜35% CH4:0.1〜0.5% HCl:0.1〜0.5% Ar:0.5〜10% H2:残り 雰囲気温度:820〜880℃ 雰囲気圧力:53〜267hPa(40〜200torr)The reaction gas composition (volume%) TiCl 4: 0.4~4.0% CH 3 CN: 0.1~2.0% CO: 1.0~3.0% N 2: 3.0~35% CH 4: 0.1~0.5% HCl: 0.1~0.5 % Ar: 0.5~10% H 2: remainder atmosphere temperature: eight hundred and twenty to eight hundred eighty ° C. ambient pressure: 53~267hPa (40~200torr)
【0041】[0041]
【発明の実施の形態】以下、本発明の実施の形態を説明
する。
(試験例1)硬質合金基材として表1に示された原料粉
末を用いて表1記載の配合組成に配合し、ボールミルで7
2時間湿式混合し乾燥した後、ISO・CNMG120408の形状に
ブレーカー形状が施された圧粉体にプレス成型し、真空
雰囲気中で表1記載の条件で焼結を行って基材を作製し
た。その後、基材表面に平面研磨、刃先ホーニングを施
し、基材の表面粗さを表4、5に示した値にブラシ研磨に
より調整した後、化学蒸着装置(熱CVD)を用いて表2、3
に示される条件で硬質被膜を形成して表4、5、6に示さ
れる被覆切削工具を得た。表4の硬質被膜は第一層〜第
三層までの3層構造を有し、表5、6の硬質被膜は第一層
〜第四層までの積層構造で、第四層を単層もしくは複層
としている。表4、6における「total平均膜厚」は、硬
質被膜全体の厚さのことである。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. (Test Example 1) The raw material powders shown in Table 1 were used as the hard alloy base material and blended with the blending composition shown in Table 1 to prepare a ball mill.
After wet-mixing for 2 hours and drying, a green compact having a breaker shape according to ISO / CNMG120408 was press-molded and sintered in a vacuum atmosphere under the conditions shown in Table 1 to prepare a base material. After that, the surface of the base material was subjected to flat surface polishing and honing of the cutting edge, and after adjusting the surface roughness of the base material by brush polishing to the values shown in Tables 4 and 5, Table 2 using a chemical vapor deposition device (thermal CVD), 3
Hard coatings were formed under the conditions shown in Table 1 to obtain coated cutting tools shown in Tables 4, 5, and 6. The hard coatings in Table 4 have a three-layer structure from the first layer to the third layer, and the hard coatings in Tables 5 and 6 have a laminated structure from the first layer to the fourth layer, and the fourth layer is a single layer or It has multiple layers. The “total average film thickness” in Tables 4 and 6 is the total thickness of the hard coating.
【0042】[0042]
【表1】 [Table 1]
【0043】[0043]
【表2】 [Table 2]
【0044】[0044]
【表3】 [Table 3]
【0045】[0045]
【表4】 [Table 4]
【0046】[0046]
【表5】 [Table 5]
【0047】[0047]
【表6】 [Table 6]
【0048】次いで、得られた被覆切削工具における炭
窒化チタン層をSIMS(Secondary Ion Mass Spectros
copy)を用いてライン分析し、含有酸素の最大atm%を
算定した。また、その炭窒酸化チタンの組織は被覆切削
工具の膜破断面を透過型電子顕微鏡を用いて粒状結晶と
柱状結晶の混在結晶組織を確認した。アスペクト比は、
図1に示したように、D/{(B+C)/2}により求めた。基
材の面粗さは、刃先稜線部近傍の断面において、基準長
さ5μmに対するRmaxにより求めた。Next, the titanium carbonitride layer in the obtained coated cutting tool was subjected to SIMS (Secondary Ion Mass Spectroscopy).
line) was used to calculate the maximum atm% of oxygen content. As for the structure of the titanium oxycarbonitride, a mixed crystal structure of granular crystals and columnar crystals was confirmed by using a transmission electron microscope on the film fracture surface of the coated cutting tool. The aspect ratio is
As shown in FIG. 1, it was determined by D / {(B + C) / 2}. The surface roughness of the base material was determined by Rmax for a reference length of 5 μm in the cross section near the edge of the cutting edge.
