JP2001239404A - Cutting tool made of surface coated cemented carbide having good chipping resistance - Google Patents

Cutting tool made of surface coated cemented carbide having good chipping resistance

Info

Publication number
JP2001239404A
JP2001239404A JP2000042181A JP2000042181A JP2001239404A JP 2001239404 A JP2001239404 A JP 2001239404A JP 2000042181 A JP2000042181 A JP 2000042181A JP 2000042181 A JP2000042181 A JP 2000042181A JP 2001239404 A JP2001239404 A JP 2001239404A
Authority
JP
Japan
Prior art keywords
layer
thickness
coated carbide
cutting
outermost surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000042181A
Other languages
Japanese (ja)
Other versions
JP3989664B2 (en
Inventor
Takatoshi Oshika
高歳 大鹿
Tetsuhiko Honma
哲彦 本間
Toshiaki Ueda
稔晃 植田
Keiji Nakamura
惠滋 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2000042181A priority Critical patent/JP3989664B2/en
Priority to DE10017909A priority patent/DE10017909B4/en
Priority to US09/548,675 priority patent/US6426137B1/en
Publication of JP2001239404A publication Critical patent/JP2001239404A/en
Application granted granted Critical
Publication of JP3989664B2 publication Critical patent/JP3989664B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cutting too made of surface coated cemented carbide alloy having good chipping resistance. SOLUTION: The cutting tool made of surface coated cemented carbide alloy with average layer thickness of 3-30 μm is formed by chemical deposition and/or physical deposition of a Ti compound layer comprising one or two of a TiC layer, a TiN layer, a TiCN layer, a TiCO layer, and a TiCNO layer, and a hard coated layer made of an Al2O3 layer. In addition to the hard coated layer, using a Ti oxide layer that has an average layer thickness of 0.1-3 μm and satisfies an atomic ratio 1.2-1.7 for X:Ti for composition formula: TiOX as the most lowest surface layer and a Ti nitrogen oxide layer that has an average layer thickness of 0.05-2 μm and satisfies an atomic ratio 0.01-0.4 for Y:Ti for composition formula: TiN1-Y(O)Y (where (O) is oxygen diffused from the most lowest surface layer) as the most highest surface layer, chemical deposition and/or physical deposition as hard coated layer is performed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、特に各種の鋼や
鋳鉄などの高速切削加工に用いた場合に、硬質被覆層が
すぐれた耐チッピング性を発揮する表面被覆超硬合金製
切削工具(以下、被覆超硬工具という)に関するもので
ある。
The present invention relates to a surface-coated cemented carbide cutting tool (hereinafter referred to as a cutting tool) in which a hard coating layer exhibits excellent chipping resistance, particularly when used for high-speed cutting of various steels and cast irons. , Coated carbide tools).

【0002】[0002]

【従来の技術】一般に、切削工具には、各種の鋼や鋳鉄
などの被削材の旋削加工や平削り加工にバイトの先端部
に着脱自在に取り付けて用いられるスローアウエイチッ
プ、前記被削材の穴あけ切削加工などに用いられるドリ
ルやミニチュアドリル、さらに前記被削材の面削加工や
溝加工、肩加工などに用いられるソリッドタイプのエン
ドミルなどがあり、また前記スローアウエイチップを着
脱自在に取り付けて前記ソリッドタイプのエンドミルと
同様に切削加工を行うスローアウエイエンドミル工具な
どが知られている。さらに、従来、一般に、上記の切削
工具として、炭化タングステン基超硬合金基体(以下、
超硬基体という)の表面に、Tiの炭化物(以下、Ti
Cで示す)層、窒化物(以下、同じくTiNで示す)
層、炭窒化物(以下、TiCNで示す)層、炭酸化物
(以下、TiCOで示す)層、および炭窒酸化物(以
下、TiCNOで示す)層のうちの1種または2種以上
からなるTi化合物層と、酸化アルミニウム(以下、A
23で示す)層で構成された硬質被覆層を3〜30μ
mの平均層厚で化学蒸着および/または物理蒸着してな
る被覆超硬工具が知られている。また、上記の従来被覆
超硬工具において、硬質被覆層を構成するTi化合物層
のうちのTiN層は、自体が黄金色の表面色調を有する
ことから、工具の使用前と使用後の識別を容易にするた
めに、硬質被覆層の最表面層をTiN層で構成すること
も知られている。
2. Description of the Related Art Generally, cutting tools include a throw-away tip which is detachably attached to a tip of a cutting tool for turning or planing of various materials such as steel and cast iron. Drills and miniature drills used for drilling and cutting of solids, and solid type end mills used for face milling and grooving of the work material, shoulder machining, and the like, and the detachable tip is detachably attached. In addition, a throw-away end mill tool or the like that performs cutting in the same manner as the solid type end mill is known. Further, conventionally, generally, as the above-mentioned cutting tool, a tungsten carbide-based cemented carbide substrate (hereinafter, referred to as
A carbide of Ti (hereinafter referred to as Ti)
C) layer, nitride (hereinafter also indicated by TiN)
, A carbonitride (hereinafter, referred to as TiCN) layer, a carbon oxide (hereinafter, referred to as TiCO) layer, and a Ti or a carbonitride (hereinafter, referred to as TiCNO) layer. A compound layer and aluminum oxide (hereinafter referred to as A
3~30μ a hard layer composed of a l 2 O indicated by 3) layer
Coated carbide tools made by chemical and / or physical vapor deposition with an average layer thickness of m are known. In the above-mentioned conventional coated carbide tool, the TiN layer of the Ti compound layer constituting the hard coating layer itself has a golden surface tone, so that it is easy to distinguish before and after use of the tool. In order to achieve this, it is also known that the outermost surface layer of the hard coating layer is composed of a TiN layer.

【0003】また、一般に、上記の被覆超硬工具の硬質
被覆層を構成するTi化合物層およびAl23層が粒状
結晶組織を有し、かつ前記Al23層はα型結晶構造を
もつものやκ型結晶構造をもつものなどが広く実用に供
されるており、さらにこれらAl23層について、例え
ば1.5オングストロームの波長を有するCukα線を
線源として用いてX線回折を行うと、α−Al23層で
あれば、これの形成条件によって、いずれも2θで、2
5.6度(012結晶面配向)、35.1度(104結
晶面配向)、37.8度(110結晶面配向)、43.
4度(113結晶面配向)、52.6度(024結晶面
配向)、57.5度(116結晶面配向)、66.5度
(124結晶面配向)、および68.2度(030結晶
面配向)のうちのいずれかの回折角に最高回折ピーク高
さが現れるX線回折パターンを示すα−Al23層を形
成することができ、またκ−Al23層であると、同じ
くこれの形成条件によって、いずれも2θで、19.7
度、29.4度、32.1度、34.9度、37.3
度、43.9度、52.6度、56.0度、62.3度
および65.2度のうちのいずれかの回折角に最高回折
ピーク高さが現れるX線回折パターンを示すκ−Al2
3層を形成することができることも良く知られてい
る。
In general, the Ti compound layer and the Al 2 O 3 layer constituting the hard coating layer of the coated carbide tool have a granular crystal structure, and the Al 2 O 3 layer has an α-type crystal structure. The Al 2 O 3 layer is subjected to X-ray diffraction using, for example, a Cukα ray having a wavelength of 1.5 angstroms as a radiation source. Is carried out, if the layer is an α-Al 2 O 3 layer, depending on the conditions for forming the layer, both are 2θ and 2
5.6 degrees (012 crystal plane orientation), 35.1 degrees (104 crystal plane orientation), 37.8 degrees (110 crystal plane orientation), 43.
4 degrees (113 crystal plane orientation), 52.6 degrees (024 crystal plane orientation), 57.5 degrees (116 crystal plane orientation), 66.5 degrees (124 crystal plane orientation), and 68.2 degrees (030 crystal plane). Α-Al 2 O 3 layer showing an X-ray diffraction pattern in which the highest diffraction peak height appears at any diffraction angle of (plane orientation), and κ-Al 2 O 3 layer In the same manner, depending on the formation conditions, 19.7 is 29.7.
Degrees, 29.4 degrees, 32.1 degrees, 34.9 degrees, 37.3 degrees
Κ-, which shows an X-ray diffraction pattern in which the highest diffraction peak height appears at any of the diffraction angles of degrees, 43.9 degrees, 52.6 degrees, 56.0 degrees, 62.3 degrees, and 65.2 degrees. Al 2
It is also well known that an O 3 layer can be formed.

【0004】さらに例えば特開平6−8010号公報や
特開平7−328808号公報に記載されるように、上
記被覆超硬工具の硬質被覆層を構成する前記Ti化合物
層のうちのTiCN層を、層自身の靱性向上を目的とし
て、通常の化学蒸着装置にて、反応ガスとして有機炭窒
化物を含む混合ガスを使用し、700〜950℃の中温
温度域で化学蒸着することにより形成して縦長成長結晶
組織をもつようにすることも知られている。
Further, as described in, for example, JP-A-6-8010 and JP-A-7-328808, the TiCN layer of the Ti compound layer constituting the hard coating layer of the coated carbide tool is For the purpose of improving the toughness of the layer itself, it is formed by chemical vapor deposition at a medium temperature range of 700 to 950 ° C. using a mixed gas containing an organic carbonitride as a reaction gas in a normal chemical vapor deposition apparatus. It is also known to have a growing crystal structure.

