JP2008055583A - Surface coated cutting tool with hard coating layer exhibiting excellent abrasion resistance - Google Patents

Surface coated cutting tool with hard coating layer exhibiting excellent abrasion resistance Download PDF

Info

Publication number
JP2008055583A
JP2008055583A JP2006238338A JP2006238338A JP2008055583A JP 2008055583 A JP2008055583 A JP 2008055583A JP 2006238338 A JP2006238338 A JP 2006238338A JP 2006238338 A JP2006238338 A JP 2006238338A JP 2008055583 A JP2008055583 A JP 2008055583A
Authority
JP
Japan
Prior art keywords
layer
inclination angle
tool
cutting
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006238338A
Other languages
Japanese (ja)
Inventor
Makoto Nishida
西田  真
Hitoshi Kunugi
斉 功刀
Takeshi Ishii
剛 石井
Giichi Okada
義一 岡田
Takuji Saeki
卓司 佐伯
Hiroshi Omori
弘 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2006238338A priority Critical patent/JP2008055583A/en
Publication of JP2008055583A publication Critical patent/JP2008055583A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface coated cutting tool with a hard coating layer exhibiting excellent abrasion resistance under high speed heavy duty cutting of a hard-to-cut material. <P>SOLUTION: This surface coated cutting tool is formed by vapor-depositing (a) a lower layer comprising Ti compound layer, and (b) an upper layer comprising modified α type Al<SB>2</SB>O<SB>3</SB>layer, when measuring an inclination angle of a normal line of a plane (0001), or a crystal plane of a crystal grain to create an inclination angle frequency-distribution graph, showing the inclination angle frequency-distribution graph which has a highest peak at an inclination angle interval in the range of 0-15° and a frequency rate in the range occupies 50% or more of the total, on the surface of a tool substrate; and a tool cutting face area alone has an outermost layer comprising a titanium oxide layer (a lower side layer) and a titanium-nitride-oxide layer (an upper side layer). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、被削材自身が高い粘性を有し、かつ切削時の切削工具表面部の硬質被覆層に対する粘着性も高く、この結果切削抵抗のきわめて高いものとなる軟鋼やステンレス鋼、さらに高マンガン鋼などの難削材の高速切削加工等においても、硬質被覆層が長期に亘ってすぐれた耐摩耗性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   In this invention, the work material itself has a high viscosity, and the adhesiveness to the hard coating layer on the surface of the cutting tool during cutting is high, and as a result, soft steel and stainless steel that have extremely high cutting resistance, The present invention also relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) in which a hard coating layer exhibits excellent wear resistance over a long period of time in high-speed cutting of difficult-to-cut materials such as manganese steel.

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(1)下部層が、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(2)上部層が、化学蒸着した状態でα型の結晶構造を有し、電界放出型走査電子顕微鏡を用い、図1に概略説明図で示される通り、上記工具基体表面と平行な研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、図2に例示される通り、0〜15度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜15度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の50%以上の割合を占める傾斜角度数分布グラフを示し、かつ1.5〜6μmの平均層厚を有する酸化アルミニウム層(以下、改質α型Al23層という)、
以上(1)および(2)で構成された硬質被覆層を蒸着形成してなる被覆工具が知られており、この被覆工具は、上記改質α型Al23層がα型Al23自身のもつすぐれた高温硬さおよび耐熱性に加えて、すぐれた高温強度を具備することから、例えば各種の一般鋼や普通鋳鉄などの高速切削加工などに用いた場合にも、すぐれた耐チッピング性、耐摩耗性を発揮し、長期に亘ってすぐれた切削性能を発揮することも知られている。
Conventionally, generally on the surface of a substrate (hereinafter collectively referred to as a tool substrate) composed of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet. ,
(1) The lower layer is a Ti carbide (hereinafter referred to as TiC) layer, a nitride (hereinafter also referred to as TiN) layer, a carbonitride (hereinafter referred to as TiCN) layer, a carbon oxide (hereinafter referred to as TiCO). A Ti compound layer having a total average layer thickness of 3 to 20 μm, including one or two or more of a layer and a carbonitride oxide (hereinafter referred to as TiCNO) layer,
(2) The upper layer has an α-type crystal structure in the state of chemical vapor deposition, and using a field emission scanning electron microscope, as shown schematically in FIG. 1, is a polished surface parallel to the tool substrate surface. Each of the crystal grains having a hexagonal crystal lattice existing within the measurement range is irradiated with an electron beam, and the normal line of the (0001) plane that is the crystal plane of the crystal grain is relative to the normal line of the polished surface. Measure the inclination angle to be made, divide the measurement inclination angle within the range of 0-45 degrees out of the measurement inclination angle for each pitch of 0.25 degree, and totalize the frequency existing in each division In the inclination angle frequency distribution graph, as illustrated in FIG. 2, the highest peak exists in the inclination angle section within the range of 0 to 15 degrees, and the total of the frequencies existing within the range of 0 to 15 degrees is as follows. , Accounting for 50% or more of the total frequency in the slope angle distribution graph It shows an inclination angle frequency distribution graph, and an aluminum oxide layer having an average layer thickness of 1.5~6Myuemu (hereinafter, referred to as modified α type the Al 2 O 3 layer),
A coated tool formed by vapor-depositing the hard coating layer constituted by the above (1) and (2) is known, and the coated α-type Al 2 O 3 layer is an α-type Al 2 O. (3) In addition to its excellent high-temperature hardness and heat resistance, it also has excellent high-temperature strength, so it has excellent resistance to high-speed cutting such as various general steels and ordinary cast iron. It is also known that it exhibits chipping and wear resistance and exhibits excellent cutting performance over a long period of time.

また、一般に、上記の被覆工具の硬質被覆層を構成する改質α型Al23層が、通常の化学蒸着装置を用い、
反応ガス組成:容量%で、AlCl3:1〜5%、CO2:0.1〜2%、HCl:0.3〜3%、H2S:0.5〜1%、Ar:20〜35%、H2:残り、
反応雰囲気温度:1050〜1100℃、
反応雰囲気圧力:6〜10kPa、
の条件で蒸着形成されることも知られている。
さらに、同じく硬質被覆層を構成するTi化合物層や改質α型Al23層が粒状結晶組織を有し、さらに、前記Ti化合物層を構成するTiCN層を、層自身の強度向上を目的として、通常の化学蒸着装置にて、反応ガスとして有機炭窒化物を含む混合ガスを使用し、700〜950℃の中温温度域で化学蒸着することにより形成して縦長成長結晶組織をもつようにすることも知られている。
特開2005−205586号公報 特開平6−8010号公報
In general, the modified α-type Al 2 O 3 layer constituting the hard coating layer of the above-mentioned coated tool uses a normal chemical vapor deposition apparatus,
Reaction gas composition: by volume%, AlCl 3: 1~5%, CO 2: 0.1~2%, HCl: 0.3~3%, H 2 S: 0.5~1%, Ar: 20~ 35%, H 2 : remaining,
Reaction atmosphere temperature: 1050 to 1100 ° C.
Reaction atmosphere pressure: 6 to 10 kPa,
It is also known that vapor deposition is performed under the following conditions.
Furthermore, the Ti compound layer and the modified α-type Al 2 O 3 layer that also constitute the hard coating layer have a granular crystal structure, and the TiCN layer that constitutes the Ti compound layer is intended to improve the strength of the layer itself. In a normal chemical vapor deposition apparatus, a gas mixture containing organic carbonitrides is used as a reaction gas, and it is formed by chemical vapor deposition at an intermediate temperature range of 700 to 950 ° C. so that it has a vertically grown crystal structure. It is also known to do.
JP-A-2005-205586 Japanese Patent Laid-Open No. 6-8010

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は一段と高速化の傾向にあるが、上記の従来被覆工具においては、これを低合金鋼や炭素鋼などの一般鋼、さらにねずみ鋳鉄などの普通鋳鉄の高速切削に用いた場合には問題はないが、特にこれを軟鋼やステンレス鋼、さらに高マンガン鋼などの難削材の高速切削加工に用いた場合には、切刃部には非常に大きな機械的負荷が加わり、さらに、前記難削材自身が高い粘性を有し、かつ切削時の切削工具表面部の硬質被覆層に対する粘着性も高く、この傾向は高速切削時に発生する高熱によって一段と増大することと相俟って、切削抵抗のきわめて高いものとなり、特に、被覆工具のすくい面では難削材の切粉に対する耐摩耗性が不十分なものとなり、これらが原因で比較的短時間で使用寿命に至るのが現状である。   In recent years, the performance of cutting machines has been remarkable. On the other hand, there is a strong demand for labor saving, energy saving, and cost reduction for cutting work, and along with this, cutting work tends to be further accelerated. For coated tools, there is no problem when this is used for high-speed cutting of general steel such as low alloy steel and carbon steel, and ordinary cast iron such as gray cast iron, but this is especially suitable for mild steel, stainless steel, and high manganese. When used for high-speed cutting of difficult-to-cut materials such as steel, a very large mechanical load is applied to the cutting edge, and the difficult-to-cut material itself has a high viscosity, and the cutting during cutting is performed. The adhesiveness of the tool surface to the hard coating layer is also high. This tendency, combined with the increased heat generated during high-speed cutting, results in extremely high cutting resistance, especially on the rake face of the coated tool. Wear resistance becomes insufficient with respect to chips of work material, such that the result in a relatively short time service life because at present.

そこで、本発明者等は、上述のような観点から、上記の改質α型Al23層が硬質被覆層の上部層を構成する被覆工具に着目し、特に、難削材の高速切削という厳しい切削条件下での被覆工具逃げ面の耐摩耗性の向上を図るべく研究を行った結果、
(a)Ti化合物層(下部層)と改質α型Al23層(上部層)とからなる硬質被覆層を有する上記従来被覆工具の、上記改質α型Al23層の表面に、通常の化学蒸着装置を用い、
(1)まず、下側層として、反応ガス組成を、体積%で、
TiCl4:0.2〜10%、
CO2:0.1〜10%、
Ar:5〜60%、
2:残り、
とし、かつ、
反応雰囲気温度:800〜1100℃、
反応雰囲気圧力:4〜70kPa(30〜525torr)、
とした条件で、0.1〜3μmの平均層厚を有し、かつ、オージェ分光分析装置で測定して、Tiに対する酸素の割合が原子比で1.25〜1.90、即ち、
組成式:TiO
で表わした場合、
W:原子比で1.25〜1.90、
を満足する酸化チタン層を形成し、
(2)ついで、上記酸化チタン層(下側層)の上に、上側層として、通常の条件、即ち、反応ガス組成を、体積%で、
TiCl4:0.2〜10%、
2:4〜60%、
2:残り、
とし、かつ、
反応雰囲気温度:800〜1100℃、
反応雰囲気圧力:4〜90kPa(30〜675torr)、
とした条件で、0.05〜2μmの平均層厚を有するTiN層を形成すると、
(3)上記TiN層(上側層)形成時に、上記下側層を構成する酸化チタン層の酸素が拡散してきて前記上側層(TiN層)が、窒酸化チタン層で構成されるようになるが、この場合上記上側層(前記窒酸化チタン層)形成後の上記下側層である酸化チタン層は、厚さ方向中央部をオージェ分光分析装置で測定して、酸素の割合がTiに対する原子比で1.2〜1.7、即ち、
組成式:TiOX
で表わした場合、
X:原子比で1.2〜1.7、
を満足する酸化チタン層となり、
(4)また、上記窒酸化チタン層で構成された上側層は、同じく厚さ方向中央部をオージェ分光分析装置で測定して、拡散酸素の割合が窒素(N)に対する原子比で0.01〜0.4、即ち、
組成式:TiN1-Y(O)Y
で表わした場合(ただし、(O)は上記酸化チタン層からの拡散酸素を示す)、
Y:原子比で0.01〜0.4、
を満足する窒酸化チタン層となること。
In view of the above, the present inventors focused on the coated tool in which the above-mentioned modified α-type Al 2 O 3 layer constitutes the upper layer of the hard coating layer, and in particular, high-speed cutting of difficult-to-cut materials. As a result of research to improve the wear resistance of the flank of the coated tool under severe cutting conditions,
(A) Ti compound layer of the conventional coated tool having a hard coating layer consisting of (lower layer) and the modified α type the Al 2 O 3 layer (the upper layer), the surface of the modified α type the Al 2 O 3 layer In the normal chemical vapor deposition equipment,
(1) First, as a lower layer, the reaction gas composition is in volume%,
TiCl 4 : 0.2 to 10%,
CO 2 : 0.1 to 10%,
Ar: 5 to 60%,
H 2 : Remaining
And
Reaction atmosphere temperature: 800-1100 ° C.
Reaction atmosphere pressure: 4 to 70 kPa (30 to 525 torr),
And having an average layer thickness of 0.1 to 3 μm and a ratio of oxygen to Ti of 1.25 to 1.90 as measured by an Auger spectrometer,
Composition formula: TiO W ,
In the case of
W: 1.25 to 1.90 in atomic ratio,
Forming a titanium oxide layer that satisfies
(2) Next, on the titanium oxide layer (lower layer), as an upper layer, normal conditions, that is, the reaction gas composition, in volume%,
TiCl 4 : 0.2 to 10%,
N 2 : 4-60%,
H 2 : Remaining
And
Reaction atmosphere temperature: 800-1100 ° C.
Reaction atmosphere pressure: 4 to 90 kPa (30 to 675 torr),
When a TiN layer having an average layer thickness of 0.05 to 2 μm is formed under the conditions described above,
(3) When the TiN layer (upper layer) is formed, oxygen in the titanium oxide layer constituting the lower layer diffuses, and the upper layer (TiN layer) is constituted by a titanium oxynitride layer. In this case, the titanium oxide layer, which is the lower layer after the formation of the upper layer (the titanium oxynitride layer), is measured by an Auger spectrometer at the center in the thickness direction. 1.2 to 1.7, that is,
Composition formula: TiO x ,
In the case of
X: 1.2 to 1.7 in atomic ratio,
Titanium oxide layer that satisfies
(4) Further, the upper layer composed of the titanium oxynitride layer is similarly measured at the center in the thickness direction with an Auger spectroscopic analyzer, and the ratio of diffused oxygen is 0.01 in terms of atomic ratio to nitrogen (N). ~ 0.4, i.e.
Composition formula: TiN 1-Y (O) Y ,
(Where (O) represents diffused oxygen from the titanium oxide layer),
Y: 0.01 to 0.4 in atomic ratio
Titanium nitride oxide layer that satisfies

(b)そして、上記(a)によって改質α型Al23層上に形成された上記窒酸化チタン層(上側層)および酸化チタン層(下側層)からなる被覆層(以下、「最外層」という)は、それ自体耐熱性にすぐれているため、高熱を発生する難削材の高速切削加工において、主として切粉との擦過によって生じる被覆工具すくい面でのクレーター摩耗の発生が抑制されるようになることから、被覆工具すくい面の上記改質α型酸化アルミニウム層上にのみ、さらに、上記窒酸化チタン層(上側層)および酸化チタン層(下側層)からなる最外層を設けてすくい面の耐摩耗性を向上させ、一方、被覆工具逃げ面は、硬質被覆層の最表面層を上記改質α型Al23層で構成して逃げ面に必要とされる高温硬さと耐摩耗性を確保すれば、その結果として、被覆工具全体としての耐摩耗性が向上し、工具の使用寿命の延命化が可能となること。
以上(a)、(b)に示される研究結果を得たのである。
(B) Then, a coating layer (hereinafter referred to as “a”) composed of the titanium nitride oxide layer (upper layer) and the titanium oxide layer (lower layer) formed on the modified α-type Al 2 O 3 layer according to (a). Since the outermost layer itself has excellent heat resistance, it suppresses the occurrence of crater wear on the rake face of the coated tool, which is mainly caused by abrasion with chips in high-speed cutting of difficult-to-cut materials that generate high heat. Therefore, an outermost layer composed of the titanium nitride oxide layer (upper layer) and the titanium oxide layer (lower layer) is formed only on the modified α-type aluminum oxide layer on the rake face of the coated tool. The wear resistance of the rake face is provided, while the coated tool flank is made of the above-mentioned modified α-type Al 2 O 3 layer as the outermost surface layer of the hard coating layer, which is necessary for the flank. As a result, if hardness and wear resistance are secured In addition, the wear resistance of the coated tool as a whole is improved and the service life of the tool can be extended.
The research results shown in (a) and (b) have been obtained.

この発明は、上記の研究結果に基づいてなされたものであって、
「炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a)Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層からなる下部層、
(b)化学蒸着した状態でα型の結晶構造を有し、電界放出型走査電子顕微鏡を用い、上記工具基体表面と平行な研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、0〜15度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜15度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の50%以上の割合を占める傾斜角度数分布グラフを示し、かつ1.5〜5.9μmの平均層厚を有する改質α型酸化アルミニウム層からなる上部層、
以上(a)、(b)の各層を、工具基体側から順に蒸着形成した表面被覆切削工具において、
上記表面被覆切削工具のすくい面を構成する工具基体の表面領域の上記改質α型酸化アルミニウム層上にのみ、さらに、
(c)0.1〜3μmの平均層厚を有し、かつ、
組成式:TiOX
で表わした場合、厚さ方向中央部をオージェ分光分析装置で測定して、原子比で、1.2≦X≦1.7を満足する酸化チタン層からなる下側層、
(d)0.05〜2μmの平均層厚を有し、かつ、
組成式:TiN1−Y(O)
で表わした場合[ただし、(O)は上記酸化チタン層からの拡散酸素を示す]、厚さ方向中央部をオージェ分光分析装置で測定して、原子比で、0.01≦Y≦0.4を満足する窒酸化チタン層からなる上側層、
上記(c)、(d)からなる最外層を設けたことを特徴とする被覆工具(表面被覆切削工具)。」
に特徴を有するものである。
This invention was made based on the above research results,
“On the surface of the tool base made of tungsten carbide base cemented carbide or titanium carbonitride base cermet,
(A) It consists of one or two or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer, and carbonitride layer, and has a total average layer thickness of 3 to 20 μm. A lower layer composed of a Ti compound layer,
(B) A crystal grain having an α-type crystal structure in a chemical vapor deposited state and having a hexagonal crystal lattice existing in a measurement range of a polished surface parallel to the tool substrate surface using a field emission scanning electron microscope Individually irradiated with an electron beam, an inclination angle formed by a normal line of the (0001) plane, which is a crystal plane of the crystal grain, is measured with respect to a normal line of the polished surface. In the inclination angle number distribution graph obtained by dividing the measured inclination angle within the range of ˜45 degrees into every 0.25 degree pitch and counting the frequencies existing in each division, within the range of 0-15 degrees An inclination angle number distribution graph in which the highest peak exists in the inclination angle section and the total number of frequencies within the range of 0 to 15 degrees occupies 50% or more of the entire frequency in the inclination angle distribution graph. And has an average layer thickness of 1.5 to 5.9 μm An upper layer composed of a modified α-type aluminum oxide layer,
In the surface-coated cutting tool in which the layers (a) and (b) are formed by vapor deposition in order from the tool base side,
Only on the modified α-type aluminum oxide layer in the surface region of the tool base constituting the rake face of the surface-coated cutting tool,
(C) has an average layer thickness of 0.1 to 3 μm, and
Composition formula: TiO x ,
The lower layer made of a titanium oxide layer satisfying 1.2 ≦ X ≦ 1.7 in terms of atomic ratio, as measured by an Auger spectroscopic analyzer at the center in the thickness direction,
(D) having an average layer thickness of 0.05-2 μm, and
Composition formula: TiN 1-Y (O) Y ,
[Wherein (O) indicates diffuse oxygen from the titanium oxide layer], the central portion in the thickness direction is measured with an Auger spectroscopic analyzer, and the atomic ratio is 0.01 ≦ Y ≦ 0. An upper layer comprising a titanium oxynitride layer satisfying 4;
A coated tool (surface coated cutting tool), characterized in that an outermost layer comprising the above (c) and (d) is provided. "
It has the characteristics.

以下に、この発明の被覆工具の硬質被覆層の下部層、上部層、最外層について、上記の通りに限定した理由を説明する。
(1)Ti化合物層(下部層)
Ti化合物層は、基本的には改質α型Al23層の下部層として存在し、自身の具備するすぐれた高温強度によって硬質被覆層が高温強度を具備するようにするほか、工具基体と補強α型Al23層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性向上に寄与する作用を有するが、その合計平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方その合計平均層厚が20μmを越えると、特に高熱発生を伴う高速切削では熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その合計平均層厚を3〜20μmと定めた。
The reason why the lower layer, the upper layer, and the outermost layer of the hard coating layer of the coated tool of the present invention are limited as described above will be described below.
(1) Ti compound layer (lower layer)
The Ti compound layer basically exists as a lower layer of the modified α-type Al 2 O 3 layer, and allows the hard coating layer to have high-temperature strength by its excellent high-temperature strength. And the reinforcing α-type Al 2 O 3 layer firmly adhere to each other, and thus have an effect of improving the adhesion of the hard coating layer to the tool substrate. However, when the total average layer thickness is less than 3 μm, On the other hand, when the total average layer thickness exceeds 20 μm, it becomes easy to cause thermoplastic deformation particularly in high-speed cutting with high heat generation, which causes uneven wear. The layer thickness was determined to be 3-20 μm.

(2)改質α型Al23層(上部層)
改質α型Al23層の傾斜角度数分布グラフにおける測定傾斜角の最高ピーク位置は、化学蒸着装置における反応雰囲気圧力を変化させることによって変化するが、試験結果によれば、上記蒸着条件のうちの反応雰囲気圧力を6〜10kpaとすると、最高ピークが、0〜15度の範囲内の傾斜角区分に現れると共に、前記0〜15度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の50%以上の割合を占める傾斜角度数分布グラフを示すようになるものであり、したがって、前記反応雰囲気圧力が前記範囲から低い方に外れても、また高い方に外れても、前記0〜15度の範囲内に測定傾斜角の最高ピークが現れなくなり、このような場合には所望のすぐれた高温強度を具備することができないものである。
また、改質α型Al23層は、α型Al23自身のもつすぐれた高温硬さおよび耐熱性に加えて、高温強度も具備するようになるが、その平均層厚が1.5μm未満では、前記特性を硬質被覆層に十分に具備せしめることができず、また、その平均層厚が5.9μmを越えると、難削材の高速切削加工ではチッピングが発生し易くなることから、その平均層厚を1.5〜5.9μmと定めた。
(2) Modified α-type Al 2 O 3 layer (upper layer)
The maximum peak position of the measured inclination angle in the inclination angle number distribution graph of the modified α-type Al 2 O 3 layer is changed by changing the reaction atmosphere pressure in the chemical vapor deposition apparatus. When the reaction atmosphere pressure is 6 to 10 kpa, the highest peak appears in the inclination angle section in the range of 0 to 15 degrees, and the total of the frequencies existing in the range of 0 to 15 degrees is the inclination angle. An inclination angle number distribution graph occupying a ratio of 50% or more of the entire frequency in the number distribution graph is shown. Therefore, even if the reaction atmosphere pressure is out of the range, it is out of the range. However, the highest peak of the measured tilt angle does not appear within the range of 0 to 15 degrees, and in such a case, the desired excellent high-temperature strength cannot be provided.
The modified α-type Al 2 O 3 layer also has high-temperature strength in addition to the excellent high-temperature hardness and heat resistance of the α-type Al 2 O 3 itself, but the average layer thickness is 1 If the thickness is less than 5 μm, the above properties cannot be sufficiently provided in the hard coating layer, and if the average layer thickness exceeds 5.9 μm, chipping is likely to occur in high-speed cutting of difficult-to-cut materials. Therefore, the average layer thickness was determined to be 1.5 to 5.9 μm.

(3)最外層
被覆工具のすくい面領域にのみ設けられた最外層の上側層を構成する窒酸化チタン層は、上記の通り、まず、酸素の割合をNに対する原子比で1.25〜1.90(W値)とした酸化チタン層を形成し、ついで、前記酸化チタン層の上に通常の条件でTiN層を蒸着することにより形成されるものであり、したがって前記TiN層形成時における前記酸化チタン層からの酸素の拡散が不可欠となるが、前記酸化チタン層のW値が1.25未満であると、前記TiN層への酸素の拡散反応が急激に低下し、上側層における拡散酸素の割合(Y値)を原子比で0.01以上にすることができず、一方同W値が1.90を越えると、前記上側層における拡散酸素の割合(Y値)が原子比で0.40を越えて多くなってしまうことから、W値を1.25〜1.90と定めたものであり、この場合、上側層形成後の下側層(酸化チタン層)における酸素の割合(X値)は原子比で1.2〜1.7の範囲内の値をとるようになる、言い換えれば上側層形成後の下側層のX値が1.2〜1.7を満足する場合に、前記上側層のY値は0.01〜0.40を満足するものとなる。
そして、被覆工具のすくい面領域にのみ形成されている最外層は、既に述べたように難削材の高速切削において切粉による擦過で発生するクレーター摩耗の抑制に寄与するが、下側層のX値および上側層のY値がそれぞれ1.2〜1.7および0.01〜0.40を外れた場合には、切粉に対する耐熱性作用が不十分なものとなりクレーター摩耗の発生を抑えることできなくなるので、被覆工具のすくい面領域の最外層による切粉に対する耐熱性作用の発現という観点から、下側層のX値を1.2〜1.7、また、上側層のY値を0.01〜0.40と定めた。
また、上側層および下側層の平均層厚を、それぞれ0.05〜2μmおよび0.1〜3μmとしたのは、その平均層厚が0.05μm未満および0.1μm未満では、すくい面領域における切粉に対する耐熱性を十分に発揮することができず、一方、その平均層厚がそれぞれ2μmおよび3μmを越えると、すくい面領域にチッピングが発生しやすくなるという理由から、最外層の上側層および下側層の平均層厚を、それぞれ0.05〜2μmおよび0.1〜3μmと定めた。
なお、被覆工具のすくい面領域にのみ最外層を蒸着形成する手段については特に限定するものではないが、例えば、被覆工具のすくい面領域、逃げ面領域の改質α型Al23層全面に最外層を蒸着形成した後で、逃げ面領域の最外層のみをブラスト、研磨などで除去することによって、すくい面領域にのみ最外層を残すことが可能であり、あるいは、最外層を蒸着形成するに当たり、被覆工具の逃げ面領域の改質α型Al23層にマスキングを施し、この状態で蒸着を行い、すくい面領域にのみ最外層を蒸着形成することも勿論可能である。いずれにしても、この発明では、被覆工具のすくい面領域にのみ最外層を蒸着形成する手段については、特にその手段を限定するものではなく、いかなる手段をも採用することができる。
(3) Outermost layer As described above, the titanium oxynitride layer constituting the uppermost layer of the outermost layer provided only in the rake face region of the coated tool has an oxygen ratio of 1.25 to 1 in terms of atomic ratio to N as described above. .90 (W value) is formed by forming a titanium oxide layer and then depositing a TiN layer on the titanium oxide layer under normal conditions. Therefore, the TiN layer is formed when the TiN layer is formed. Although diffusion of oxygen from the titanium oxide layer is indispensable, if the W value of the titanium oxide layer is less than 1.25, the diffusion reaction of oxygen to the TiN layer is drastically reduced, and diffusion oxygen in the upper layer is reduced. When the W value exceeds 1.90, the ratio of diffused oxygen in the upper layer (Y value) is 0 in atomic ratio. Because it becomes more than 40, In this case, the oxygen ratio (X value) in the lower layer (titanium oxide layer) after the formation of the upper layer is 1.2 to 1 in terms of atomic ratio. .7, in other words, when the X value of the lower layer after the formation of the upper layer satisfies 1.2 to 1.7, the Y value of the upper layer is 0.01. -0.40 is satisfied.
The outermost layer formed only in the rake face region of the coated tool contributes to the suppression of crater wear caused by abrasion due to chips in high-speed cutting of difficult-to-cut materials as described above. When the X value and the Y value of the upper layer deviate from 1.2 to 1.7 and 0.01 to 0.40, respectively, the heat resistance action against chips becomes insufficient and the occurrence of crater wear is suppressed. From the viewpoint of developing a heat resistance effect on the chips by the outermost layer of the rake face region of the coated tool, the lower layer has an X value of 1.2 to 1.7, and the upper layer has a Y value. It was determined to be 0.01-0.40.
In addition, the average layer thicknesses of the upper layer and the lower layer are set to 0.05 to 2 μm and 0.1 to 3 μm, respectively, when the average layer thickness is less than 0.05 μm and less than 0.1 μm. On the other hand, if the average layer thickness exceeds 2 μm and 3 μm respectively, chipping is likely to occur in the rake face region. The average layer thickness of the lower layer was determined to be 0.05 to 2 μm and 0.1 to 3 μm, respectively.
The means for depositing and forming the outermost layer only on the rake face region of the coated tool is not particularly limited. For example, the modified α-type Al 2 O 3 layer entire surface of the rake face region and flank region of the coated tool It is possible to leave the outermost layer only in the rake face area by removing only the outermost layer in the flank area by blasting, polishing, etc. In doing so, it is of course possible to mask the modified α-type Al 2 O 3 layer in the flank area of the coated tool and perform vapor deposition in this state to deposit the outermost layer only in the rake face area. In any case, in the present invention, the means for depositing the outermost layer only on the rake face region of the coated tool is not particularly limited, and any means can be adopted.

この発明の被覆工具は、そのすくい面領域に蒸着形成された改質α型Al23層上に、さらに、切粉に対する耐熱性にすぐれた最外層を蒸着形成してあることにより、特に切刃にかかる機械的な負荷が大きく、さらに、切粉の粘性が高く、かつ工具表面に溶着し易いステンレス鋼や高マンガン鋼、さらに軟鋼などの難削材(被削材)の切削加工を高熱発生を伴う高速切削条件で行ない、前記被削材および切粉が高温に加熱されて粘性および溶着性が一段と増すようになっても、前記硬質被覆層のもつすぐれた高温硬さと耐熱性作用によって、前記硬質被覆層の摩耗抑制効果が十分に発揮され、この結果、長期に亘ってすぐれた耐摩耗性を示すようになるものである。 The coated tool of the present invention is formed by depositing an outermost layer having excellent heat resistance against chips on the modified α-type Al 2 O 3 layer deposited on the rake face region. Cutting of difficult-to-cut materials (work materials) such as stainless steel, high-manganese steel, and mild steel, which has a large mechanical load on the cutting edge, has high chip viscosity, and is easy to weld to the tool surface. Even under high-speed cutting conditions with high heat generation, even if the work material and chips are heated to a high temperature and the viscosity and weldability increase further, the excellent high-temperature hardness and heat resistance of the hard coating layer Thus, the effect of suppressing the wear of the hard coating layer is sufficiently exhibited, and as a result, excellent wear resistance is exhibited over a long period of time.

つぎに、この発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことにより、中心部に工具取り付け用ボルト貫通孔を有する形式で、ISO規格にCNMG120412として規定されるスローアウエイチップ形状をもったWC基超硬合金製の工具基体A〜Fをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, and Co powder each having an average particle diameter of 1 to 3 μm are prepared. The raw material powder is blended in the blending composition shown in Table 1, added with wax, ball mill mixed in acetone for 24 hours, dried under reduced pressure, and press-molded into a green compact of a predetermined shape at a pressure of 98 MPa. The green compact is vacuum-sintered in a vacuum of 5 Pa at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour. After sintering, the cutting edge is subjected to a honing process of R: 0.07 mm. Thus, a tool base made of a WC-based cemented carbide having a throwaway tip shape defined as CNMG12041 in the ISO standard in the form of having a tool mounting bolt through hole in the center. Each of the bodies A to F was produced.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことにより、工具本体にクランプ駒による挟み締めにより取り付けられる穴なし形式で、ISO規格にCNMN120412として規定されるスローアウエイチップ形状をもったTiCN基サーメット製の工具基体a〜fを形成した。 Further, as raw material powders, TiCN (mass ratio, TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC, all having an average particle diameter of 0.5 to 2 μm. Prepare powder, Co powder, and Ni powder, blend these raw material powders into the composition shown in Table 2, wet mix with a ball mill for 24 hours, dry, and press-mold into a green compact at 98 MPa pressure The green compact is sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after sintering, the cutting edge portion is subjected to a honing process of R: 0.07 mm. Made of TiCN-based cermet with a throwaway tip shape that is defined as CNMN12041 in the ISO standard, with no holes attached to the tool body by clamping with clamp pieces To form a tool substrate a~f.

ついで、これらの工具基体A〜Fおよび工具基体a〜fのそれぞれを、通常の化学蒸着装置に装入し、
(a)まず、表3(表3中のl−TiCNは特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される条件にて、表6に示される目標層厚のTi化合物層を硬質被覆層の下部層として蒸着形成し、
(b)ついで、反応ガス組成:容量%で、AlCl3:2.2%、CO2:1.5%、HCl:2%、H2S:0.75%、Ar:26.5%、H2:残り、
反応雰囲気温度:1070℃、
反応雰囲気圧力:6〜10kPaの範囲内の所定の圧力、
の条件で同じく表6に示される目標層厚で、同じく上部層として改質α型Al23層を蒸着形成し、
(c)さらに、最外層の下側層形成用酸化チタン層[TiO(1)〜(6)のいずれか]を表4に示される条件で、表6に示される目標層厚で蒸着形成した後、最外層の上側層形成用窒化チタン層(TiN層)を同じく表3に示される条件で、表6に示される目標層厚で蒸着形成して、表5に示される組成、すなわち厚さ方向中央部をオージェ分光分析装置で測定して、それぞれ表5に示されるX値およびY値の下側層および上側層からなる最外層を形成し、
(d)引き続いて、工具すくい面以外の領域に対してウエットブラストを施して最外層を除去し、工具すくい面領域にのみ上記最外層を設けた本発明被覆工具1〜13をそれぞれ製造した。
Then, each of these tool bases A to F and tool bases a to f is charged into a normal chemical vapor deposition apparatus,
(A) First, Table 3 (l-TiCN in Table 3 indicates the conditions for forming a TiCN layer having a vertically elongated crystal structure described in JP-A-6-8010, and the other conditions are ordinary granularity. Under the conditions shown in Table 6), the Ti compound layer having the target layer thickness shown in Table 6 is deposited as the lower layer of the hard coating layer,
(B) Next, reaction gas composition: volume%, AlCl 3 : 2.2%, CO 2 : 1.5%, HCl: 2%, H 2 S: 0.75%, Ar: 26.5%, H 2 : Remaining
Reaction atmosphere temperature: 1070 ° C.
Reaction atmosphere pressure: a predetermined pressure within a range of 6 to 10 kPa,
The modified α-type Al 2 O 3 layer is also formed by vapor deposition with the target layer thickness shown in Table 6 under the same conditions as above,
(C) Further, a titanium oxide layer for forming the lower layer of the outermost layer [any of TiO W (1) to (6)] is formed by vapor deposition with the target layer thickness shown in Table 6 under the conditions shown in Table 4. After that, an outermost titanium nitride layer for forming an upper layer (TiN layer) was formed by vapor deposition with the target layer thickness shown in Table 6 under the conditions shown in Table 3, and the composition shown in Table 5, ie, the thickness Measure the central portion in the length direction with an Auger spectroscopic analyzer, and form the outermost layer consisting of the lower and upper layers of the X and Y values shown in Table 5, respectively.
(D) Subsequently, wet coating was applied to the region other than the tool rake face to remove the outermost layer, and the inventive coated tools 1 to 13 each having the outermost layer provided only in the tool rake face area were manufactured.

また、比較の目的で、表6に示される通り、硬質被覆層の上部層である改質α型Al23層条に、上記最外層の蒸着形成を行わない以外は同一の条件で、従来被覆工具1〜13をそれぞれ製造した。 For comparison purposes, as shown in Table 6, on the modified α-type Al 2 O 3 layer strip, which is the upper layer of the hard coating layer, under the same conditions except that the outermost layer is not vapor-deposited, Conventionally, the coated tools 1-13 were manufactured, respectively.

ついで、上記の本発明被覆工具1〜13と従来被覆工具1〜13の硬質被覆層の上部層を構成する改質α型Al23層について、電界放出型走査電子顕微鏡を用いて、傾斜角度数分布グラフをそれぞれ作成した。
すなわち、上記傾斜角度数分布グラフは、上記の本発明被覆工具1〜13と従来被覆工具1〜13の改質α型Al23層について、それぞれ工具基体表面と平行な面をそれぞれ研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、それぞれの前記研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより作成した。
Next, the modified α-type Al 2 O 3 layer constituting the upper layer of the hard coating layer of the present invention coated tools 1 to 13 and the conventional coated tools 1 to 13 is tilted using a field emission scanning electron microscope. Each angle distribution graph was created.
In other words, the slope angle distribution graph shows the polished surfaces of the modified α-type Al 2 O 3 layers of the present invention coated tools 1 to 13 and the conventional coated tools 1 to 13 that are parallel to the tool base surface, respectively. In this state, each polishing surface is set in a lens barrel of a field emission scanning electron microscope, and an electron beam with an acceleration voltage of 15 kV at an incident angle of 70 degrees is applied to the polishing surface with an irradiation current of 1 nA. Irradiate each crystal grain having a hexagonal crystal lattice existing in the range, and use an electron backscatter diffraction image apparatus to make a region of 30 × 50 μm normal to the polished surface at an interval of 0.1 μm / step. On the other hand, the inclination angle formed by the normal line of the (0001) plane, which is the crystal plane of the crystal grain, is measured, and the measurement inclination angle within the range of 0 to 45 degrees out of the measurement inclination angles is 0.25 degrees. Divided into different pitches and within each division. Created by counting the existing frequencies.

この結果得られた各種の改質α型Al23層の傾斜角度数分布グラフにおいて、表7にそれぞれ示される通り、本発明被覆工具1〜13および従来被覆工具1〜13の改質α型Al23層は、(0001)面の測定傾斜角の分布が、それぞれ0〜15度の範囲内の傾斜角区分に最高ピークが現れる傾斜角度数分布グラフを示すものであった。
また表7には、上記の各種の改質α型Al23層の傾斜角度数分布グラフにおいて、それぞれ75〜90度の範囲内の傾斜角区分に存在する全傾斜角度数の傾斜角度数分布グラフ全体に占める割合を示した。
なお、図2は、本発明被覆工具4の改質α型Al23層の傾斜角度数分布グラフを示すものである。
In the gradient angle distribution graphs of the various modified α-type Al 2 O 3 layers obtained as a result, as shown in Table 7, the modified α of the present coated tools 1 to 13 and the conventional coated tools 1 to 13 are shown. The type Al 2 O 3 layer showed an inclination angle number distribution graph in which the distribution of the measured inclination angle of the (0001) plane had the highest peak in the inclination angle section within the range of 0 to 15 degrees.
Table 7 shows the inclination angle numbers of all inclination angle numbers existing in the inclination angle sections within the range of 75 to 90 degrees in the inclination angle number distribution graphs of the various modified α-type Al 2 O 3 layers. The percentage of the entire distribution graph is shown.
FIG. 2 shows an inclination angle number distribution graph of the modified α-type Al 2 O 3 layer of the coated tool 4 of the present invention.

また、この結果得られた本発明被覆工具1〜13および従来被覆工具1〜13の硬質被覆層の構成層の厚さを、走査型電子顕微鏡を用いて測定(縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。   Moreover, when the thickness of the constituent layer of the hard coating layer of the present invention coated tools 1 to 13 and the conventional coated tools 1 to 13 obtained as a result was measured using a scanning electron microscope (longitudinal section measurement), Also showed an average layer thickness (average value of five-point measurement) substantially the same as the target layer thickness.

つぎに、上記の本発明被覆工具1〜13および従来被覆工具1〜13の各種被覆工具について、いずれも工具鋼製バイトの先端部にボルト止めまたはクランプ駒による挟み締め止めした状態で、
被削材:JIS・SUS430の丸棒、
切削速度: 320 m/min.、
切り込み: 2.5 mm、
送り: 0.15 mm/rev.、
切削時間: 5 分
の条件(切削条件Aという)でのステンレス鋼の乾式連続高速切削試験(通常の切削速度は、150m/min.)、
被削材:JIS・SS300の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 370 m/min.、
切り込み: 3.0 mm、
送り: 0.2 mm/rev.、
切削時間: 5 分
の条件(切削条件Bという)での軟鋼の乾式断続高速切削試験(通常の切削速度は、200m/min.)、
被削材:JIS・SMn443Hの丸棒、
切削速度: 330 m/min.、
切り込み: 2.5 mm、
送り: 0.2 mm/rev.、
切削時間: 5 分
の条件(切削条件Cという)での高マンガン鋼の乾式連続高速切削試験(通常の切削速度は、200m/min.)、
を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表8に示した。
Next, for the various coated tools of the present invention coated tools 1 to 13 and the conventional coated tools 1 to 13, all of them are clamped and clamped to the tip of the tool steel tool by a bolt or a clamp piece,
Work material: JIS / SUS430 round bar,
Cutting speed: 320 m / min. ,
Cutting depth: 2.5 mm,
Feed: 0.15 mm / rev. ,
Cutting time: Dry continuous high-speed cutting test of stainless steel under the condition of 5 minutes (referred to as cutting condition A) (normal cutting speed is 150 m / min.),
Work material: JIS / SS300 lengthwise equidistant four round grooved round bars,
Cutting speed: 370 m / min. ,
Cutting depth: 3.0 mm,
Feed: 0.2 mm / rev. ,
Cutting time: Dry intermittent high-speed cutting test (normal cutting speed is 200 m / min.) Of mild steel under the condition of 5 minutes (referred to as cutting condition B),
Work material: JIS / SMn443H round bar,
Cutting speed: 330 m / min. ,
Cutting depth: 2.5 mm,
Feed: 0.2 mm / rev. ,
Cutting time: Dry continuous high-speed cutting test of high manganese steel under a condition of 5 minutes (referred to as cutting condition C) (normal cutting speed is 200 m / min.),
In each cutting test, the flank wear width of the cutting edge was measured. The measurement results are shown in Table 8.

Figure 2008055583
Figure 2008055583

Figure 2008055583
Figure 2008055583

Figure 2008055583
Figure 2008055583

Figure 2008055583
Figure 2008055583

Figure 2008055583
Figure 2008055583

Figure 2008055583
Figure 2008055583

Figure 2008055583
Figure 2008055583

Figure 2008055583
Figure 2008055583

表5〜8に示される結果から、本発明被覆工具1〜13は、硬質被覆層の上部層である改質α型Al23層が、すぐれた高温硬さ、高温強度を有するとともに、本発明被覆工具1〜13のすくい面には、耐熱性にすぐれた最外層が設けられ、切粉によるすくい面摩耗の発生が抑制されているため、特に切刃部にきわめて高い機械的負荷と切削抵抗が加わる難削材の高速切削加工でも、すぐれた耐摩耗性を長期に亘って示すのに対して、工具すくい面領域の硬質被覆層として最外層が蒸着形成されていない従来被覆工具1〜13においては、難削材の高速切削加工における摩耗、特にすくい面摩耗、の進行を抑えることができないため、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 5 to 8, the present invention coated tools 1 to 13 have the modified α-type Al 2 O 3 layer, which is the upper layer of the hard coating layer, having excellent high temperature hardness and high temperature strength, The rake face of the coated tools 1 to 13 of the present invention is provided with an outermost layer having excellent heat resistance, and the occurrence of rake face wear due to chips is suppressed. The conventional coated tool 1 in which the outermost layer is not formed by vapor deposition as a hard coating layer in the tool rake face region, while excellent wear resistance is exhibited over a long period even in high-speed cutting of difficult-to-cut materials to which cutting resistance is applied. It is clear that in -13, the progress of wear in high-speed cutting of difficult-to-cut materials, particularly rake face wear, cannot be suppressed, so that the service life is reached in a relatively short time.

上述のように、この発明の被覆工具は、各種鋼や鋳鉄などの高速切削加工は勿論のこと、特に切刃にかかる機械的負荷が大きく、さらに、それ自身の粘性が高いばかりか、切削時の切削工具表面部の硬質被覆層に対する粘着性も高く、この結果切削抵抗のきわめて高いものとなる軟鋼やステンレス鋼、さらに高マンガン鋼などの難削材の高速切削加工に用いた場合であっても、チッピングの発生なく、すぐれた耐摩耗性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention has a high mechanical load on the cutting blade as well as high-speed cutting processing of various steels and cast irons. It is used for high-speed cutting of difficult-to-cut materials such as mild steel, stainless steel, and high manganese steel, which has high adhesion to the hard coating layer on the cutting tool surface, resulting in extremely high cutting resistance. However, it exhibits excellent wear resistance without chipping, and exhibits excellent cutting performance over a long period of time. It is possible to cope with the conversion sufficiently satisfactorily.

硬質被覆層を構成する改質α型Al23層における結晶粒の(0001)面を測定する場合の傾斜角の測定範囲を示す概略説明図である。It is a schematic explanatory drawing which shows the measurement range of the inclination angle in the case of measuring the (0001) plane of the crystal grain in the modified α-type Al 2 O 3 layer constituting the hard coating layer. 本発明被覆工具4の硬質被覆層を構成する改質α型Al23層の0〜45度の傾斜角区分を示す傾斜角度数分布グラフである。The inclination angle frequency distribution graph showing the tilt angle sections of 0 to 45 degrees of the modified α type the Al 2 O 3 layer constituting the hard layer of the present invention coated tools 4.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a)Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層からなる下部層、
(b)化学蒸着した状態でα型の結晶構造を有し、電界放出型走査電子顕微鏡を用い、上記工具基体表面と平行な研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、0〜15度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜15度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の50%以上の割合を占める傾斜角度数分布グラフを示し、かつ1.5〜5.9μmの平均層厚を有する改質α型酸化アルミニウム層からなる上部層、
以上(a)、(b)の各層を、工具基体側から順に蒸着形成した表面被覆切削工具において、
上記表面被覆切削工具のすくい面を構成する工具基体の表面領域の上記改質α型酸化アルミニウム層上にのみ、さらに、
(c)0.1〜3μmの平均層厚を有し、かつ、
組成式:TiOX
で表わした場合、厚さ方向中央部をオージェ分光分析装置で測定して、原子比で、1.2≦X≦1.7を満足する酸化チタン層からなる下側層、
(d)0.05〜2μmの平均層厚を有し、かつ、
組成式:TiN1−Y(O)
で表わした場合[ただし、(O)は上記酸化チタン層からの拡散酸素を示す]、厚さ方向中央部をオージェ分光分析装置で測定して、原子比で、0.01≦Y≦0.4を満足する窒酸化チタン層からなる上側層、
上記(c)、(d)からなる最外層を設けたことを特徴とする表面被覆切削工具。
On the surface of the tool base composed of tungsten carbide base cemented carbide or titanium carbonitride base cermet,
(A) It consists of one or two or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer, and carbonitride layer, and has a total average layer thickness of 3 to 20 μm. A lower layer composed of a Ti compound layer,
(B) A crystal grain having an α-type crystal structure in a chemical vapor deposited state and having a hexagonal crystal lattice existing in a measurement range of a polished surface parallel to the tool substrate surface using a field emission scanning electron microscope Individually irradiated with an electron beam, an inclination angle formed by a normal line of the (0001) plane, which is a crystal plane of the crystal grain, is measured with respect to a normal line of the polished surface. In the inclination angle number distribution graph obtained by dividing the measured inclination angle within the range of ˜45 degrees into every 0.25 degree pitch and counting the frequencies existing in each division, within the range of 0-15 degrees An inclination angle number distribution graph in which the highest peak exists in the inclination angle section and the total number of frequencies within the range of 0 to 15 degrees occupies 50% or more of the entire frequency in the inclination angle distribution graph. And has an average layer thickness of 1.5 to 5.9 μm An upper layer composed of a modified α-type aluminum oxide layer,
In the surface-coated cutting tool in which the layers (a) and (b) are formed by vapor deposition in order from the tool base side,
Only on the modified α-type aluminum oxide layer in the surface region of the tool base constituting the rake face of the surface-coated cutting tool,
(C) has an average layer thickness of 0.1 to 3 μm, and
Composition formula: TiO x ,
The lower layer made of a titanium oxide layer satisfying 1.2 ≦ X ≦ 1.7 in terms of atomic ratio, as measured by an Auger spectroscopic analyzer at the center in the thickness direction,
(D) having an average layer thickness of 0.05-2 μm, and
Composition formula: TiN 1-Y (O) Y ,
[Wherein (O) indicates diffuse oxygen from the titanium oxide layer], the central portion in the thickness direction is measured with an Auger spectroscopic analyzer, and the atomic ratio is 0.01 ≦ Y ≦ 0. An upper layer comprising a titanium oxynitride layer satisfying 4;
A surface-coated cutting tool comprising an outermost layer comprising the above (c) and (d).
JP2006238338A 2006-09-01 2006-09-01 Surface coated cutting tool with hard coating layer exhibiting excellent abrasion resistance Pending JP2008055583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006238338A JP2008055583A (en) 2006-09-01 2006-09-01 Surface coated cutting tool with hard coating layer exhibiting excellent abrasion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006238338A JP2008055583A (en) 2006-09-01 2006-09-01 Surface coated cutting tool with hard coating layer exhibiting excellent abrasion resistance

Publications (1)

Publication Number Publication Date
JP2008055583A true JP2008055583A (en) 2008-03-13

Family

ID=39238920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006238338A Pending JP2008055583A (en) 2006-09-01 2006-09-01 Surface coated cutting tool with hard coating layer exhibiting excellent abrasion resistance

Country Status (1)

Country Link
JP (1) JP2008055583A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT505908B1 (en) * 2008-04-17 2009-05-15 Boehlerit Gmbh & Co Kg METHOD FOR PRODUCING A TI (C, N, O) COATING LAYER

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001239404A (en) * 1999-04-13 2001-09-04 Mitsubishi Materials Corp Cutting tool made of surface coated cemented carbide having good chipping resistance
JP2005205586A (en) * 2003-12-26 2005-08-04 Mitsubishi Materials Corp Surface-coated cermet cutting tool exhibiting excellent chipping resistance in hard coated layer
JP2005313245A (en) * 2004-04-27 2005-11-10 Mitsubishi Materials Corp Surface coated cermet cutting tool with hard coating layer exerting excellent chipping resistance
JP2006102875A (en) * 2004-10-05 2006-04-20 Sumitomo Electric Hardmetal Corp Cutting edge exchange type cutting tip and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001239404A (en) * 1999-04-13 2001-09-04 Mitsubishi Materials Corp Cutting tool made of surface coated cemented carbide having good chipping resistance
JP2005205586A (en) * 2003-12-26 2005-08-04 Mitsubishi Materials Corp Surface-coated cermet cutting tool exhibiting excellent chipping resistance in hard coated layer
JP2005313245A (en) * 2004-04-27 2005-11-10 Mitsubishi Materials Corp Surface coated cermet cutting tool with hard coating layer exerting excellent chipping resistance
JP2006102875A (en) * 2004-10-05 2006-04-20 Sumitomo Electric Hardmetal Corp Cutting edge exchange type cutting tip and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT505908B1 (en) * 2008-04-17 2009-05-15 Boehlerit Gmbh & Co Kg METHOD FOR PRODUCING A TI (C, N, O) COATING LAYER

Similar Documents

Publication Publication Date Title
JP2006231422A (en) Surface-coated cermet cutting tool with hard coating layer exerting excellent chipping resistance in high-speed intermittent cutting
JP6139057B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4747388B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP5023896B2 (en) Surface coated cutting tool
JP5003308B2 (en) Surface coated cutting tool
JP2008080476A (en) Surface coated cutting tool with hard coated layer exerting excellent abrasion resistance in high speed cutting work
JP4811787B2 (en) Surface-coated cermet cutting tool with excellent grain interface strength in modified κ-type aluminum oxide layer of hard coating layer
JP4853188B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP4748361B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance with hard coating layer in difficult-to-cut materials
JP2009056560A (en) Surface-coated cutting tool
JP4474644B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP2006289546A (en) Surface-coated cermet cutting tool having hard coating layer for exhibiting superior chipping resistance in high speed intermittent cutting work
JP2008055583A (en) Surface coated cutting tool with hard coating layer exhibiting excellent abrasion resistance
JP5019258B2 (en) Surface coated cutting tool
JP4857950B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting
JP5187573B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance with a hard coating layer in high-speed heavy cutting
JP4747338B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP2007196355A (en) Surface coated cermet cutting tool having hard coating layer exhibiting excellent chipping resistance in cutting difficult-to-cut material
JP2007160464A (en) Surface coated cermet cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting
JP4483510B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4788892B2 (en) Manufacturing method of surface-coated cermet cutting tool that exhibits excellent chipping resistance in high-speed cutting of difficult-to-cut materials
JP4788358B2 (en) Method for producing a surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in difficult-to-cut materials
JP4793629B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP4748444B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP4894406B2 (en) Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110922

A131 Notification of reasons for refusal

Effective date: 20110927

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120130