【0049】この結果から得られた各種の被覆切削工具
について、耐摩耗試験は以下の条件1で切削試験を行っ
てフランク摩耗量を求め、耐剥離性試験は以下の条件2
で切削試験を行って欠損までの時間を求めた。それらの
結果を表4および表6に示す。For various coated cutting tools obtained from these results, a wear test was conducted under the following condition 1 to obtain flank wear amount, and a peel resistance test was conducted under the following condition 2.
The cutting test was carried out to determine the time to failure. The results are shown in Tables 4 and 6.
【0050】(条件1) 被削材:SCM435 丸棒 切削速度:150m/min 送り:0.3mm/rev 切り込み:1.8mm 切削時間:40min 切削油:使用せず(Condition 1) Work Material: SCM435 Round Bar Cutting speed: 150m / min Feed: 0.3mm / rev Notch: 1.8 mm Cutting time: 40min Cutting oil: Not used
【0051】(条件2) 被削材:SCM415 溝付き丸棒 切削速度:400m/min 送り:0.3mm/rev 切り込み:1.5mm 切削油:使用せず(Condition 2) Work Material: SCM415 Grooved Round Bar Cutting speed: 400m / min Feed: 0.3mm / rev Notch: 1.5 mm Cutting oil: Not used
【0052】表4、6から明らかなように本発明品の被覆
切削工具を用いて加工を行った場合、優れた耐摩耗性を
具えると共に、優れた耐剥離性を持つことが明かになっ
た。As is clear from Tables 4 and 6, when the coated cutting tool of the present invention was used for processing, it was revealed that it had excellent wear resistance and excellent peeling resistance. It was
【0053】(試験例2)上記試験例1で得られたチッ
プブレーカ付き被覆切削工具のうち発明品1〜21につい
て、刃先稜線部近傍の硬質被膜を平均粒径4μmのダイヤ
モンドパウダーでラッピングして硬質被膜の表面粗さを
調整した。表面粗さは、硬質被膜の断面を観察して基準
長さ5μmに対する面粗さRmaxを測定した。そして、表面
粗さが0.2μm以下の硬質被膜と0.2μmを越える硬質被膜
に調整して前記2つの切削条件で切削試験を行った。(Test Example 2) Among the coated cutting tools with chip breakers obtained in Test Example 1 above, Invention Products 1 to 21 were prepared by lapping the hard coating near the edge of the cutting edge with diamond powder having an average particle diameter of 4 μm. The surface roughness of the hard coating was adjusted. The surface roughness was obtained by observing the cross section of the hard coating and measuring the surface roughness Rmax for a reference length of 5 μm. Then, a hard coating having a surface roughness of 0.2 μm or less and a hard coating having a surface roughness of more than 0.2 μm were prepared, and a cutting test was conducted under the above two cutting conditions.
【0054】その結果、切削条件1では逃げ面の摩耗幅
が20%程度減少し、切削条件2では寿命が20〜40%延び
ることが確認でき、性能向上が図れた。As a result, it was confirmed that the wear width of the flank was reduced by about 20% under the cutting condition 1 and the life was extended by 20-40% under the cutting condition 2, and the performance was improved.
【0055】[0055]
【発明の効果】以上詳述した通り、本発明被覆切削工具
の製造方法によれば、炭窒酸化チタン層を粒状結晶と柱
状結晶の混在結晶構造にし、その含有酸素濃度を特定の
範囲にすることで表面が平滑な炭窒酸化チタンを造り出
すことができる。その結果、本発明被覆切削工具は、炭
窒化チタン層の柱上結晶がテーパー状ではなくより直上
に成長し、その粒界強度が増して亀裂が入り難くなり、
耐摩耗性を損なうことなく優れた耐剥離性を具えること
ができる。As described above in detail, according to the method for manufacturing a coated cutting tool of the present invention, the titanium oxycarbonitride layer has a mixed crystal structure of granular crystals and columnar crystals, and the oxygen concentration thereof is set within a specific range. As a result, titanium oxycarbonitride having a smooth surface can be produced. As a result, the coated cutting tool of the present invention, the columnar crystals of the titanium carbonitride layer grow directly above rather than in a tapered shape, and its grain boundary strength increases, making it difficult to crack.