【0005】[0005]

【発明が解決しようとする課題】一方、近年の切削加工
に対する省力化および省エネ化の要求は強く、これに伴
い、切削加工は高速化の傾向にあるが、上記の従来被覆
超硬工具において、特にこれの硬質被覆層の最表面層が
使用前後の識別目的で蒸着形成されたTiN層である場
合、このTiN層は被削材である各種鋼に対する付着性
の強いものであるため、特に高い発熱を伴う高速切削加
工では、切粉が高温加熱されることと相まって前記Ti
N層に強力に付着し、前記TiN層を硬質被覆層から局
部的に剥がし取るように作用するが、この場合前記Ti
N層は他の構成層であるTi化合物層およびAl23
のいずれに対しても密着性のすぐれたものであることか
ら、これらの構成層も前記TiN層と一緒に局部的に剥
がし取られ、この結果刃先にチッピング(微小欠け)が
発生し、比較的短時間で使用寿命に至るのが現状であ
る。
On the other hand, in recent years, there has been a strong demand for labor saving and energy saving for cutting work, and with this, cutting work tends to be accelerated. In particular, when the outermost layer of the hard coating layer is a TiN layer formed by vapor deposition for the purpose of identification before and after use, the TiN layer has a particularly high adhesiveness to various types of steel as a work material. In high-speed cutting with heat generation, the above-mentioned Ti
Strongly adheres to the N layer and acts to locally peel off the TiN layer from the hard coating layer.
Since the N layer has excellent adhesion to both the other constituent layers, the Ti compound layer and the Al 2 O 3 layer, these constituent layers are also locally peeled off together with the TiN layer. As a result, chipping (small chipping) occurs at the cutting edge, and the service life is currently reached in a relatively short time.

【0006】[0006]

【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、上記の硬質被覆層の最表面層が
TiN層で構成された従来被覆超硬工具に着目し、特に
これの高速切削加工条件下での耐チッピング性の向上を
図るべく研究を行った結果、上記の従来被覆超硬工具の
表面に、まず、最表面下地層として、反応ガス組成を、
体積%で、 TiCl4:0.2〜10%、 CO2:0.1〜10%、 Ar:5〜60%、 H2:残り、 とし、かつ、 反応雰囲気温度:800〜1100℃、 反応雰囲気圧力:4〜70kPa(30〜525tor
r)、 とした条件で、0.1〜3μmの平均層厚を有し、か
つ、オージェ分光分析装置で測定して、Tiに対する酸
素の割合が原子比で1.25〜1.90、即ち、 組成式:TiOW 、 で表わした場合、 W:Tiに対する原子比で1.25〜1.90、 を満足するTi酸化物層を形成し、このTi酸化物層の
上に、最表面層として、通常の条件、即ち、反応ガス組
成を、体積%で、 TiCl4:0.2〜10%、 N2:4〜60%、 H2:残り、 とし、かつ、 反応雰囲気温度:800〜1100℃、 反応雰囲気圧力:4〜90kPa(30〜675tor
r)、 とした条件で、0.05〜2μmの平均層厚を有するT
iN層を形成すると、この最表面層形成時に上記最表面
下地層を構成するTi酸化物層の酸素が拡散してきてT
i窒酸化物層が形成されるようになり、この場合前記T
i窒酸化物層形成後の最表面下地層は、厚さ方向中央部
をオージェ分光分析装置で測定して、酸素の割合がTi
に対する原子比で1.2〜1.7、即ち、 組成式:TiOX 、 で表わした場合、 X:Tiに対する原子比で1.2〜1.7、 を満足するTi酸化物層となり、一方前記最表面層は、
同じく厚さ方向中央部をオージェ分光分析装置で測定し
て、拡散酸素の割合がTiに対する原子比で0.01〜
0.4、即ち、 組成式:TiN1-Y(O)Y、 で表わした場合(ただし、(O)は上記最表面下地層か
らの拡散酸素を示す)、 Y:Tiに対する原子比で0.01〜0.4、 を満足するTi窒酸化物層となり、この結果の上記Ti
窒酸化物層およびTi酸化物層が硬質被覆層の最表面層
および最表面下地層として化学蒸着および/または物理
蒸着された被覆超硬工具においては、特に前記Ti窒酸
化物層が、上記TiN層と同等の黄金色の表面色調を具
備するため、工具の使用前後の識別を可能とし、かつ被
削材である各種鋼に対する付着性のきわめて低いもので
あるため、高熱発生を伴う高速切削加工にも高温加熱さ
れた切粉が付着することがなくなることから、切刃のチ
ッピング発生が著しく抑制され、長期に亘ってすぐれた
切削性能を発揮するようになるという研究結果が得られ
たのである。
Means for Solving the Problems Accordingly, the present inventors have
In view of the above, attention has been paid to a conventional coated carbide tool in which the outermost surface layer of the hard coating layer is formed of a TiN layer, and in particular, to improve chipping resistance under high-speed cutting conditions. As a result of the research, on the surface of the conventional coated carbide tool, first, as the outermost surface underlayer, the reaction gas composition was
By volume%, TiCl 4: 0.2~10%, CO 2: 0.1~10%, Ar: 5~60%, H 2: remainder, and then, and, Temperature of reaction atmosphere: 800 to 1100 ° C., the reaction Atmospheric pressure: 4 to 70 kPa (30 to 525 torr)
r) under the following conditions, an average layer thickness of 0.1 to 3 μm, and the ratio of oxygen to Ti is 1.25 to 1.90 in atomic ratio, as measured by an Auger spectrometer, that is, In the case of the composition formula: TiO W , a Ti oxide layer satisfying an atomic ratio of W: Ti to 1.25 to 1.90 is formed, and a top surface layer is formed on the Ti oxide layer. as, under normal conditions, i.e., the reaction gas composition, by volume%, TiCl 4: 0.2~10%, N 2: 4~60%, H 2: remainder, and then, and, temperature of reaction atmosphere: 800 1100 ° C., reaction atmosphere pressure: 4 to 90 kPa (30 to 675 torr)
r) T having an average layer thickness of 0.05 to 2 μm under the following conditions:
When the iN layer is formed, oxygen of the Ti oxide layer constituting the outermost surface underlayer diffuses when the outermost surface layer is formed, and T
An i-nitride oxide layer is formed.
The outermost surface underlayer after the formation of the i-nitrogen oxide layer was measured by an Auger spectrometer at the center in the thickness direction, and the oxygen content was
When represented by the atomic ratio of 1.2 to 1.7, that is, the composition formula: TiO x , the Ti oxide layer satisfies the following: 1.2 to 1.7 of the atomic ratio to X: Ti. The outermost layer,
Similarly, the central part in the thickness direction is measured by an Auger spectrometer, and the ratio of the diffused oxygen is 0.01 to
0.4, that is, when represented by the composition formula: TiN 1-Y (O) Y , (where (O) indicates oxygen diffused from the outermost underlayer), the atomic ratio of Y to Ti is 0. .01 to 0.4, and a Ti nitride oxide layer satisfying
In a coated carbide tool in which a nitrided oxide layer and a Ti oxide layer are chemically and / or physically deposited as the outermost surface layer and the outermost surface underlayer of the hard coating layer, particularly, the Ti nitrided oxide layer is composed of the TiN High-speed cutting with high heat generation because it has the same golden surface tone as the layer, so that it can be identified before and after the use of the tool, and it has extremely low adhesion to various steels as the work material. In addition, since the chips heated at a high temperature are not adhered to, the generation of chipping of the cutting edge is significantly suppressed, and the research result that excellent cutting performance is exhibited over a long period of time was obtained. .

【0007】この発明は、上記の研究結果に基づいてな
されたものであって、超硬基体の表面に、TiC層、T
iN層、TiCN層、TiCO層、およびTiCNO層
のうちの1種または2種以上からなるTi化合物層と、
Al23層で構成された硬質被覆層を3〜30μmの平
均層厚で化学蒸着および/または物理蒸着してなる被覆
超硬工具において、上記硬質被覆層に加えて、さらに最
表面下地層として、0.1〜3μmの平均層厚を有し、
かつ、 組成式:TiOX 、 で表わした場合、厚さ方向中央部をオージェ分光分析装
置で測定して、 X:Tiに対する原子比で1.2〜1.7、 を満足するTi酸化物層と、同じく最表面層として、
0.05〜2μmの平均層厚を有し、かつ、 組成式:TiN1-Y(O)Y、 で表わした場合(ただし、(O)は上記最表面下地層か
らの拡散酸素を示す)、同じく厚さ方向中央部をオージ
ェ分光分析装置で測定して、 Y:Tiに対する原子比で0.01〜0.4、 を満足するTi窒酸化物層、を硬質被覆層として化学蒸
着および/または物理蒸着してなる、耐チッピング性の
すぐれた被覆超硬工具に特徴を有するものである。
The present invention has been made on the basis of the above research results, and a TiC layer, T
a Ti compound layer composed of one or more of an iN layer, a TiCN layer, a TiCO layer, and a TiCNO layer;
The hard coating layer consisting of the Al 2 O 3 layer with an average layer thickness of 3~30μm in chemical vapor deposition and / or physical vapor deposition coated cemented carbide comprising, in addition to the above hard layer further outermost underlayer Has an average layer thickness of 0.1 to 3 μm,
In addition, when represented by the composition formula: TiO x , a Ti oxide layer that satisfies the following formula: X: atomic ratio to Ti: 1.2 to 1.7 measured by Auger spectroscopy at the center in the thickness direction. And, as the outermost layer,
When it has an average layer thickness of 0.05 to 2 μm and is represented by the composition formula: TiN 1-Y (O) Y , where (O) indicates oxygen diffused from the outermost underlayer. Similarly, a central portion in the thickness direction is measured by an Auger spectroscopic analyzer, and a Ti oxynitride layer satisfying 0.01 to 0.4 as an atomic ratio with respect to Y: Ti is used as a hard coating layer by chemical vapor deposition and / or Alternatively, it is characterized by a coated carbide tool having excellent chipping resistance, which is obtained by physical vapor deposition.