Excellent peel resistance can be provided without impairing wear resistance.
【図1】アスペクト比の計算方法の説明図である。FIG. 1 is an explanatory diagram of a method of calculating an aspect ratio.
1 結晶粒 1 crystal grain
───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡部 和広 北海道空知郡奈井江町字奈井江776番地 北海道住電精密株式会社内 (56)参考文献 特開200−1198550(JP,A) 特開 平3−26404(JP,A) 特許3282592(JP,B2) 特許2876130(JP,B2) (58)調査した分野(Int.Cl.7,DB名) B23B 27/14 C23C 16/30 C23C 16/40 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuhiro Watanabe 776 Naie, Naie-cho, Sorachi-gun, Hokkaido Inside Hokkaido Sumiden Precision Co., Ltd. (56) References JP 200-1198550 (JP, A) JP HEI 3- 26404 (JP, A) Patent 3282592 (JP, B2) Patent 2876130 (JP, B2) (58) Fields investigated (Int.Cl. 7 , DB name) B23B 27/14 C23C 16/30 C23C 16/40
Claims (10)
硬質被膜とを具える被覆切削工具において、 前記硬質被膜は下記の構成を有することを特徴とする被
覆切削工具。 前記基材表面に形成され、窒化チタン、炭化チタン、
炭酸化チタン、窒酸化チタン、炭窒化チタンおよび硼窒
化チタンの単層または複数層からなる第一層。 第一層の直上に形成され、粒状結晶と柱状結晶の混在
結晶構造の炭窒酸化チタンで、その膜中の酸素含有濃度
が原子%の最大値で0.1%〜15%を満たし、かつ平均膜
厚が0.2以上2.0μm以下である第二層。 第二層の直上に形成される柱状結晶構造の炭窒化チタ
ンである第三層。1. A coated cutting tool comprising a hard alloy substrate and a hard coating formed on the surface thereof, wherein the hard coating has the following constitution. Formed on the surface of the base material, titanium nitride, titanium carbide,
A first layer consisting of a single layer or multiple layers of titanium carbonate, titanium oxynitride, titanium carbonitride, and titanium boronitride. The titanium oxycarbonitride formed directly on the first layer and having a mixed crystal structure of granular crystals and columnar crystals, the oxygen content concentration in the film satisfies 0.1% to 15% at the maximum atomic%, and the average film A second layer having a thickness of 0.2 or more and 2.0 μm or less. The third layer, which is titanium carbonitride having a columnar crystal structure formed directly on the second layer.
を有していることを特徴とする請求項1に記載の被覆切
削工具。2. The coated cutting tool according to claim 1, wherein the film crystal structure of the first layer has a granular crystal structure.
で、その酸素含有濃度が原子%の最大値で1%〜6%を満
たすことを特徴とする請求項1または2に記載の被覆切削
工具。3. The average film thickness of the second layer is 0.3 μm to 1.5 μm.
3. The coated cutting tool according to claim 1, wherein the oxygen content concentration satisfies 1% to 6% at the maximum value of atomic%.
層の結晶粒がアスペクト比6以上あることを特徴とする
請求項l〜3のいずれかに記載の被覆切削工具。4. The coated cutting tool according to claim 1, wherein the crystal grains of the third layer in the vicinity of the cutting edge ridge portion of the base material have an aspect ratio of 6 or more.
すことを特徴とする請求項1〜4のいずれかに記載の被覆
切削工具。5. The coated cutting tool according to claim 1, wherein the average film thickness of the third layer satisfies 2 to 20 μm.
成される単層または複数層からなる第四層を具え、 この第四層は、チタン化合物で化学式Ti(Cw'Nx'Oy'B
z'){w'+x'+y'+z'=1,0≦w',x',y',z'≦1}、酸化ア
ルミニウム、酸化ジルコニウムおよび酸化ハフニウムか
ら選ばれる1種以上からなり、 硬質被膜全体の膜厚が平均膜厚で2.5〜30μmであること
を特徴とする請求項1〜5のいずれかに記載の被覆切削工
具。6. The hard coating comprises a fourth layer composed of a single layer or a plurality of layers formed on the third layer, the fourth layer being a titanium compound and having a chemical formula of Ti (Cw'Nx'Oy). 'B
z ') {w' + x '+ y' + z '= 1,0≤w', x ', y', z'≤1}, made of at least one selected from aluminum oxide, zirconium oxide and hafnium oxide, and hard The coated cutting tool according to any one of claims 1 to 5, wherein the coating has an average thickness of 2.5 to 30 µm.
あることを特徴とする請求項1〜6のいずれかに記載の被
覆切削工具。7. The coated cutting tool according to claim 1, wherein the base material is cemented carbide or cermet.
が、基材断面から観測する方法によって測定される基準
長さ5μmに対してRmaxで0.2〜1.3μmであることを特徴
とする請求項1〜7のいずれかに記載の被覆切削工具。8. The surface roughness in the vicinity of the cutting edge ridge of the base material is 0.2 to 1.3 μm in Rmax with respect to a reference length of 5 μm measured by a method of observing from the cross section of the base material. The coated cutting tool according to any one of claims 1 to 7.
長さ5μmに対して面粗さRmaxで0.2μm以下の滑らかな面
で実質的に構成されていることを特徴とする請求項1〜8
のいずれかに記載の被覆切削工具。9. The surface of the hard coating film near the edge of the cutting edge is substantially constituted by a smooth surface having a surface roughness Rmax of 0.2 μm or less with respect to a reference length of 5 μm. 1 ~ 8
The coated cutting tool according to any one of 1.
り粒状結晶構造を有する窒化チタン、炭化チタン、炭酸
化チタン、窒酸化チタン、炭窒化チタンおよび硼窒化チ
タンの1層以上からなる被膜を形成する工程と、 化学蒸着法により、炭窒酸化チタンの粒状結晶と柱状結
晶が同時に析出する反応を起こし、粒状結晶と柱状結晶
の混在結晶構造の炭窒酸化チタン層を形成する工程と、 化学的蒸着法により柱状結晶構造の炭窒化チタン層を形
成する工程とを含むことを特徴とする被覆切削工具の製
造方法。10. A film comprising one or more layers of titanium nitride, titanium carbide, titanium carbonate, titanium oxynitride, titanium carbonitride, and titanium boronitride having a granular crystal structure on the surface of a hard alloy substrate by a chemical vapor deposition method. And a step of forming a titanium oxycarbonitride layer having a mixed crystal structure of granular crystals and columnar crystals by causing a reaction in which granular crystals of titanium oxycarbonitride and columnar crystals are simultaneously precipitated by a chemical vapor deposition method, And a step of forming a titanium carbonitride layer having a columnar crystal structure by a chemical vapor deposition method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001025126A JP3462859B2 (en) | 2001-02-01 | 2001-02-01 | Coated cutting tool |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001025126A JP3462859B2 (en) | 2001-02-01 | 2001-02-01 | Coated cutting tool |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002233902A JP2002233902A (en) | 2002-08-20 |
JP3462859B2 true JP3462859B2 (en) | 2003-11-05 |
Family
ID=18890169
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001025126A Expired - Fee Related JP3462859B2 (en) | 2001-02-01 | 2001-02-01 | Coated cutting tool |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3462859B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006068844A (en) * | 2004-09-01 | 2006-03-16 | Hitachi Tool Engineering Ltd | Hard film coated small-diameter member |
JP4646214B2 (en) | 2005-03-17 | 2011-03-09 | 株式会社リコー | Image forming apparatus |
JP2007090470A (en) * | 2005-09-28 | 2007-04-12 | Mitsubishi Materials Corp | Surface coated cermet-made cutting throw-away tip having hard coating layer exhibiting excellent chipping resistance in high |
JP2007144992A (en) * | 2005-10-28 | 2007-06-14 | Fujifilm Corp | Recessed and projected structure and its manufacturing method, piezoelectric element, ink jet type recording head, ink jet type recording apparatus |
JP2009018362A (en) * | 2007-07-11 | 2009-01-29 | Mitsubishi Materials Corp | Surface coated cutting tool |