【0008】なお、この発明の被覆超硬工具において、
硬質被覆層の最表面層を構成するTi窒酸物層の拡散酸
素の割合(Y値)をTiに対する原子比で0.01〜
0.40としたのは、その値が0.01未満では切粉に
対する付着性抑制に所望の効果を確保することができ
ず、一方その値が0.40を越えると、層中に気孔が形
成され易くなり、健全な最表面層の安定的形成が難しく
なるという理由によるものである。
[0008] In the coated carbide tool of the present invention,
The diffusion oxygen ratio (Y value) of the Ti nitride layer constituting the outermost surface layer of the hard coating layer is 0.01 to
The reason for setting the value to 0.40 is that if the value is less than 0.01, the desired effect in suppressing the adhesion to the chips cannot be secured, while if the value exceeds 0.40, pores are formed in the layer. This is because they are easily formed, and it is difficult to stably form a sound outermost surface layer.

【0009】また、同じく最表面層を構成するTi窒酸
化物層は、上記の通り、まず、最表面下地層として、酸
素の割合をTiに対する原子比で1.25〜1.90
(W値)としたTi酸化物層を形成し、ついで前記最表
面下地層の上に通常の条件でTiN層を蒸着することに
より形成されるものであり、したがって前記TiN層形
成時における前記最表面下地層からの酸素の拡散が不可
欠となるが、前記最表面下地層を構成するTi酸化物層
のW値が1.25未満であると、前記TiN層への酸素
の拡散反応が急激に低下し、最表面層における拡散酸素
の割合(Y値)をTiに対する原子比で0.01以上に
することができず、一方同W値が1.90を越えると、
前記最表面層における拡散酸素の割合がTiに対する原
子比で0.40を越えて多くなってしまうことから、W
値を1.25〜1.90と定めたものであり、この場合
最表面層形成後の最表面下地層における酸素の割合(X
値)はTiに対する原子比で1.2〜1.7の範囲内の
値をとるようになる、言い換えれば最表面層形成後の最
表面下地層のX値が1.2〜1.7を満足する場合に、
前記最表面層のY値は0.01〜0.40を満足するも
のとなるのである。
Further, as described above, the Ti nitride oxide layer also constituting the outermost surface layer first serves as an outermost surface underlayer so that the oxygen ratio is 1.25 to 1.90 in atomic ratio to Ti.
(W value) is formed by forming a Ti oxide layer and then depositing a TiN layer on the outermost surface underlayer under ordinary conditions. Diffusion of oxygen from the surface underlayer is indispensable, but if the W value of the Ti oxide layer constituting the outermost surface underlayer is less than 1.25, the diffusion reaction of oxygen into the TiN layer rapidly increases. When the W value exceeds 1.90, the ratio (Y value) of the diffused oxygen in the outermost surface layer cannot be increased to 0.01 or more in atomic ratio with respect to Ti.
Since the atomic ratio of diffused oxygen in the outermost surface layer exceeds 0.40 in atomic ratio to Ti, W
The value is defined as 1.25 to 1.90. In this case, the ratio of oxygen (X
Value) takes on a value within the range of 1.2 to 1.7 in atomic ratio to Ti. In other words, the X value of the outermost surface underlayer after the outermost surface layer is formed is 1.2 to 1.7. If you are satisfied,
The Y value of the outermost surface layer satisfies 0.01 to 0.40.

【0010】さらに、同じく硬質被覆層を構成する最表
面層および最表面下地層の平均層厚を、それぞれ0.0
5〜2μmおよび0.1〜3μmとしたのは、その平均
層厚が0.05μm未満および0.1μm未満では、前
者にあっては所望の表面色調(黄金色)を確保すること
ができず、また後者にあっては最表面層への酸素供給が
不十分になり、一方前者の色調付与作用は2μm、後者
の酸素供給作用は3μmの平均層厚で十分満足に行うこ
とができるという理由にもとづくものである。また、硬
質被覆層の平均層厚を3〜30μmとしたのは、その層
厚が3μmでは所望のすぐれた耐摩耗性を確保すること
ができず、一方その層厚が30μmを越えると、切刃に
欠けやチッピングが発生し易くなるという理由によるも
のである。
Further, the average layer thickness of each of the outermost surface layer and the outermost underlayer constituting the hard coating layer is set to 0.0
When the average layer thickness is less than 0.05 μm or less than 0.1 μm, the desired surface color (golden color) cannot be secured in the former case. In the latter, the supply of oxygen to the outermost surface layer becomes insufficient, while the former provides a color tone providing effect of 2 μm and the latter provides an oxygen supplying effect of 3 μm with an average layer thickness of sufficiently satisfactory. It is based on The reason why the average thickness of the hard coating layer is set to 3 to 30 μm is that if the thickness is 3 μm, it is not possible to secure the desired excellent wear resistance. This is because chipping and chipping easily occur in the blade.

【0011】さらに、また上記の最表面下地層のTi酸
化物層は、これを硬質被覆層を構成するAl23層の表
面に、これのW値が1.25〜1.90の範囲内の低い
側、例えば1.25〜1.50の範囲内にある条件や、
その平均層厚が0.1〜3μmの範囲内の薄い側、例え
ば0.1〜1μmの範囲内にある条件で形成した場合に
は、前記Al23層との間に十分な層間密着性が得られ
ない場合がある(勿論、上記Ti酸化物層の形成条件に
よっては、この場合でも十分な層間密着性が得られるも
のである)ので、この場合には上記Ti酸化物層形成後
に、下記の雰囲気、即ち、雰囲気ガス組成を、 TiCl4:0.05〜10体積%、 不活性ガス:残り、 とし、かつ、 雰囲気温度:800〜1100℃、 雰囲気圧力:4〜90kPa(30〜675Tor
r)、 とした雰囲気中に所定時間、例えば5分〜5時間程度保
持して、上記Ti酸化物層とAl23層との界面部に、
望ましくは0.05〜2μmの平均層厚で相互拡散層を
形成し、これによって層間密着性の向上を図るのがよ
く、さらにこのTi酸化物層とAl23層との層間密着
性向上処理は、上記Ti酸化物層のW値および平均層厚
が上記の低い側および薄い側の値以外の値である場合に
も、層間密着性のより一層の向上を図る目的で行っても
よい。
Further, the Ti oxide layer as the outermost surface underlayer is formed on the surface of the Al 2 O 3 layer constituting the hard coating layer, and has a W value in the range of 1.25 to 1.90. Condition on the lower side of, for example, in the range of 1.25 to 1.50,
When formed on the thin side having an average layer thickness in the range of 0.1 to 3 μm, for example, in the range of 0.1 to 1 μm, sufficient interlayer adhesion between the Al 2 O 3 layer and the Al 2 O 3 layer is obtained. In some cases, depending on the conditions for forming the Ti oxide layer, sufficient interlayer adhesion may be obtained even in this case. Therefore, in this case, after forming the Ti oxide layer, , the atmosphere of the following, namely, the atmospheric gas composition, TiCl 4: 0.05 to 10% by volume, the inert gas: the rest, and then, and ambient temperature: 800 to 1100 ° C., atmospheric pressure: 4~90kPa (30~ 675Torr
r) for a predetermined period of time, for example, about 5 minutes to 5 hours, in the atmosphere defined by the following equation, at the interface between the Ti oxide layer and the Al 2 O 3 layer,
Preferably, an interdiffusion layer is formed with an average layer thickness of 0.05 to 2 μm to improve interlayer adhesion, and furthermore, to improve interlayer adhesion between the Ti oxide layer and the Al 2 O 3 layer. The treatment may be performed for the purpose of further improving interlayer adhesion even when the W value and the average layer thickness of the Ti oxide layer are values other than the values on the low side and the thin side. .

【0012】[0012]

【発明の実施の形態】つぎに、この発明の被覆超硬工具
を実施例により具体的に説明する。 (実施例1)原料粉末として、いずれも0.5〜4μm
の範囲内の所定の平均粒径を有するWC粉末、(Ti,
W)C(重量比で、以下同じ、TiC/WC=30/7
0)粉末、(Ti,W)CN(TiC/TiN/WC=
24/20/56)粉末、(Ta,Nb)C(TaC/
NbC=90/10)粉末、Cr32粉末、およびCo
粉末を用意し、これら原料粉末を表1に示される配合組
成に配合し、ボールミルで72時間湿式混合し、乾燥し
た後、9.8×107Pa(1ton/cm2)の圧力で
所定形状の圧粉体にプレス成形し、この圧粉体を1.3
Pa(1×10 -2torr)の真空中、1300〜15
00℃の範囲内の所定温度に1時間保持の条件で真空焼
結することによりISO・CNMG120408に規定
するスローアウエイチップ形状をもった超硬基体(チッ
プ)A〜Fをそれぞれ製造した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, a coated carbide tool of the present invention
Will be specifically described with reference to examples. (Example 1) As raw material powders, each was 0.5 to 4 μm.
WC powder having a predetermined average particle size in the range of (Ti,
W) C (weight ratio, hereinafter the same, TiC / WC = 30/7)
0) powder, (Ti, W) CN (TiC / TiN / WC =
24/20/56) powder, (Ta, Nb) C (TaC /
NbC = 90/10) powder, CrThreeCTwoPowder, and Co
Powders are prepared, and these raw material powders are mixed as shown in Table 1.
And wet mixed in a ball mill for 72 hours, dried
9.8 × 107Pa (1 ton / cmTwo) At pressure
It is pressed into a green compact of a predetermined shape, and this green compact is 1.3
Pa (1 × 10 -21300 to 15 in a torr) vacuum
Vacuum firing at a predetermined temperature within the range of 00 ° C for 1 hour
Stipulated in ISO / CNMG120408
Carbide substrate (chip)
P) A to F were manufactured respectively.

【0013】ついで、これらの超硬基体(チップ)A〜F
の表面に、ホーニングを施した状態で、通常の化学蒸着
装置を用い、表2、3(表2中のl−TiCNは特開平
6−8010号公報に記載される縦長成長結晶組織をも
つTiCN層の形成条件を示すものであり、これ以外は
通常の粒状結晶組織の形成条件を示すものである。また
表2中のα−Al23およびκ−Al23の「目標回折
角」はX線回折パターンで最高回折ピーク高さが現れる
目標回折角(2θ)を示すものである)に示される条件
にて、表4、5に示される組成および目標層厚のTi化
合物層およびAl23層、さらに拡散酸素含有のTi窒
酸化物層からなる最表面層および拡散酸素供給用Ti酸
化物層からなる最表面下地層で構成された硬質被覆層を
形成することにより図1(a)に概略斜視図で、同
(b)に概略縦断面図で示される形状をもった本発明被
覆超硬工具としての本発明表面被覆超硬合金製スローア
ウエイチップ(以下、本発明被覆超硬チップと云う)1
〜10をそれぞれ製造するとともに、最表面層として前
記最表面層および最表面下地層に代わってTiN層を形
成する以外は同一の条件で従来被覆超硬工具としての従
来表面被覆超硬合金製スローアウエイチップ(以下、従
来被覆超硬チップと云う)1〜10をそれぞれ製造し
た。
Next, these super-hard substrates (chips) A to F
Table 2 and Table 3 (l-TiCN in Table 2 is a TiCN having a vertically-grown crystal structure described in JP-A-6-8010) using a conventional chemical vapor deposition apparatus with the surface of The table shows the conditions for forming the layer, and the others indicate the conditions for forming a normal granular crystal structure, and the “target diffraction angles” of α-Al 2 O 3 and κ-Al 2 O 3 in Table 2. Indicates the target diffraction angle (2θ) at which the highest diffraction peak height appears in the X-ray diffraction pattern) under the conditions shown in Tables 4 and 5. By forming a hard coating layer composed of an Al 2 O 3 layer, an outermost surface layer composed of a diffused oxygen-containing Ti oxynitride layer and an outermost surface underlying layer composed of a diffused oxygen supply Ti oxide layer, FIG. (A) is a schematic perspective view, and (b) is a schematic longitudinal section. In shown by the present invention a surface coating made of cemented carbide indexable as the present invention coated carbide tool having a shape (hereinafter, referred to as the present invention coated carbide inserts) 1
Under the same conditions except that a TiN layer is formed instead of the outermost surface layer and the outermost surface underlayer as the outermost surface layer. Way chips (hereinafter, referred to as conventional coated carbide chips) 1 to 10 were manufactured, respectively.

【0014】また、上記の本発明被覆超硬チップ1〜1
0のうちの本発明被覆超硬チップ3および本発明被覆超
硬チップ7については、最表面下地層としてのTi酸化
物層形成後に、前者では、雰囲気ガス組成を、TiCl
4:0.5体積%、Ar:残りとし、雰囲気温度を10
00℃、雰囲気圧力を13.3kPa(100Tor
r)とした雰囲気中に1時間保持の条件で、一方後者で
は、雰囲気ガス組成を、TiCl4:0.1体積%、A
r:残りとし、雰囲気温度を1000℃、雰囲気圧力を
6.7kPa(50Torr)とした雰囲気中に2時間
保持の条件で、Al23層とTi酸化物層の界面部に積
極的に相互拡散層を形成する層間密着性向上処理を施し
た。この結果走査型電子顕微鏡およびオージェ分光分析
装置による断面測定で、Al23層とTi酸化物層の界
面部に、本発明被覆超硬チップ3では平均層厚(5点平
均)で0.6μm、本発明被覆超硬チップ7では同じく
平均層厚(5点平均)で0.8μmの相互拡散層の形成
が観察された。なお、この結果得られた本発明被覆超硬
チップ1〜10の硬質被覆層を構成する最表面層および
最表面下地層について、その厚さ方向中央部の酸素含有
割合(Y値およびX値)をオージェ分光分析装置を用い
て測定したところ、表6に示される値を示した。さら
に、上記の本発明被覆超硬チップ1〜10および従来被
覆超硬チップ1〜10のそれぞれの硬質被覆層を構成す
るα−Al23層およびκ−Al23層について、1.
5オングストロームの波長を有するCukα線を線源と
して用いたX線回折で観察したところ、いずれも目標回
折角(2θ)と実質的に同じ回折角に最高回折ピーク高
さが現れるX線回折パターンを示し、かついずれも黄金
色の表面色調を有し、さらにこれの硬質被覆層を構成す
る構成層の層厚を走査型電子顕微鏡を用いて断面測定し
たところ、それぞれ目標層厚と実質的に同じ平均層厚
(5点平均)を示した。なお、上記の目標値と実測値の
関係は以下の実施例2、3でも同じ結果を示した。
Further, the above-mentioned coated carbide tips 1 to 1 according to the present invention are provided.
In the former case, the atmosphere gas composition was changed to TiCl after the formation of the Ti oxide layer as the outermost surface underlayer.
4 : 0.5% by volume, Ar: remaining, ambient temperature 10
00 ° C. and atmospheric pressure of 13.3 kPa (100 Torr)
r), the atmosphere gas composition was changed to TiCl 4 : 0.1% by volume, A
r: Remaining and actively interacting with the interface between the Al 2 O 3 layer and the Ti oxide layer under the condition of maintaining the atmosphere temperature at 1000 ° C. and the atmosphere pressure at 6.7 kPa (50 Torr) for 2 hours. An interlayer adhesion improving treatment for forming a diffusion layer was performed. As a result, in the cross-sectional measurement using a scanning electron microscope and an Auger spectrometer, the average layer thickness (average of 5 points) of the interface between the Al 2 O 3 layer and the Ti oxide layer was 0.5 in the coated carbide tip 3 of the present invention. The formation of an interdiffusion layer of 6 μm and 0.8 μm in average thickness (average of 5 points) was also observed in the coated superhard tip 7 of the present invention. The oxygen content ratio (Y value and X value) of the center part in the thickness direction of the outermost surface layer and the outermost surface underlayer constituting the hard coating layers of the coated ultra-hard chips 1 to 10 of the present invention obtained as a result. Was measured using an Auger spectrometer, and the values shown in Table 6 were shown. Further, regarding the α-Al 2 O 3 layer and the κ-Al 2 O 3 layer constituting the hard coating layers of the above-mentioned coated carbide tips 1 to 10 of the present invention and the conventionally coated carbide tips 1 to 10,
When observed by X-ray diffraction using a Cukα ray having a wavelength of 5 angstroms as a radiation source, an X-ray diffraction pattern in which the highest diffraction peak height appears at substantially the same diffraction angle as the target diffraction angle (2θ) was obtained. , And each of them has a golden surface tone, and the layer thicknesses of the constituent layers constituting the hard coating layer were measured in cross section using a scanning electron microscope. The average layer thickness (5 point average) was shown. The relationship between the target value and the actually measured value showed the same result in Examples 2 and 3 below.

【0015】つぎに、上記本発明被覆超硬チップ1〜1
0および従来被覆超硬チップ1〜10について、これを
工具鋼製バイトの先端部に固定治具にてネジ止めした状
態で、 被削材:JIS・SCM440の丸棒、 切削速度:350m/min.、 切り込み:1.5mm、 送り:0.2mm/rev.、 切削時間:5分、 の条件での合金鋼の乾式高速連続旋削加工試験、並び
に、 被削材:JIS・SNCM439の長さ方向等間隔4本
縦溝入り丸棒、 切削速度:300m/min.、 切り込み:1.5mm、 送り:0.25mm/rev.、 切削時間:5分、 の条件での合金鋼の乾式高速断続旋削加工試験を行い、
いずれの旋削加工試験でも切刃の逃げ面摩耗幅を測定し
た。この測定結果を表6に示した。
Next, the coated carbide tips 1 to 1 according to the present invention will be described.
0 and the conventional coated carbide tips 1 to 10 were screwed to the tip of a tool steel tool with a fixing jig. Work material: JIS SCM440 round bar, Cutting speed: 350 m / min . Infeed: 1.5 mm Feed: 0.2 mm / rev. , Cutting time: 5 minutes, Dry high-speed continuous turning test of alloy steel under the following conditions: Work material: JIS SNCM 439 Round bar with four longitudinal grooves at regular intervals in the longitudinal direction, Cutting speed: 300 m / min . Infeed: 1.5 mm Feed: 0.25 mm / rev. , Cutting time: 5 minutes, Dry high-speed intermittent turning test of alloy steel under the conditions of
In each turning test, the flank wear width of the cutting edge was measured. Table 6 shows the measurement results.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】[0018]

【表3】 [Table 3]

【0019】[0019]

【表4】 [Table 4]

【0020】[0020]

【表5】 [Table 5]

【0021】[0021]

【表6】 [Table 6]

【0022】(実施例2)原料粉末として、平均粒径:
5.5μmを有する中粗粒WC粉末、同0.8μmの微
粒WC粉末、同1.3μmのTaC粉末、同1.2μm
のNbC粉末、同1.2μmのZrC粉末、同2.3μ
mのCr32粉末、同1.5μmのVC粉末、同1.0
μmの(Ti,W)C粉末、同1.8μmのCo粉末、
および同1.2μmの炭素(C)粉末を用意し、これら
原料粉末をそれぞれ表7に示される配合組成に配合し、
さらにワックスを加えてアセトン中で24時間ボールミ
ル混合し、減圧乾燥した後、100MPaの圧力で所定
形状の各種の圧粉体にプレス成形し、これらの圧粉体
を、6Paの真空雰囲気中、7℃/分の昇温速度で13
70〜1470℃の範囲内の所定の温度に昇温し、この
温度に1時間保持後、炉冷の条件で焼結して、直径が8
mm、13mm、および26mmの3種の超硬基体形成
用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体
から、研削加工にて、表7に示される組合せで、切刃部
の直径×長さがそれぞれ6mm×13mm、10mm×
22mm、および20mm×45mmの寸法をもった超
硬基体(エンドミル)a〜hをそれぞれ製造した。
(Example 2) As the raw material powder, the average particle size was as follows:
Medium coarse WC powder having 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, 1.2 μm
NbC powder, 1.2 μm ZrC powder, 2.3 μm
m Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm
μm (Ti, W) C powder, 1.8 μm Co powder,
And 1.2 μm carbon (C) powder were prepared, and these raw material powders were respectively blended into the blending compositions shown in Table 7,
Further, the wax was added, and the mixture was ball-milled in acetone for 24 hours, dried under reduced pressure, and press-molded into various compacts having a predetermined shape at a pressure of 100 MPa. 13 ° C / min.
The temperature was raised to a predetermined temperature in the range of 70 to 1470 ° C., maintained at this temperature for 1 hour, and then sintered under furnace cooling conditions to obtain a diameter of 8 mm.
mm, 13 mm, and 26 mm to form three types of round bar sintered bodies for forming a cemented carbide substrate, and from the three types of round bar sintered bodies, by grinding, in a combination shown in Table 7, The diameter x length of the cutting edge is 6mm x 13mm, 10mm x
Carbide substrates (end mills) a to h having dimensions of 22 mm and 20 mm × 45 mm were produced, respectively.

【0023】ついで、これらの超硬基体(エンドミル)
a〜hの表面に、ホーニングを施した状態で、通常の化
学蒸着装置を用い、同じく表2、3に示される条件に
て、表8に示される組成および目標層厚のTi化合物層
およびAl23層、さらに拡散酸素含有のTi窒酸化物
層からなる最表面層および拡散酸素供給用Ti酸化物層
からなる最表面下地層で構成された硬質被覆層を形成す
ることにより、図2(a)に概略正面図で、同(b)に
切刃部の概略横断面図で示される形状を有する本発明被
覆超硬工具としての本発明表面被覆超硬合金製エンドミ
ル(以下、本発明被覆超硬エンドミルと云う)1〜8を
それぞれ製造した。
Next, these super-hard substrates (end mills)
With the honing applied to the surfaces of a to h, the Ti compound layer and the Al layer having the composition and the target layer thickness shown in Table 8 were used under the same conditions as shown in Tables 2 and 3 using a conventional chemical vapor deposition apparatus. By forming a hard coating layer composed of a 2 O 3 layer, an outermost surface layer composed of a diffused oxygen-containing Ti oxynitride layer, and an outermost surface underlying layer composed of a diffused oxygen supply Ti oxide layer, FIG. (A) is a schematic front view, and (b) is an end mill made of a surface-coated cemented carbide of the present invention as a coated carbide tool of the present invention having a shape shown by a schematic cross-sectional view of a cutting edge portion (hereinafter, the present invention). (Referred to as coated carbide end mills) 1 to 8 respectively.

【0024】また、比較の目的で、表9に示される通
り、上記の拡散酸素含有のTi窒酸化物層からなる最表
面層および拡散酸素供給用Ti酸化物層からなる最表面
下地層に代って、TiN層を形成する以外は同一の条件
で従来被覆超硬工具としての従来表面被覆超硬合金製エ
ンドミル(以下、従来被覆超硬エンドミルと云う)1〜
8をそれぞれ製造した。
For comparison purposes, as shown in Table 9, the outermost surface layer composed of the above-described diffused oxygen-containing Ti oxynitride layer and the outermost surface underlying layer composed of the diffused oxygen-supplying Ti oxide layer are substituted for the above. Thus, under the same conditions except that a TiN layer is formed, a conventional surface-coated cemented carbide end mill (hereinafter referred to as a conventional coated carbide end mill) 1 to 1 as a conventionally coated cemented carbide tool.
8 were each produced.

【0025】つぎに、上記本発明被覆超硬エンドミル1
〜8および従来被覆超硬エンドミル1〜8のうち、本発
明被覆超硬エンドミル1〜3および従来被覆超硬エンド
ミル1〜3については、 被削材:平面寸法:100mm×250mm、厚さ:5
0mmのJIS・SCM440の板材、 切削速度:80m/min.、 溝深さ(切り込み):3mm、 テーブル送り:500mm/分、 の条件での合金鋼の乾式高速溝切削加工試験、本発明被
覆超硬エンドミル4〜6および従来被覆超硬エンドミル
4〜6については、 被削材:平面寸法:100mm×250mm、厚さ:5
0mmのJIS・SCM440の板材、 切削速度:90m/min.、 溝深さ(切り込み):6mm、 テーブル送り:500mm/分、 の条件での合金鋼の乾式高速溝切削加工試験、本発明被
覆超硬エンドミル7,8および従来被覆超硬エンドミル
7,8については、 被削材:平面寸法:100mm×250mm、厚さ:5
0mmのJIS・SCM415の板材、 切削速度:90m/min.、 溝深さ(切り込み):15mm、 テーブル送り:500mm/分、 の条件での合金鋼の乾式高速溝切削加工試験、をそれぞ
れ行い、いずれの溝切削加工試験でも切刃部先端面の直
径が使用寿命の目安とされる0.2mm減少するまでの
切削溝長を測定した。この測定結果を表8、9にそれぞ
れ示した。
Next, the coated carbide end mill 1 of the present invention will be described.
-8 and the conventional coated carbide end mills 1-8, the coated carbide end mills 1-3 of the present invention and the conventional coated carbide end mills 1-3 are: work material: plane dimension: 100 mm × 250 mm, thickness: 5
0 mm JIS SCM440 plate, Cutting speed: 80 m / min. , Groove depth (cut): 3 mm, Table feed: 500 mm / min, Dry high-speed grooving test of alloy steel, coated carbide end mills 4 to 6 of the present invention and conventional coated carbide end mills 4 to 6 , Work material: Plane dimensions: 100 mm x 250 mm, thickness: 5
0 mm JIS SCM440 plate, Cutting speed: 90 m / min. , Groove depth (cut): 6 mm, Table feed: 500 mm / min, Dry high-speed grooving test of alloy steel, coated carbide end mills 7 and 8 of the present invention and conventional coated carbide end mills 7 and 8 , Work material: Plane dimensions: 100 mm x 250 mm, thickness: 5
0 mm JIS SCM415 plate, Cutting speed: 90 m / min. , Groove depth (cut): 15 mm, table feed: 500 mm / min, dry high-speed grooving test of alloy steel under the following conditions. The length of the cutting groove up to a reduction of 0.2 mm, which is a measure of the service life, was measured. The measurement results are shown in Tables 8 and 9, respectively.

【0026】[0026]

【表7】 [Table 7]

【0027】[0027]

【表8】 [Table 8]

【0028】[0028]

【表9】 [Table 9]

【0029】(実施例3)上記の実施例2で製造した直
径が8mm(超硬基体a〜c形成用)、13mm(超硬
基体d〜f形成用)、および26mm(超硬基体g、h
形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼
結体から、研削加工にて、溝形成部の直径×長さがそれ
ぞれ4mm×13mm(超硬基体a‘〜c’)、8mm
×22mm(超硬基体d‘〜f’)、および16mm×
45mm(超硬基体g‘、h’)の寸法をもった超硬基
体(ドリル)a‘〜h’をそれぞれ製造した。
(Example 3) The diameters of 8 mm (for forming the super-hard substrates a to c), 13 mm (for forming the super-hard substrates d to f), and 26 mm (for the super-hard substrate g) produced in Example 2 described above. h
(For forming), the diameter x length of the groove forming portion was 4 mm x 13 mm (the carbide substrate a ') by grinding from the three types of round rod sintered bodies. ~ C '), 8mm
× 22 mm (carbide substrate d ′ to f ′) and 16 mm ×
Carbide substrates (drills) a 'to h' each having a size of 45 mm (carbide substrates g 'and h') were manufactured.

【0030】ついで、これらの超硬基体(ドリル)a
‘〜h’の表面に、ホーニングを施した状態で、通常の
化学蒸着装置を用い、同じく表2、3に示される条件に
て、表10に示される組成および目標層厚のTi化合物
層およびAl23層からなる硬質被覆層、さらに拡散酸
素含有のTi窒酸化物層からなる最表面層および拡散酸
素供給用Ti酸化物層からなる最表面下地層で構成され
た硬質被覆層を形成することにより、図3(a)に概略
正面図で、同(b)に溝形成部の概略横断面図で示され
る形状を有する本発明被覆超硬工具としての本発明表面
被覆超硬合金製ドリル(以下、本発明被覆超硬ドリルと
云う)1〜8をそれぞれ製造した。
Next, these carbide substrates (drills) a
On the surface of '~ h', the Ti compound layer having the composition and the target layer thickness shown in Table 10 was obtained using the ordinary chemical vapor deposition apparatus under the conditions shown in Tables 2 and 3 with the honing performed. A hard coating layer composed of a hard coating layer composed of an Al 2 O 3 layer, a top surface layer composed of a diffused oxygen-containing Ti oxynitride layer, and a top surface layer composed of a diffused oxygen supply Ti oxide layer is formed. As a result, the surface-coated cemented carbide of the present invention as a coated carbide tool of the present invention having a shape shown in a schematic front view in FIG. 3A and a schematic cross-sectional view of a groove forming portion in FIG. Drills (hereinafter referred to as coated carbide drills of the present invention) 1 to 8 were produced.

【0031】また、比較の目的で、表11に示される通
り、上記の拡散酸素含有のTi窒酸化物層からなる最表
面層および拡散酸素供給用Ti酸化物層からなる最表面
下地層に代って、TiN層を形成する以外は同一の条件
で従来被覆超硬工具としての従来表面被覆超硬合金製ド
リル(以下、従来被覆超硬ドリルと云う)1〜8をそれ
ぞれ製造した。
For comparison purposes, as shown in Table 11, the outermost surface layer composed of the above-described diffused oxygen-containing Ti oxynitride layer and the outermost surface underlying layer composed of the diffused oxygen-supplying Ti oxide layer were replaced with each other. Thus, under the same conditions except that the TiN layer was formed, conventional surface-coated cemented carbide drills (hereinafter, referred to as conventional coated carbide drills) 1 to 8 as conventional coated carbide tools were respectively manufactured.

【0032】つぎに、上記本発明被覆超硬ドリル1〜8
および従来被覆超硬ドリル1〜8のうち、本発明被覆超
硬ドリル1〜3および従来被覆超硬ドリル1〜3につい
ては、 被削材:平面寸法:100mm×250mm、厚さ:5
0mmのJIS・SCM440の板材、 切削速度:50m/min.、 送り:0.2mm/分、 の条件での合金鋼の湿式高速穴あけ切削加工試験、本発
明被覆超硬ドリル4〜6および従来被覆超硬ドリル4〜
6については、 被削材:平面寸法:100mm×250mm、厚さ:5
0mmのJIS・SCM440の板材、 切削速度:60m/min.、 送り:0.2mm/分、 の条件での合金鋼の湿式高速穴あけ切削加工試験、本発
明被覆超硬ドリル7,8および従来被覆超硬ドリル7,
8については、 被削材:平面寸法:100mm×250mm、厚さ:5
0mmのJIS・SCM415の板材、 切削速度:75/min.、 送り:0.35mm/分、 の条件での合金鋼の湿式高速穴あけ切削加工試験、をそ
れぞれ行い、いずれの湿式(水溶性切削油使用)高速穴
あけ切削加工試験でも先端切刃面の逃げ面摩耗幅が0.
3mmに至るまでの穴あけ加工数を測定した。この測定
結果を表10、11にそれぞれ示した。
Next, the above-mentioned coated carbide drills 1 to 8 of the present invention.
Of the coated carbide drills 1 to 8 of the present invention, the coated carbide drills 1 to 3 of the present invention and the coated carbide drills 1 to 3 of the present invention are: work material: plane dimension: 100 mm × 250 mm, thickness: 5
0 mm JIS SCM440 plate, Cutting speed: 50 m / min. , Feed: 0.2 mm / min, Wet high-speed drilling test of alloy steel under the following conditions: coated carbide drills 4 to 6 of the present invention and conventional coated carbide drills 4 to
About 6, work material: plane dimensions: 100 mm x 250 mm, thickness: 5
0 mm JIS SCM440 plate, Cutting speed: 60 m / min. , Feed: 0.2 mm / min, wet high-speed drilling test of alloy steel under the following conditions: coated carbide drills 7 and 8 of the present invention and coated carbide drills 7 of the prior art.
For No. 8, Work material: Plane dimensions: 100 mm × 250 mm, thickness: 5
0 mm JIS SCM415 plate, Cutting speed: 75 / min. , Feed: 0.35 mm / min, Wet cutting high-speed drilling test of alloy steel under the following conditions, and the flank of the cutting edge at the tip of any wet type (using water-soluble cutting oil) high-speed drilling cutting test. Wear width is 0.
The number of drilling processes up to 3 mm was measured. The measurement results are shown in Tables 10 and 11, respectively.

【0033】[0033]

【表10】 [Table 10]

【0034】[0034]

【表11】 [Table 11]

【0035】[0035]

【発明の効果】表4〜11に示される結果から、硬質被
覆層の最表面層がTiN層の形成時に最表面下地層から
拡散してきた酸素と反応して形成されたTi窒酸化物層
で構成された本発明被覆超硬工具は、いずれも高い発熱
を伴う鋼の高速切削加工でも、前記Ti窒酸化物層が高
温加熱の切粉との親和性がきわめて低く、切粉が前記T
i窒酸化物層に付着することがないことから、切刃にチ
ッピングの発生なく、すぐれた耐摩耗性を発揮するのに
対して、硬質被覆層の最表面層がTiN層で構成された
従来被覆超硬工具においては、いずれも切粉が前記Ti
N層に付着し易く、前記TiN層が他の構成層とともに
前記切粉によって剥がし取られることから、切刃にチッ
ピングの発生し易く、これが原因で比較的短時間で使用
寿命に至ることが明らかである。上述のように、この発
明の被覆超硬工具は、使用前後の識別工具の特に各種鋼
や鋳鉄などの高速切削加工での実用を可能とするもので
あり、かつ実用に際しては切刃にチッピングの発生な
く、すぐれた耐摩耗性を長期に亘って発揮するものであ
る。
From the results shown in Tables 4 to 11, it can be seen that the outermost surface layer of the hard coating layer is formed of a Ti nitride oxide layer formed by reacting with oxygen diffused from the outermost underlying layer when forming the TiN layer. The coated carbide tool according to the present invention is characterized in that the Ti nitride oxide layer has an extremely low affinity for high-temperature heated chips even in high-speed cutting of steel with high heat generation.
Since it does not adhere to the i-nitride oxide layer, it exhibits excellent wear resistance without chipping on the cutting edge, whereas the outermost layer of the hard coating layer is made of a TiN layer. In the case of coated carbide tools, the chips
Since the TiN layer easily adheres to the N layer and the TiN layer is peeled off together with the other constituent layers by the cutting powder, chipping easily occurs in the cutting blade, and it is apparent that this causes a service life in a relatively short time. It is. As described above, the coated cemented carbide tool of the present invention enables the practical use of the identification tool before and after use, particularly in high-speed cutting of various steels and cast irons. No wear is exhibited, and excellent wear resistance is exhibited over a long period of time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は被覆超硬チップの概略斜視図、(b)
は被覆超硬チップの概略縦断面図である。
FIG. 1A is a schematic perspective view of a coated carbide tip, and FIG.
1 is a schematic longitudinal sectional view of a coated carbide tip.

【図2】(a)は被覆超硬エンドミル概略正面図、
(b)は同切刃部の概略横断面図である。
FIG. 2 (a) is a schematic front view of a coated carbide end mill,
(B) is a schematic cross-sectional view of the cutting blade portion.

【図3】(a)は被覆超硬ドリルの概略正面図、(b)
は同溝形成部の概略横断面図である。
FIG. 3A is a schematic front view of a coated carbide drill, and FIG.
FIG. 3 is a schematic cross-sectional view of the groove forming portion.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年10月5日(2000.10.
5)
[Submission date] October 5, 2000 (2000.10.
5)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0025[Correction target item name] 0025

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0025】この結果得られた本発明被覆超硬エンドミ
ル1〜8の硬質被覆層を構成する表面層および表面下地
層について、その厚さ方向中央部の酸素含有割合(Y値
およびX値)をオージェ分光分析装置を用いて測定した
ところ、表8に示される値を示した。つぎに、上記本発
明被覆超硬エンドミル1〜8および従来被覆超硬エンド
ミル1〜8のうち、本発明被覆超硬エンドミル1〜3お
よび従来被覆超硬エンドミル1〜3については、 被削材:平面寸法:100mm×250mm、厚さ:5
0mmのJIS・SCM440の板材、 切削速度:80m/min.、 溝深さ(切り込み):3mm、 テーブル送り:500mm/分、 の条件での合金鋼の乾式高速溝切削加工試験、本発明被
覆超硬エンドミル4〜6および従来被覆超硬エンドミル
4〜6については、 被削材:平面寸法:100mm×250mm、厚さ:5
0mmのJIS・SCM440の板材、 切削速度:90m/min.、 溝深さ(切り込み):6mm、 テーブル送り:500mm/分、 の条件での合金鋼の乾式高速溝切削加工試験、本発明被
覆超硬エンドミル7,8および従来被覆超硬エンドミル
7,8については、 被削材:平面寸法:100mm×250mm、厚さ:5
0mmのJIS・SCM415の板材、 切削速度:90m/min.、 溝深さ(切り込み):15mm、 テーブル送り:500mm/分、 の条件での合金鋼の乾式高速溝切削加工試験、をそれぞ
れ行い、いずれの溝切削加工試験でも切刃部先端面の直
径が使用寿命の目安とされる0.2mm減少するまでの
切削溝長を測定した。この測定結果を表8、9にそれぞ
れ示した。
[0025] The resulting coated carbide endomi according to the present invention is obtained as follows.
Surface layer and surface underlayer constituting hard coating layer 1 to 8
For the layer, the oxygen content ratio at the center in the thickness direction (Y value
And X value) were measured using an Auger spectrometer.
However, the values shown in Table 8 were shown. Next, of the coated carbide end mills 1 to 8 of the present invention and the coated carbide end mills 1 to 8 of the present invention, the coated carbide end mills 1 to 3 of the present invention and the conventionally coated carbide end mills 1 to 3 are: Plane dimensions: 100 mm x 250 mm, thickness: 5
0 mm JIS SCM440 plate, Cutting speed: 80 m / min. , Groove depth (cut): 3 mm, Table feed: 500 mm / min, Dry high-speed grooving test of alloy steel, coated carbide end mills 4 to 6 of the present invention and conventional coated carbide end mills 4 to 6 , Work material: Plane dimensions: 100 mm x 250 mm, thickness: 5
0 mm JIS SCM440 plate, Cutting speed: 90 m / min. , Groove depth (cut): 6 mm, Table feed: 500 mm / min, Dry high-speed grooving test of alloy steel, coated carbide end mills 7 and 8 of the present invention and conventional coated carbide end mills 7 and 8 , Work material: Plane dimensions: 100 mm x 250 mm, thickness: 5
0 mm JIS SCM415 plate, Cutting speed: 90 m / min. , Groove depth (cut): 15 mm, table feed: 500 mm / min, dry high-speed grooving test of alloy steel under the following conditions. The length of the cutting groove up to a reduction of 0.2 mm, which is a measure of the service life, was measured. The measurement results are shown in Tables 8 and 9, respectively.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0027[Correction target item name] 0027

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0027】[0027]

【表8】 [Table 8]

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0032[Correction target item name] 0032

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0032】この結果得られた本発明被覆超硬ドリル1
〜8の硬質被覆層を構成する表面層および表面下地層に
ついて、その厚さ方向中央部の酸素含有割合(Y値およ
びX値)をオージェ分光分析装置を用いて測定したとこ
ろ、表10に示される値を示した。つぎに、上記本発明
被覆超硬ドリル1〜8および従来被覆超硬ドリル1〜8
のうち、本発明被覆超硬ドリル1〜3および従来被覆超
硬ドリル1〜3については、 被削材:平面寸法:100mm×250mm、厚さ:5
0mmのJIS・SCM440の板材、 切削速度:50m/min.、 送り:0.2mm/分、 の条件での合金鋼の湿式高速穴あけ切削加工試験、本発
明被覆超硬ドリル4〜6および従来被覆超硬ドリル4〜
6については、 被削材:平面寸法:100mm×250mm、厚さ:5
0mmのJIS・SCM440の板材、 切削速度:60m/min.、 送り:0.2mm/分、 の条件での合金鋼の湿式高速穴あけ切削加工試験、本発
明被覆超硬ドリル7,8および従来被覆超硬ドリル7,
8については、 被削材:平面寸法:100mm×250mm、厚さ:5
0mmのJIS・SCM415の板材、 切削速度:75/min.、 送り:0.35mm/分、 の条件での合金鋼の湿式高速穴あけ切削加工試験、をそ
れぞれ行い、いずれの湿式(水溶性切削油使用)高速穴
あけ切削加工試験でも先端切刃面の逃げ面摩耗幅が0.
3mmに至るまでの穴あけ加工数を測定した。この測定
結果を表10、11にそれぞれ示した。
The coated carbide drill of the present invention obtained as a result 1
To 8 of the surface layer and the surface underlayer constituting the hard coating layer
Then, the oxygen content ratio at the center in the thickness direction (Y value and
And X value) were measured using an Auger spectrometer.
In addition, the values shown in Table 10 were shown. Next, the coated carbide drills 1 to 8 of the present invention and the conventional coated carbide drills 1 to 8
Among them, the coated carbide drills 1 to 3 of the present invention and the conventionally coated carbide drills 1 to 3 are: work material: plane dimension: 100 mm × 250 mm, thickness: 5
0 mm JIS SCM440 plate, Cutting speed: 50 m / min. , Feed: 0.2 mm / min, Wet high-speed drilling test of alloy steel under the following conditions: coated carbide drills 4 to 6 of the present invention and conventional coated carbide drills 4 to
About 6, work material: plane dimensions: 100 mm x 250 mm, thickness: 5
0 mm JIS SCM440 plate, Cutting speed: 60 m / min. , Feed: 0.2 mm / min, wet high-speed drilling test of alloy steel under the following conditions: coated carbide drills 7 and 8 of the present invention and coated carbide drills 7 of the prior art.
For No. 8, Work material: Plane dimensions: 100 mm × 250 mm, thickness: 5
0 mm JIS SCM415 plate, Cutting speed: 75 / min. , Feed: 0.35 mm / min, Wet cutting high-speed drilling test of alloy steel under the following conditions, and the flank of the cutting edge at the tip of any wet type (using water-soluble cutting oil) high-speed drilling cutting test. Wear width is 0.
The number of drilling processes up to 3 mm was measured. The measurement results are shown in Tables 10 and 11, respectively.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0033[Correction target item name] 0033

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0033】[0033]

【表10】 [Table 10]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 植田 稔晃 埼玉県大宮市北袋町1−297 三菱マテリ アル株式会社総合研究所内 (72)発明者 中村 惠滋 埼玉県大宮市北袋町1−297 三菱マテリ アル株式会社総合研究所内 Fターム(参考) 3C046 FF03 FF10 FF19 FF22 FF25 4K029 AA04 BA41 BA44 BA48 BA54 BA55 BA60 BB02 BC00 BD05 EA01 4K030 BA18 BA35 BA36 BA38 BA41 BA42 BA43 BB12 CA03 JA01 LA22  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Toshiaki Ueda 1-297 Kitabukurocho, Omiya City, Saitama Prefecture Mitsubishi Materials Research Institute (72) Inventor Keiji Nakamura 1-297 Kitabukurocho, Omiya City, Saitama Mitsubishi F-term (reference) in Materials Research Laboratory 3C046 FF03 FF10 FF19 FF22 FF25 4K029 AA04 BA41 BA44 BA48 BA54 BA55 BA60 BB02 BC00 BD05 EA01 4K030 BA18 BA35 BA36 BA38 BA41 BA42 BA43 BB12 CA03 JA01 LA22

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 炭化タングステン基超硬合金基体の表面
に、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物
層、および炭窒酸化物層のうちの1種または2種以上か
らなるTi化合物層と、酸化アルミニウム層で構成され
た硬質被覆層を3〜30μmの平均層厚で化学蒸着およ
び/または物理蒸着してなる表面被覆超硬合金製切削工
具において、 上記硬質被覆層に加えて、さらに最表面下地層として、
0.1〜3μmの平均層厚を有し、かつ、 組成式:TiOX 、 で表わした場合、厚さ方向中央部をオージェ分光分析装
置で測定して、 X:Tiに対する原子比で1.2〜1.7、 を満足するTi酸化物層と、 同じく最表面層として、0.05〜2μmの平均層厚を
有し、かつ、 組成式:TiN1-Y(O)Y、 で表わした場合(ただし、(O)は上記最表面下地層か
らの拡散酸素を示す)、同じく厚さ方向中央部をオージ
ェ分光分析装置で測定して、 Y:Tiに対する原子比で0.01〜0.4、 を満足するTi窒酸化物層、を硬質被覆層として化学蒸
着および/または物理蒸着してなる、耐チッピング性の
すぐれた表面被覆超硬合金製切削工具。
1. The method according to claim 1, wherein one or more of a carbide layer, a nitride layer, a carbonitride layer, a carbonate layer, and a carbonitride layer of Ti are formed on the surface of the tungsten carbide-based cemented carbide substrate. A hard coating layer composed of a Ti compound layer and an aluminum oxide layer by chemical vapor deposition and / or physical vapor deposition with an average layer thickness of 3 to 30 μm. In addition, as the outermost surface underlayer,
When it has an average layer thickness of 0.1 to 3 μm and is represented by the composition formula: TiO x , the central part in the thickness direction is measured by an Auger spectrometer, and the atomic ratio to X: Ti is 1. A Ti oxide layer that satisfies 2 to 1.7, and also has an average layer thickness of 0.05 to 2 μm as the outermost surface layer, and is represented by a composition formula: TiN 1-Y (O) Y. (However, (O) indicates oxygen diffused from the outermost surface underlayer), the center in the thickness direction is also measured by an Auger spectrometer, and the atomic ratio to Y: Ti is 0.01 to 0. A cutting tool made of a surface-coated cemented carbide having excellent chipping resistance, obtained by chemical vapor deposition and / or physical vapor deposition of a Ti nitride oxide layer satisfying the following condition:
JP2000042181A 1999-04-13 2000-02-21 Slow-away tip made of surface-coated cemented carbide with excellent chipping resistance Expired - Lifetime JP3989664B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000042181A JP3989664B2 (en) 1999-04-13 2000-02-21 Slow-away tip made of surface-coated cemented carbide with excellent chipping resistance
DE10017909A DE10017909B4 (en) 1999-04-13 2000-04-11 Coated cemented carbide cutting tool element
US09/548,675 US6426137B1 (en) 1999-04-13 2000-04-13 Coated cemented carbide cutting tool member

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP10494199 1999-04-13
JP22830799 1999-08-12
JP11-363925 1999-12-22
JP11-104941 1999-12-22
JP36392599 1999-12-22
JP11-228307 1999-12-22
JP2000042181A JP3989664B2 (en) 1999-04-13 2000-02-21 Slow-away tip made of surface-coated cemented carbide with excellent chipping resistance

Publications (2)

Publication Number Publication Date
JP2001239404A true JP2001239404A (en) 2001-09-04
JP3989664B2 JP3989664B2 (en) 2007-10-10

Family

ID=27469266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000042181A Expired - Lifetime JP3989664B2 (en) 1999-04-13 2000-02-21 Slow-away tip made of surface-coated cemented carbide with excellent chipping resistance

Country Status (1)

Country Link
JP (1) JP3989664B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004188576A (en) * 2002-07-01 2004-07-08 Mitsubishi Materials Corp Cutting tool of surface-coated cermet with hard coating layer having excellent thermal shock resistance and surface lubrication performance
JP2004188501A (en) * 2002-07-01 2004-07-08 Mitsubishi Materials Corp Cutting tool of surface-coated cermet with hard coating layer having excellent thermal shock resistance and surface lubrication property
JP2007083374A (en) * 2005-09-26 2007-04-05 Mitsubishi Materials Corp Cutting throw away tip made of surface coated cermet having hard coating layer exhibiting excellent chipping resistance in high-speed cutting
JP2007118107A (en) * 2005-10-26 2007-05-17 Mitsubishi Materials Corp Non-hole surface-coated cermet throwaway cutting tip having hard coating layer exhibiting excellent chipping resistance in high speed cutting
JP2007160424A (en) * 2005-12-12 2007-06-28 Mitsubishi Materials Corp Pore-free surface coated cermet cutting throw-away tip having hard coating layer exhibiting chipping resistance in high speed cutting
JP2007160423A (en) * 2005-12-12 2007-06-28 Mitsubishi Materials Corp Surface coated cermet cutting throw-away tip having hard coating layer exhibiting chipping resistance in high speed cutting
JP2007160466A (en) * 2005-12-14 2007-06-28 Mitsubishi Materials Corp Surface coated cermet cutting tool having hard coating layer exhibiting superior chipping resistance in high-speed cutting of material hard to cut
JP2007168026A (en) * 2005-12-22 2007-07-05 Mitsubishi Materials Corp Surface coated cemented carbide-made cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed cutting material hard to cut
JP2008055582A (en) * 2006-09-01 2008-03-13 Mitsubishi Materials Corp Surface coated cutting tool with hard coating layer exhibiting excellent abrasion resistance
JP2008055583A (en) * 2006-09-01 2008-03-13 Mitsubishi Materials Corp Surface coated cutting tool with hard coating layer exhibiting excellent abrasion resistance

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004188576A (en) * 2002-07-01 2004-07-08 Mitsubishi Materials Corp Cutting tool of surface-coated cermet with hard coating layer having excellent thermal shock resistance and surface lubrication performance
JP2004188501A (en) * 2002-07-01 2004-07-08 Mitsubishi Materials Corp Cutting tool of surface-coated cermet with hard coating layer having excellent thermal shock resistance and surface lubrication property
JP2007083374A (en) * 2005-09-26 2007-04-05 Mitsubishi Materials Corp Cutting throw away tip made of surface coated cermet having hard coating layer exhibiting excellent chipping resistance in high-speed cutting
JP2007118107A (en) * 2005-10-26 2007-05-17 Mitsubishi Materials Corp Non-hole surface-coated cermet throwaway cutting tip having hard coating layer exhibiting excellent chipping resistance in high speed cutting
JP2007160424A (en) * 2005-12-12 2007-06-28 Mitsubishi Materials Corp Pore-free surface coated cermet cutting throw-away tip having hard coating layer exhibiting chipping resistance in high speed cutting
JP2007160423A (en) * 2005-12-12 2007-06-28 Mitsubishi Materials Corp Surface coated cermet cutting throw-away tip having hard coating layer exhibiting chipping resistance in high speed cutting
JP2007160466A (en) * 2005-12-14 2007-06-28 Mitsubishi Materials Corp Surface coated cermet cutting tool having hard coating layer exhibiting superior chipping resistance in high-speed cutting of material hard to cut
JP2007168026A (en) * 2005-12-22 2007-07-05 Mitsubishi Materials Corp Surface coated cemented carbide-made cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed cutting material hard to cut
JP2008055582A (en) * 2006-09-01 2008-03-13 Mitsubishi Materials Corp Surface coated cutting tool with hard coating layer exhibiting excellent abrasion resistance
JP2008055583A (en) * 2006-09-01 2008-03-13 Mitsubishi Materials Corp Surface coated cutting tool with hard coating layer exhibiting excellent abrasion resistance

Also Published As

Publication number Publication date
JP3989664B2 (en) 2007-10-10

Similar Documents

Publication Publication Date Title
JP4019246B2 (en) Surface coated cemented carbide cutting tools with excellent chipping resistance
JP4432097B2 (en) Method of manufacturing a surface-coated cemented carbide cutting tool that exhibits excellent surface lubricity against chips during high-speed cutting of highly viscous difficult-to-cut materials
JP4019244B2 (en) Surface coated cemented carbide cutting tools with excellent chipping resistance
JP2001239404A (en) Cutting tool made of surface coated cemented carbide having good chipping resistance
JPH068008A (en) Cutting tool made of surface coating tungsten carbide group supper hard alloy excellent in chipping resistance property
JP5088481B2 (en) Surface coated cutting tool with excellent wear resistance with hard coating layer in heavy cutting
JP2001009604A (en) Cutting tool made of surface coated tungsten carbide base cemented carbide in which hard coated layer has excellent abrasive resistance in high speed cutting
JP3282592B2 (en) Surface-coated cemented carbide cutting tool that demonstrates excellent wear resistance in high-speed cutting
JP3250414B2 (en) Method for producing cutting tool coated with titanium carbonitride layer surface
JP3893804B2 (en) Surface coated cemented carbide cutting tools with excellent chipping resistance
JP3994590B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with high efficiency cutting and hard coating layer
JP3460571B2 (en) Milling tool with excellent wear resistance
JP4019243B2 (en) Surface coated cemented carbide cutting tool with excellent surface lubricity against chips
JP4232333B2 (en) Surface coated cemented carbide cutting tool with excellent surface lubricity against chips
JP3912494B2 (en) Slow-away tip made of surface-coated cemented carbide that exhibits excellent heat-resistant plastic deformation with a hard coating layer
JP3371796B2 (en) Surface coated cemented carbide cutting tool with excellent fracture resistance
JP2000218409A (en) Surface coated cemented carbide cutting tool having hard coated layer of good defect resistance
JP3922330B2 (en) Cutting tool made of surface-coated cemented carbide with excellent thermal barrier and interlayer adhesion
JP4484500B2 (en) Surface coated cutting tool
JP3988176B2 (en) Surface-coated cemented carbide throwaway tip-shaped cutting tool with excellent surface lubricity against chips
JP2000246509A (en) Throw-awy cutting tip made of surface sheathed super hard alloy exhibiting excellent initial tipping resistant property at its hard coated layer
JP3282600B2 (en) Surface-coated cemented carbide cutting tool with a hard coating layer that exhibits excellent fracture resistance
JPH1177405A (en) Surface coated cemented carbide cutting tool excellent in high speed cutting and wear resistance
JP4240522B2 (en) Surface coated cemented carbide cutting tool with excellent surface lubricity against chips
JP3371823B2 (en) Surface coated cemented carbide cutting tool with excellent interlayer adhesion with hard coating layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060315

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061004

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061124

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070718

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3989664

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

EXPY Cancellation because of completion of term