JP5838805B2 (en) * | 2011-12-28 | 2016-01-06 | 三菱マテリアル株式会社 | Surface coated cutting tool with excellent chipping resistance due to hard coating layer |
JP5850402B2 (en) * | 2012-02-16 | 2016-02-03 | 三菱マテリアル株式会社 | Surface coated cutting tool with excellent chipping resistance due to hard coating layer |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2876130B2 (en) | 1989-05-19 | 1999-03-31 | 京セラ株式会社 | Coated cutting tool |
JP3282592B2 (en) | 1997-09-18 | 2002-05-13 | 三菱マテリアル株式会社 | Surface-coated cemented carbide cutting tool that demonstrates excellent wear resistance in high-speed cutting |
-
2001
- 2001-02-01 JP JP2001025126A patent/JP3462859B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2876130B2 (en) | 1989-05-19 | 1999-03-31 | 京セラ株式会社 | Coated cutting tool |
JP3282592B2 (en) | 1997-09-18 | 2002-05-13 | 三菱マテリアル株式会社 | Surface-coated cemented carbide cutting tool that demonstrates excellent wear resistance in high-speed cutting |
Also Published As
Publication number | Publication date |
---|---|
JP2002233902A (en) | 2002-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2638993B1 (en) | Surface-coated cutting tool | |
EP2570511B1 (en) | Grain boundary engineered alpha-alumina coated cutting tool | |
EP2085500A2 (en) | Surface-coated cutting tool with hard coating layer having excellent abrasion resistance | |
EP3851230B1 (en) | Cutting tool | |
EP3871814A1 (en) | Cutting tool | |
JP3462859B2 (en) | Coated cutting tool | |
JP3250414B2 (en) | Method for producing cutting tool coated with titanium carbonitride layer surface | |
JP4351521B2 (en) | Surface coated cutting tool | |
JP2001239404A (en) | Cutting tool made of surface coated cemented carbide having good chipping resistance | |
JP2009166193A (en) | Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting | |
JPH11138308A (en) | Cutting tool made of surface coated cemented carbide alloy with hard coating layer having excellent antichipping property | |
EP3868501A1 (en) | Cutting tool | |
JP7205039B1 (en) | Cutting tools | |
WO2022201229A1 (en) | Cutting tool | |
WO2022201230A1 (en) | Cutting tool | |
JP4822119B2 (en) | Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting | |
JP7473883B2 (en) | Surface-coated cutting tools | |
EP4147808B1 (en) | Cutting tool | |
JP3781006B2 (en) | Aluminum oxide coated tools | |
JP3265910B2 (en) | Manufacturing method of surface coated cutting tool | |
JP4484500B2 (en) | Surface coated cutting tool | |
JP2000158207A (en) | Surface-covering tungsten carbide group cemented carbide alloy cutting tool having its hard covering layer exhibit excellent wear resistance | |
JP3371823B2 (en) | Surface coated cemented carbide cutting tool with excellent interlayer adhesion with hard coating layer | |
JPH08318407A (en) | Covering cutting tool | |
JP2001096404A (en) | Surface-coated cutting tool of tungsten carbide-based cemented carbide exhibiting appreciable chipping resistance of hard coating layer in intermittent heavy cutting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
R150 | Certificate of patent or registration of utility model |
Ref document number: 3462859 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080815 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080815 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090815 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090815 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100815 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100815 Year of fee payment: 7 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100815 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110815 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120815 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130815 Year of fee payment: 10 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |