JP2009056560A - Surface-coated cutting tool - Google Patents

Surface-coated cutting tool Download PDF

Info

Publication number
JP2009056560A
JP2009056560A JP2007227128A JP2007227128A JP2009056560A JP 2009056560 A JP2009056560 A JP 2009056560A JP 2007227128 A JP2007227128 A JP 2007227128A JP 2007227128 A JP2007227128 A JP 2007227128A JP 2009056560 A JP2009056560 A JP 2009056560A
Authority
JP
Japan
Prior art keywords
layer
inclination angle
degrees
range
modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007227128A
Other languages
Japanese (ja)
Other versions
JP5023895B2 (en
Inventor
Keiji Nakamura
惠滋 中村
Akira Osada
晃 長田
Manyasu Nishiyama
満康 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2007227128A priority Critical patent/JP5023895B2/en
Publication of JP2009056560A publication Critical patent/JP2009056560A/en
Application granted granted Critical
Publication of JP5023895B2 publication Critical patent/JP5023895B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface-coated cutting tool the hard coating layer of which achieves excellent chipping performance and wear resistance in high-speed intermittent cutting work. <P>SOLUTION: The surface-coated cutting tool comprises: an upper layer comprising an aluminum oxide layer; and a lower layer comprising a Ti compound layer and a modified (Ti, Zr)CN layer formed by deposition. At least one Ti compound layer is composed of a modified TiCN layer, in which, on an inclination angle frequency distribution graph formed by measuring and totalling inclination angles of normal lines of ä112} faces, the highest peak exists in an inclination angle section in a range of 0-10 deg., and the total of frequencies in the section occupies a ratio of 45% or more of all the frequencies. The modified (Ti, Zr)CN layer is composed of a modified (Ti, Zr) CN layer in which, on an inclination angle frequency distribution graph formed by measuring and totalling inclination angles of normal lines for ä111} faces, the highest peak exits in the inclination angle section in the range of 0-10 deg., and the total of the frequencies in the section occupies a ratio of 45% or more of all the frequencies. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、特に鋼や鋳鉄などの、高い発熱を伴うとともに、繰り返し大きな衝撃的負荷が加わる高速断続切削加工で、硬質被覆層がすぐれた耐チッピング性およびすぐれた耐摩耗性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   This invention is a surface coating that exhibits excellent chipping resistance and excellent wear resistance, especially in steel and cast iron, with high heat generation and high-speed intermittent cutting that repeatedly applies a large impact load. The present invention relates to a cutting tool (hereinafter referred to as a coated tool).

炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)化学蒸着で形成された、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの2層以上からなり、かつ4〜20μmの合計平均層厚を有するTi化合物層からなる下部層、
(b)化学蒸着で形成された1〜15μmの平均層厚を有する酸化アルミニウム(Al23)層からなる上部層、
以上(a)、(b)で構成された硬質被覆層を備える被覆工具において、
上記(a)のTi化合物層のうちの1層を、2〜10μmの平均層厚を有し、かつ、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{112}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示す縦長成長結晶組織を有するTiCN(以下、改質TiCNという)層、
で構成した被覆工具が知られており、そしてこの被覆工具が、鋼や鋳鉄の高速断続切削加工ですぐれた耐チッピング性を示すことが知られている。
On the surface of a substrate composed of tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet (hereinafter collectively referred to as a tool substrate),
(A) Ti carbide (hereinafter referred to as TiC) layer, nitride (hereinafter also referred to as TiN) layer, carbonitride (hereinafter referred to as TiCN) layer, carbon oxide (hereinafter referred to as TiC) layer formed by chemical vapor deposition , A lower layer consisting of a Ti compound layer having a total average layer thickness of 4 to 20 μm, and two or more layers of a carbonitride oxide (hereinafter referred to as TiCNO) layer,
(B) an upper layer made of an aluminum oxide (Al 2 O 3 ) layer having an average layer thickness of 1 to 15 μm formed by chemical vapor deposition;
In a coated tool provided with the hard coating layer comprised by the above (a) and (b),
One of the Ti compound layers of the above (a) is a cubic crystal having an average layer thickness of 2 to 10 μm and existing in the measurement range of the surface polished surface using a field emission scanning electron microscope. The crystal grains having a lattice are irradiated with an electron beam, and the inclination angle formed by the normal of the {112} plane, which is the crystal plane of the crystal grain, is measured with respect to the normal of the surface-polished surface. In the inclination angle number distribution graph formed by dividing the measured inclination angles within the range of 0 to 45 degrees out of the inclination angles for each pitch of 0.25 degrees and totaling the frequencies existing in each section, 0 The highest peak exists in the inclination angle section within the range of -10 degrees, and the total of the frequencies existing within the range of 0 to 10 degrees occupies a ratio of 45% or more of the entire degrees in the inclination angle frequency distribution graph. Has a vertically grown crystal structure showing an inclination angle distribution graph iCN (hereinafter referred to as the reformed TiCN) layer,
It is known that this coated tool exhibits excellent chipping resistance in high-speed intermittent cutting of steel and cast iron.

また、WC基超硬合金、TiCN基サーメットで構成された工具基体の表面に、
(a)第1層として、化学蒸着形成されたTiN層、TiCN層からなり、0.1〜1μmの平均層厚を有する第1密着接合層、
(b)第2層として、化学蒸着形成され、
組成式:(Ti1−XZr)CN(ただし、原子比で、Xは0.02〜0.25)、
を満足するTiとZrの複合炭窒化物層からなり、かつ2.5〜15μmの平均層厚を有するTi系炭窒化物(以下、従来(Ti,Zr)CNという)層、
(c)第3層として、TiCO層、TiCNO層からなり、0.1〜1μmの平均層厚を有する第2密着接合層、
(d)第4層として、化学蒸着形成されたAl23層からなり、かつ1〜15μmの平均層厚を有する高温硬質層、
以上(a)〜(d)で構成された硬質被覆層を形成してなる被覆工具が知られており、この被覆工具が、例えば各種の鋼や鋳鉄などの連続切削や断続切削に用いられていることも知られている。
特開2006−15426号公報 特開2001−11632号公報
In addition, on the surface of the tool base composed of WC-based cemented carbide and TiCN-based cermet,
(A) As the first layer, a first adhesion bonding layer composed of a TiN layer formed by chemical vapor deposition and a TiCN layer, and having an average layer thickness of 0.1 to 1 μm,
(B) The second layer is formed by chemical vapor deposition,
Composition formula: (Ti 1-X Zr X ) CN (wherein X is 0.02 to 0.25 in atomic ratio),
A Ti-based carbonitride (hereinafter referred to as conventional (Ti, Zr) CN) layer having an average layer thickness of 2.5 to 15 μm, comprising a composite carbonitride layer of Ti and Zr satisfying
(C) As the third layer, a second adhesive bonding layer comprising an TiCO layer and a TiCNO layer and having an average layer thickness of 0.1 to 1 μm,
(D) As the fourth layer, a high-temperature hard layer comprising an Al 2 O 3 layer formed by chemical vapor deposition and having an average layer thickness of 1 to 15 μm,
A coated tool formed by forming a hard coating layer composed of the above (a) to (d) is known, and this coated tool is used for continuous cutting and intermittent cutting of various steels and cast irons, for example. It is also known that
JP 2006-15426 A JP 2001-11632 A

近年の切削装置の高性能化はめざましく、一方で切削加工における省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削効率の向上を目的として、切削速度を高速化する傾向にあるが、上記の従来被覆工具においては、これを鋼や鋳鉄などの通常の条件での連続切削や断続切削に用いた場合には問題はないが、特にこれを、高い発熱を伴うとともに、繰り返し大きな機械的衝撃が加わる高速断続切削加工条件で用いた場合、これを構成する硬質被覆層は、下部層のTi化合物層による高温強度、同上部層のAl23層による高温硬さを具備するものの、前記改質TiCN層は耐チッピング性にすぐれるものの耐摩耗性が十分でなく、また、従来(Ti,Zr)CN層も耐熱性が不十分であるために切削加工時の発熱によって熱塑性変形、偏摩耗を生じやすく、そのため、耐摩耗性が低下し比較的短時間で使用寿命に至るのが現状である。 In recent years, the performance of cutting machines has been remarkable, while there has been a strong demand for labor saving and energy saving in cutting, as well as cost reduction, and along with this, the tendency to increase cutting speed for the purpose of improving cutting efficiency However, in the above-mentioned conventional coated tool, there is no problem when it is used for continuous cutting or intermittent cutting under normal conditions such as steel or cast iron, but this is accompanied by high heat generation, When used in high-speed interrupted cutting conditions where repeated large mechanical impacts are applied, the hard coating layer constituting this has high temperature strength due to the lower Ti compound layer and high temperature hardness due to the upper Al 2 O 3 layer. Although provided, the modified TiCN layer is excellent in chipping resistance, but is not sufficient in wear resistance, and the conventional (Ti, Zr) CN layer is also insufficient in heat resistance, so that heat is generated during cutting. In Thermal plastic deformation, uneven wear tends to occur I, therefore, wear resistance at present, leads to reduced relatively short time service life.

そこで、本発明者等は、上述のような観点から、上記の従来被覆工具の耐摩耗性向上をはかるべく、特に、硬質被覆層を構成するTi系炭窒化物層に着目し、研究を行った結果、
(a)従来被覆工具の硬質被覆層を構成するTi系炭窒化物層(従来(Ti,Zr)CN)層は、例えば、通常の化学蒸着装置にて、
反応ガス組成:容量%で、TiCl:1〜5%、ZrCl:0.1〜1%、CHCN:0.6〜5%、N2:25〜45%、H2:残り、
反応雰囲気温度:750〜980℃、
反応雰囲気圧力:2.7〜13.5kPa、
の条件(通常条件という)で蒸着形成されるが、これを、
反応ガス組成:容量%で、TiCl:10〜15%、ZrCl:0.5〜3.5%、CHCN:3〜8%、N2:20〜40%、HCl:0.5〜2%、H2:残り、
反応雰囲気温度:800〜900℃、
反応雰囲気圧力:5〜20kPa、
の条件、すなわち上記の通常条件に比して、反応ガス成分のTiClおよびCHCNの含有割合を多くし、さらに、HClを加えた条件で蒸着形成して、
組成式:(Ti1−XZr)CN(ただし、原子比で、X:0.02〜0.25)を満足するTi系炭窒化物層(以下、改質Ti系炭窒化物層、あるいは、改質(Ti,Zr)CN層という)を形成すると、この結果の改質(Ti,Zr)CN層は、上記の従来(Ti,Zr)CN層と同様の結晶構造、すなわち格子点にTi、Zr、炭素(C)、および窒素(N)からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造を有するが、前記従来(Ti,Zr)CN層に比して一段とすぐれた耐熱性を有すること。
In view of the above, the present inventors have conducted research with a particular focus on the Ti-based carbonitride layer constituting the hard coating layer in order to improve the wear resistance of the above-described conventional coated tool. As a result,
(A) The Ti-based carbonitride layer (conventional (Ti, Zr) CN) layer constituting the hard coating layer of the conventional coated tool is, for example, a normal chemical vapor deposition apparatus.
Reaction gas composition: by volume%, TiCl 4: 1~5%, ZrCl 4: 0.1~1%, CH 3 CN: 0.6~5%, N 2: 25~45%, H 2: remainder,
Reaction atmosphere temperature: 750-980 ° C.
Reaction atmosphere pressure: 2.7 to 13.5 kPa,
It is formed by vapor deposition under the conditions (called normal conditions).
Reaction gas composition: by volume%, TiCl 4: 10~15%, ZrCl 4: 0.5~3.5%, CH 3 CN: 3~8%, N 2: 20~40%, HCl: 0.5 ~2%, H 2: remainder,
Reaction atmosphere temperature: 800 to 900 ° C.
Reaction atmosphere pressure: 5 to 20 kPa,
In comparison with the above-mentioned conditions, that is, the above-mentioned normal conditions, the content ratio of the reaction gas components TiCl 4 and CH 3 CN is increased, and further, vapor deposition is performed under the condition of adding HCl,
Formula: (Ti 1-X Zr X ) CN ( provided that an atomic ratio, X: 0.02 to 0.25) Ti-based carbonitride layer which satisfies (hereinafter modified Ti-based carbonitride layer, Or a modified (Ti, Zr) CN layer) is formed, the resulting modified (Ti, Zr) CN layer has a crystal structure similar to that of the conventional (Ti, Zr) CN layer, that is, a lattice point. Has a crystal structure of NaCl type face-centered cubic crystal in which constituent atoms composed of Ti, Zr, carbon (C), and nitrogen (N) are present, respectively, but compared with the conventional (Ti, Zr) CN layer. Excellent heat resistance.

(b)上記の従来(Ti,Zr)CN層と上記(a)の改質(Ti,Zr)CN層について、
電界放出型走査電子顕微鏡を用い、図1(a),(b)に概略説明図で例示される通り、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{111}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフを作成した場合、前記従来(Ti,Zr)CN層は、図4に例示される通り、{111}面の測定傾斜角の分布が0〜45度の範囲内で不偏的な傾斜角度数分布グラフを示すのに対して、前記改質(Ti,Zr)CN層は、図3に例示される通り、傾斜角区分の特定位置にシャープな最高ピークが現れ、そしてこのような場合に、改質(Ti,Zr)CN層にはクーリングクラックが均一に分散し、これによって、Zr含有量を増加したことによる改質(Ti,Zr)CN層の高温強度の低下を抑制することができ、しかも、このシャープな最高ピークは、グラフ横軸の傾斜角区分に現れる高さおよび傾斜角区分位置が前記改質(Ti,Zr)CN層におけるZrの含有割合を調整することにより変化すること。
(B) For the conventional (Ti, Zr) CN layer and the modified (Ti, Zr) CN layer of (a),
Using a field emission scanning electron microscope, as illustrated in the schematic explanatory diagrams of FIGS. 1A and 1B, the electron beam is individually applied to each crystal grain having a cubic crystal lattice existing within the measurement range of the surface polished surface. Is measured with respect to the normal of the surface polished surface, and the tilt angle formed by the normal of the {111} plane that is the crystal plane of the crystal grain is measured. When the measured inclination angle in the range of 0.25 degrees is divided for each pitch of 0.25 degrees and the inclination angle number distribution graph is formed by counting the frequencies existing in each division, the conventional (Ti, Zr) As illustrated in FIG. 4, the CN layer exhibits an unbiased inclination angle number distribution graph within the range of the measured inclination angle of the {111} plane within the range of 0 to 45 degrees, whereas the modification ( As illustrated in FIG. 3, the Ti, Zr) CN layer has a sharp peak at a specific position in the tilt angle section. A peak appears, and in such a case, cooling cracks are uniformly dispersed in the modified (Ti, Zr) CN layer, and thereby the modified (Ti, Zr) CN layer due to an increase in the Zr content. In addition, the sharp maximum peak has a height that appears in the tilt angle section of the horizontal axis of the graph and the position of the tilt angle section in the Zr in the modified (Ti, Zr) CN layer. It changes by adjusting the content ratio.

(c)上記の通り、上記改質(Ti,Zr)CN層の形成に際して、層中のZr含有割合を、Tiとの合量に占める割合(原子比)で0.02〜0.25とすることによって、前記改質(Ti,Zr)CN層の傾斜角度数分布グラフで、シャープな最高ピークが傾斜角区分の0〜10度の範囲内に現れ、かつ、前記0〜10度の範囲内に存在する度数割合が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示すようになるのであり、したがって、前記改質(Ti,Zr)CN層中のZr含有割合が前記の範囲から低い方に外れても、あるいは高い方に外れても、傾斜角度数分布グラフにおけるシャープな最高ピークが傾斜角区分の0〜10度の範囲から外れ、かつ、前記0〜10度の範囲内に存在する度数数割合も45%未満になってしまい、この場合は一段の耐熱性向上効果を期待できないばかりか、Zr含有割合を増加したことによる高温強度の低下をクーリングクラックの均一分散によって抑制することはできないこと。
つまり、上記改質(Ti,Zr)CN層のZr成分は、Tiとの合量に占める割合(原子比)で0.02(2原子%)以上で所望の耐熱性向上効果が現れるが、その含有割合が0.25(25原子%)を越えると、高熱発生と衝撃的負荷がかかる高速断続切削加工では、改質(Ti,Zr)CN層は急激に軟化し、熱塑性変形、偏摩耗を生じやすくなることから、その含有割合は、Tiとの合量に占める割合(原子比)で0.02〜0.25とする必要がある。
(C) As described above, when forming the modified (Ti, Zr) CN layer, the Zr content ratio in the layer is 0.02 to 0.25 as a ratio (atomic ratio) to the total amount with Ti. By doing this, in the gradient angle distribution graph of the modified (Ti, Zr) CN layer, a sharp maximum peak appears in the range of 0 to 10 degrees of the tilt angle section, and the range of 0 to 10 degrees In the modified (Ti, Zr) CN layer, the frequency ratio existing in the tilt angle frequency distribution graph occupies a ratio of 45% or more of the entire frequency in the tilt angle frequency distribution graph. Even if the Zr content ratio is out of the above range, the sharp maximum peak in the tilt angle distribution graph is out of the range of 0 to 10 degrees of the tilt angle section, and Within the range of 0 to 10 degrees The frequency ratio is also less than 45%. In this case, not only can the heat resistance improvement effect be further improved, but also the decrease in high-temperature strength due to the increase in the Zr content ratio should be suppressed by uniform distribution of cooling cracks. What you can't do.
That is, the Zr component of the modified (Ti, Zr) CN layer has a desired heat resistance improvement effect when the ratio (atomic ratio) to the total amount with Ti is 0.02 (2 atomic%) or more. When the content exceeds 0.25 (25 atomic%), the modified (Ti, Zr) CN layer softens suddenly during high-speed interrupted cutting that generates high heat and impact loads, and undergoes thermoplastic deformation and uneven wear. Therefore, the content ratio needs to be 0.02 to 0.25 as a ratio (atomic ratio) to the total amount with Ti.

(d)硬質被覆層の上部層をAl23層、下部層をTi化合物層と(Ti,Zr)CN層とで構成した被覆工具において、上記Ti化合物層のうちの少なくとも1層は、2〜10μmの平均層厚を有し、かつ、{112}面の測定傾斜角の分布が0〜10度の範囲内に傾斜角区分の最高ピークが現れ、かつ前記0〜10度の範囲内に存在する度数割合が45%以上を占める傾斜角度数分布グラフを示すTiの炭窒化物層(改質TiCN層)で構成し、
さらに、上記(Ti,Zr)CN層を、2〜15μmの平均層厚を有し、{111}面の測定傾斜角の分布が0〜10度の範囲内に傾斜角区分の最高ピークが現れ、かつ前記0〜10度の範囲内に存在する度数割合が45%以上を占める改質(Ti,Zr)CN層とで構成した被覆工具は、改質(Ti,Zr)CN層が従来(Ti,Zr)CN層に比して一段と高い耐熱性を有し、また、改質TiCN層がすぐれた耐チッピング性を有し、さらに、硬質被覆層の上部層であるAl23層がすぐれた高温硬さを具備することと相俟って、特に高熱発生を伴う高速切削加工でも、前記硬質被覆層がすぐれた耐熱性を発揮し、熱塑性変形、偏摩耗を生じることがなく、さらに、耐チッピング性にもすぐれるため、長期に亘ってすぐれた工具特性を示すようになること。
以上(a)〜(d)に示される研究結果を得たのである。
(D) In the coated tool in which the upper layer of the hard coating layer is composed of an Al 2 O 3 layer and the lower layer is composed of a Ti compound layer and a (Ti, Zr) CN layer, at least one of the Ti compound layers is It has an average layer thickness of 2 to 10 μm, and the distribution of the measured inclination angle on the {112} plane is within the range of 0 to 10 degrees, and the highest peak of the inclination angle section appears and is within the range of 0 to 10 degrees. And a Ti carbonitride layer (modified TiCN layer) showing an inclination angle distribution graph in which the frequency ratio is 45% or more,
Furthermore, the above (Ti, Zr) CN layer has an average layer thickness of 2 to 15 μm, and the highest peak of the tilt angle section appears in the range of the measured tilt angle of the {111} plane within the range of 0 to 10 degrees. In addition, the coated tool composed of the modified (Ti, Zr) CN layer in which the frequency ratio existing in the range of 0 to 10 degrees occupies 45% or more, the modified (Ti, Zr) CN layer is conventionally ( The Ti, Zr) CN layer has higher heat resistance, the modified TiCN layer has excellent chipping resistance, and the Al 2 O 3 layer, which is the upper layer of the hard coating layer, Combined with having excellent high temperature hardness, the hard coating layer exhibits excellent heat resistance, especially in high-speed cutting with high heat generation, without causing thermoplastic deformation and uneven wear. Excellent tooling characteristics over a long period due to excellent chipping resistance To become.
The research results shown in (a) to (d) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、
「 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に上部層と下部層とからなる硬質被覆層を蒸着形成した表面被覆切削工具において、
(a)上記上部層は、化学蒸着で形成された1〜15μmの平均層厚を有する酸化アルミニウム層からなり、
(b)上記下部層は、4〜20μmの合計平均層厚を有し、いずれも化学蒸着で形成されたTi化合物層と改質Ti系炭窒化物層とからなり、
(c)上記Ti化合物層は、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなり、
(d)上記Ti化合物層のうちの少なくとも1層は、2〜10μmの平均層厚を有し、かつ、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{112}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示すTiの炭窒化物層(改質TiCN層)であり、
(e)上記改質Ti系炭窒化物層(改質(Ti,Zr)CN層)は、2〜15μmの平均層厚を有し、かつ、
組成式:(Ti1−XZr)CN
で表した場合、0.02≦X≦0.25(但し、原子比)を満足するTiとZrの複合炭窒化物層からなり、さらに、上記改質Ti系炭窒化物層(改質(Ti,Zr)CN層)は、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{111}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示すこと、
を特徴とする表面被覆切削工具(被覆工具)。」
に特徴を有するものである。
This invention was made based on the above research results,
In a surface-coated cutting tool in which a hard coating layer composed of an upper layer and a lower layer is vapor-deposited on the surface of a tool base composed of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
(A) The upper layer is made of an aluminum oxide layer having an average layer thickness of 1 to 15 μm formed by chemical vapor deposition,
(B) The lower layer has a total average layer thickness of 4 to 20 μm, each consisting of a Ti compound layer and a modified Ti carbonitride layer formed by chemical vapor deposition,
(C) The Ti compound layer is composed of one or more of a Ti carbide layer, a nitride layer, a carbonitride layer, a carbonate layer, and a carbonitride layer,
(D) At least one of the Ti compound layers has an average layer thickness of 2 to 10 μm, and a cubic crystal existing within the measurement range of the surface polished surface using a field emission scanning electron microscope The crystal grains having a lattice are irradiated with an electron beam, and the inclination angle formed by the normal of the {112} plane, which is the crystal plane of the crystal grain, is measured with respect to the normal of the surface-polished surface. In the inclination angle number distribution graph formed by dividing the measured inclination angles within the range of 0 to 45 degrees out of the inclination angles for each pitch of 0.25 degrees and totaling the frequencies existing in each section, 0 The highest peak exists in the inclination angle section within the range of -10 degrees, and the total of the frequencies existing within the range of 0 to 10 degrees occupies a ratio of 45% or more of the entire degrees in the inclination angle frequency distribution graph. Ti carbonitride layer showing an inclination angle distribution graph It is a reformed TiCN layer),
(E) The modified Ti-based carbonitride layer (modified (Ti, Zr) CN layer) has an average layer thickness of 2 to 15 μm, and
Composition formula: (Ti 1-X Zr X ) CN
Is expressed by a composite carbonitride layer of Ti and Zr satisfying 0.02 ≦ X ≦ 0.25 (however, atomic ratio), and further, the modified Ti-based carbonitride layer (modified ( The Ti, Zr) CN layer) is irradiated with an electron beam to each crystal grain having a cubic crystal lattice existing within the measurement range of the surface polished surface using a field emission scanning electron microscope, and the surface polished surface The inclination angle formed by the normal line of the {111} plane that is the crystal plane of the crystal grain is measured with respect to the normal line, and the measurement inclination angle in the range of 0 to 45 degrees is set to 0 among the measurement inclination angles. In the inclination angle number distribution graph obtained by dividing the pitch every 25 degrees and counting the frequencies existing in each section, the highest peak exists in the inclination angle section in the range of 0 to 10 degrees, and The total frequency within the range of 0 to 10 degrees is the slope angle distribution graph. To indicate an inclination angle frequency distribution graph in a proportion of 45% or more of total power,
A surface-coated cutting tool (coated tool). "
It has the characteristics.

つぎに、この発明の被覆工具の硬質被覆層の構成層について、上記の通りに数値限定した理由を以下に説明する。
(a)下部層のTi化合物層
TiC層、TiN層、TiCN層、TiCO層、およびTiCNO層のうちの1層または2層以上からなるTi化合物層(なお、このうちの改質TiCN層については、後記(b)参照)は、それ自体が所定の高温強度を有し、これの存在によって硬質被覆層が高温強度を具備するようになるほか、工具基体と改質TiCN層あるいは改質(Ti,Zr)CN層のいずれとも強固に密着し、硬質被覆層の工具基体に対する密着性向上に寄与する作用をもつが、下部層の合計平均層厚が4μm未満では、前記作用を十分に発揮させることができず、一方その合計平均層厚が20μmを越えると、高速断続切削加工で熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、下部層の合計平均層厚を4〜20μmと定めた。
Next, the reason why the constituent layers of the hard coating layer of the coated tool of the present invention are numerically limited as described above will be described below.
(A) Lower Ti compound layer Ti compound layer composed of one or more of TiC layer, TiN layer, TiCN layer, TiCO layer, and TiCNO layer (in addition, about the modified TiCN layer among these) (See (b) below) itself has a predetermined high-temperature strength, and the presence of this provides the hard coating layer with a high-temperature strength, as well as a tool base and a modified TiCN layer or modified (Ti , Zr) CN adheres firmly to any of the CN layers, and contributes to improving the adhesion of the hard coating layer to the tool substrate. However, when the total average layer thickness of the lower layer is less than 4 μm, the above-described effect is sufficiently exerted. On the other hand, if the total average layer thickness exceeds 20 μm, it becomes easy to cause thermoplastic deformation by high-speed interrupted cutting, and this causes uneven wear. 20μ m.

(b)下部層の改質TiCN層
下部層のTi化合物層のうちの少なくとも1つの層を改質TiCN層で構成するが、改質TiCN層は、例えば、通常の化学蒸着装置にて、
反応ガス組成(容量%):TiCl:2〜10%、CHCN:0.5〜3%、N:10〜30%、H:残り、
反応雰囲気温度:800〜920℃、
反応雰囲気圧力:6〜20kPa、
の条件で蒸着を行うとともに、上記の反応ガスを構成するCHCNの成膜開始時点と成膜終了時点の含有割合を上記の含有範囲内で、層厚に応じて調整し、さらに、相対的に含有割合を低くした前記成膜開始時点から相対的に含有割合を高くした前記成膜終了時点に向けて、CHCNの含有割合を連続的または断続的に漸増させた条件でTiCN層を蒸着することによって蒸着形成することができるが、その平均層厚が2μm未満では所望のすぐれた高温強度向上効果を発揮することができず、一方その平均層厚が10μmを越えると、偏摩耗の原因となる熱塑性変形が発生し易くなり、摩耗が加速するようになることから、その平均層厚を2〜10μmと定めた。
(B) Modified TiCN layer of the lower layer At least one of the Ti compound layers of the lower layer is composed of a modified TiCN layer. For example, the modified TiCN layer is formed by a normal chemical vapor deposition apparatus.
Reaction gas composition (volume%): TiCl 4: 2~10% , CH 3 CN: 0.5~3%, N 2: 10~30%, H 2: remainder,
Reaction atmosphere temperature: 800-920 ° C.
Reaction atmosphere pressure: 6-20 kPa,
And the content ratio of the film formation start point and film formation end point of the CH 3 CN constituting the reaction gas is adjusted in accordance with the layer thickness within the above content range, TiCN layer under the condition that the content ratio of CH 3 CN is gradually or intermittently increased from the film formation start time when the content ratio is lowered to the film formation end time when the content ratio is relatively increased. However, if the average layer thickness is less than 2 μm, the desired excellent high-temperature strength improvement effect cannot be achieved, while if the average layer thickness exceeds 10 μm, uneven wear is not possible. Therefore, the average layer thickness is set to 2 to 10 μm.

(c)そして、改質TiCN層は、図2(a),(b)に概略説明図で示されるように、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{112}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示す。 (C) Then, the modified TiCN layer is a cubic structure that exists within the measurement range of the surface polished surface by using a field emission scanning electron microscope, as schematically shown in FIGS. 2 (a) and 2 (b). Irradiating each crystal grain having a crystal lattice with an electron beam, and measuring an inclination angle formed by a normal of a {112} plane that is a crystal plane of the crystal grain with respect to a normal of the surface-polished surface; In the inclination angle number distribution graph formed by dividing the measurement inclination angles within the range of 0 to 45 degrees among the measurement inclination angles for each pitch of 0.25 degrees and totaling the frequencies existing in each section. In addition, the highest peak exists in the inclination angle section in the range of 0 to 10 degrees, and the total of the frequencies existing in the range of 0 to 10 degrees is a ratio of 45% or more of the entire degrees in the inclination angle frequency distribution graph. The inclination angle number distribution graph which occupies is shown.

(d)さらに、上記改質TiCN層の形成に際して、上記反応ガスにおけるCHCNの含有量を0.5〜3%とし、かつ、前記含有範囲内で、層厚に対応させて成膜開始時点と成膜終了時点のCHCNの含有量を調整すると共に、前記成膜開始時点から成膜終了時点に向けてCHCNの含有量を漸次増加する(即ち、層厚の薄いほど成膜開始時点と成膜終了時点のCHCNの含有量を前記0.5〜3%の範囲内で低い側に定め、層厚が中間では成膜開始時点と成膜終了時点のCHCNの含有量を前記範囲内の中間の含有量とし、さらに層厚が厚くなるほど、前記CHCNの含有範囲の高い側に定める)と共に、その含有幅(即ち、(成膜終了時点のCHCN含有量)−(成膜開始時点のCHCN含有量)の値)を1±0.15%とするのが望ましい。しかし、この含有幅が0.85%未満では、前記0〜10度の範囲内に存在する最高ピークの度数の合計が、傾斜角度数分布グラフにおける度数全体の45%未満となってしまい、TiCN層に所望のすぐれた高温強度を確保することができず、また、前記含有幅が1.15%を越えた場合には、最高ピークが現れる傾斜角区分が0〜10度の範囲から外れてしまい、TiCN層に所望のすぐれた高温強度を確保することができない。 (D) Further, when the modified TiCN layer is formed, the CH 3 CN content in the reaction gas is set to 0.5 to 3%, and the film formation is started in accordance with the layer thickness within the content range. with adjusting the time and content of CH 3 CN deposition end point, from said deposition beginning toward the deposition end gradually increase the content of CH 3 CN (i.e., as thin thickness formed The CH 3 CN content at the start of film formation and at the end of film formation is set to the lower side within the range of 0.5 to 3%. When the layer thickness is intermediate, CH 3 CN at the start of film formation and at the end of film formation The content is determined to be an intermediate content within the above range, and as the layer thickness is further increased, the CH 3 CN content range is determined to be higher, and the content width (ie, CH 3 at the end of film formation) CN content)-(value of CH 3 CN content at the start of film formation)) 1 ± 0.15% is desirable. However, when the content width is less than 0.85%, the sum of the frequencies of the highest peaks existing in the range of 0 to 10 degrees becomes less than 45% of the entire frequencies in the tilt angle frequency distribution graph, and TiCN. The desired excellent high-temperature strength cannot be ensured in the layer, and when the content width exceeds 1.15%, the inclination angle section where the highest peak appears is out of the range of 0 to 10 degrees. Therefore, the desired excellent high-temperature strength cannot be ensured in the TiCN layer.

(e)下部層の改質(Ti,Zr)CN層
上記の改質(Ti,Zr)CN層、即ち、改質(Ti,Zr)CN層の傾斜角度数分布グラフの傾斜角区分における最高ピーク位置および前記最高ピークが存在する所定の傾斜角区分内に存在する度数割合は、上記の通り、層中のZr含有割合(X値)をTiとの合量に占める原子比で、0.02〜0.25とすることによって、0〜10度の範囲内の傾斜角区分に最高ピークを存在させ、かつ前記0〜10度の範囲内に存在する度数割合を、傾斜角度数分布グラフにおける度数全体の45%以上とすることができるものであり、したがって、その含有割合が0.02未満でも、0.25を越えても、前記最高ピーク位置の現れる傾斜角区分が0〜10度の範囲内から外れ、さらに前記0〜10度の範囲内に存在する度数割合は45%未満となってしまい、そのため、高温強度の低下をクーリングクラックの均一分散により抑制することができなくなるばかりか、高速切削加工におけるすぐれた耐熱性向上効果を確保することができなくなり、熱塑性変形の発生あるいは偏摩耗の発生によって耐摩耗性の劣ったものとなる。
また、改質(Ti,Zr)CN層におけるC成分には層の硬さを向上させ、一方N成分には高温強度を向上させる作用があり、これら両成分を共存含有することにより高い硬さとすぐれた強度を具備するようになるものであり、したがって、層中のN成分の含有割合が、C成分との合量に占める原子比で0.35未満では所望の強度を確保することができず、一方その含有割合が同じく0.55を越えると、相対的にC成分の含有割合が少なくなり過ぎて、所望の高硬度が得られなくなることから、C成分との合量に占めるN成分の含有割合は、原子比で0.35〜0.55とすることが望ましい。
このように前記改質(Ti,Zr)CN層は、上記の通り従来(Ti,Zr)CN層に比して、一段とすぐれた耐熱性を有するようになるが、その平均層厚が2μm未満では所望のすぐれた耐熱性向上効果を硬質被覆層に十分に具備せしめることができず、一方その平均層厚が15μmを越えると、チッピングが発生し易くなることから、その平均層厚を2〜15μmと定めた。
(E) Lower layer modified (Ti, Zr) CN layer The above-mentioned modified (Ti, Zr) CN layer, that is, the highest in the gradient section of the gradient angle distribution graph of the modified (Ti, Zr) CN layer The frequency ratio existing in the predetermined inclination angle section where the peak position and the highest peak exist is the atomic ratio of the Zr content ratio (X value) in the layer to the total amount with Ti as described above, and is 0.00. By setting it to 02 to 0.25, the highest peak is present in the inclination angle section within the range of 0 to 10 degrees, and the frequency ratio existing within the range of 0 to 10 degrees is expressed in the inclination angle number distribution graph. 45% or more of the entire frequency, and therefore, even if the content ratio is less than 0.02 or more than 0.25, the inclination angle section where the highest peak position appears is 0 to 10 degrees. Out of range, and further 0-10 degrees The frequency ratio existing in the range is less than 45%. Therefore, it is not only possible to suppress the decrease in high-temperature strength by uniform distribution of cooling cracks, but also ensures an excellent heat resistance improvement effect in high-speed cutting. It becomes impossible to do so, and the wear resistance is inferior due to the occurrence of thermoplastic deformation or uneven wear.
In addition, the C component in the modified (Ti, Zr) CN layer improves the hardness of the layer, while the N component has the effect of improving the high-temperature strength. Therefore, if the content ratio of the N component in the layer is less than 0.35 in terms of the atomic ratio to the total amount with the C component, the desired strength can be secured. On the other hand, if the content ratio similarly exceeds 0.55, the content ratio of the C component is relatively decreased, and the desired high hardness cannot be obtained. Therefore, the N component occupies the total amount with the C component. The content ratio of is desirably 0.35 to 0.55 in atomic ratio.
As described above, the modified (Ti, Zr) CN layer has higher heat resistance than the conventional (Ti, Zr) CN layer as described above, but the average layer thickness is less than 2 μm. Then, the desired excellent heat resistance improvement effect cannot be sufficiently provided to the hard coating layer, and on the other hand, if the average layer thickness exceeds 15 μm, chipping is likely to occur. It was determined to be 15 μm.

(f)上部層のAl23
Al23層は、すぐれた高温硬さを有し、硬質被覆層の耐摩耗性向上に寄与するが、その平均層厚が1μm未満では、硬質被覆層に十分な耐摩耗性を発揮せしめることができず、一方その平均層厚が15μmを越えて厚くなりすぎると、チッピングが発生し易くなることから、その平均層厚を1〜15μmと定めた。
The Al 2 O 3 layer the Al 2 O 3 layer of (f) the upper layer has excellent high-temperature hardness, contributes to improvement in wear resistance of the hard coating layer, the average layer thickness is less than 1 [mu] m, hard Since the coating layer cannot exhibit sufficient wear resistance, on the other hand, if the average layer thickness exceeds 15 μm, chipping tends to occur. Therefore, the average layer thickness is set to 1 to 15 μm. It was.

なお、切削工具の使用前後の識別を目的として、黄金色の色調を有するTiN層を最表面層として、必要に応じて蒸着形成してもよいが、この場合の平均層厚は0.1〜1μmでよく、これは0.1μm未満では、十分な識別効果が得られず、一方前記TiN層による前記識別効果は1μmまでの平均層厚で十分であるという理由からである。   In addition, for the purpose of identification before and after the use of the cutting tool, the TiN layer having a golden color tone may be vapor-deposited as necessary, but the average layer thickness in this case is 0.1 to 1 μm may be sufficient, and if the thickness is less than 0.1 μm, a sufficient discrimination effect cannot be obtained, while the discrimination effect by the TiN layer is sufficient for an average layer thickness of up to 1 μm.

この発明の被覆工具は、高熱発生を伴い、かつ、繰り返し大きな衝撃的負荷がかかる鋼や鋳鉄などの高速断続切削加工でも、硬質被覆層の下部層のうちの改質TiCN層がすぐれた高温強度を有し、チッピングの発生が抑えられるとともに、改質(Ti,Zr)CN層が一段とすぐれた耐熱性と高温強度を有し、熱塑性変形、偏摩耗の発生が抑制されることによって、すぐれた耐摩耗性が維持されることから、長期に亘ってすぐれた工具特性を示すものとなる。   The coated tool of the present invention has a high-temperature strength with excellent modified TiCN layer in the lower layer of the hard coating layer even in high-speed intermittent cutting such as steel and cast iron that is accompanied by high heat generation and repeatedly receives a large impact load. And the improved (Ti, Zr) CN layer has excellent heat resistance and high temperature strength, and is excellent by suppressing the occurrence of thermoplastic deformation and uneven wear. Since the wear resistance is maintained, excellent tool characteristics are exhibited over a long period of time.

つぎに、この発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも0.5〜3.5μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で32時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG120412に規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体A〜Fをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, all having an average particle diameter of 0.5 to 3.5 μm, and Co powder was prepared, and these raw material powders were blended in the blending composition shown in Table 1. Further, wax was added, mixed in a ball mill in acetone for 32 hours, dried under reduced pressure, and then compacted into a predetermined shape at a pressure of 98 MPa. The green compact is press-molded into a body, vacuum-sintered at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour in a vacuum of 5 Pa, and after sintering, the cutting edge portion has R: 0 Tool bodies A to F made of a WC-base cemented carbide having a throwaway tip shape defined in ISO · CNMG12041 were manufactured by performing a honing process of .07 mm.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで32時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.09mmのホーニング加工を施すことによりISO規格・CNMG120412のチップ形状をもったTiCN基サーメット製の工具基体a〜fを形成した。 Further, as raw material powders, TiCN (mass ratio, TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC, all having an average particle diameter of 0.5 to 2 μm. Prepare powder, Co powder, and Ni powder, blend these raw material powders into the composition shown in Table 2, wet mix for 32 hours with a ball mill, dry, and press-mold into green compact at 98 MPa pressure Then, this green compact is sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after sintering, the cutting edge portion is subjected to a honing process of R: 0.09 mm. Tool bases a to f made of TiCN-based cermet having a chip shape conforming to ISO standards / CNMG 120212 were formed.

つぎに、これらの工具基体A〜Fおよび工具基体a〜fの表面に、通常の化学蒸着装置を用い、硬質被覆層の下部層として、Ti化合物層(少なくとも一層の改質TiCN層を含む)および改質(Ti,Zr)CN層を表3、表4に示される条件で、表5に示される組み合わせおよび目標層厚で蒸着形成し、ついで同じく表3に示される条件にて、上部層としてのAl23層を同じく表5に示される組み合わせで、かつ目標層厚で蒸着形成することにより本発明被覆工具1〜13をそれぞれ製造した。 Next, a Ti compound layer (including at least one modified TiCN layer) is used as a lower layer of the hard coating layer on the surfaces of the tool bases A to F and the tool bases a to f using a normal chemical vapor deposition apparatus. And a modified (Ti, Zr) CN layer formed by vapor deposition with the combinations and target layer thicknesses shown in Table 5 under the conditions shown in Table 3 and Table 4, and then under the same conditions as shown in Table 3, The present coated tools 1 to 13 were produced by forming the Al 2 O 3 layers as the same in the same manner as shown in Table 5 and by vapor deposition with the target layer thickness.

また、比較の目的で、硬質被覆層の下部層として、Ti化合物層(少なくとも一層の改質TiCN層を含む)および従来(Ti,Zr)CN層を表3、表4に示される条件で、表6に示される組み合わせおよび目標層厚で蒸着形成し、さらに上部層としてのAl23層を、表3に示される条件で、かつ同じく表6に示される目標層厚で蒸着形成することにより比較被覆工具1〜13をそれぞれ製造した。 Further, for the purpose of comparison, as a lower layer of the hard coating layer, a Ti compound layer (including at least one modified TiCN layer) and a conventional (Ti, Zr) CN layer under the conditions shown in Tables 3 and 4, Vapor deposition is performed with the combinations and target layer thicknesses shown in Table 6, and an Al 2 O 3 layer as the upper layer is deposited under the conditions shown in Table 3 and with the target layer thicknesses also shown in Table 6. Comparative coated tools 1 to 13 were produced respectively.

ついで、上記の本発明被覆工具と比較被覆工具の硬質被覆層を構成する改質(Ti,Zr)CN層、従来(Ti,Zr)CN層および改質TiCN層について、電界放出型走査電子顕微鏡を用いて、傾斜角度数分布グラフをそれぞれ作成した。
すなわち、上記の改質(Ti,Zr)CN層および従来(Ti,Zr)CN層については、その表面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{111}面の法線がなす傾斜角を測定し、この測定結果に基づいて、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより、傾斜角度数分布グラフを作成した。
また、改質TiCN層についても上記と同様に、{112}面の法線がなす傾斜角を測定し、この測定結果に基づいて、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより、傾斜角度数分布グラフを作成した。
Next, a field emission scanning electron microscope is used for the modified (Ti, Zr) CN layer, the conventional (Ti, Zr) CN layer, and the modified TiCN layer constituting the hard coating layer of the above-described coated tool of the present invention and the comparative coated tool. Was used to create a tilt angle number distribution graph.
That is, the modified (Ti, Zr) CN layer and the conventional (Ti, Zr) CN layer are set in a lens barrel of a field emission scanning electron microscope with the surface thereof being a polished surface, An electron beam having an acceleration voltage of 15 kV at an incident angle of 70 degrees is applied to the polished surface with an irradiation current of 1 nA, and each crystal grain having a cubic crystal lattice existing within the measurement range of the surface polished surface is irradiated, Using a scattering diffraction image apparatus, a normal of the {111} plane, which is the crystal plane of the crystal grain, is made with respect to the normal of the surface polished surface in a 30 × 50 μm region at an interval of 0.1 μm / step. Measure the tilt angle, and based on the measurement result, among the measured tilt angles, the measured tilt angles within the range of 0 to 45 degrees are divided for each pitch of 0.25 degrees and exist in each section Inclination angle number distribution by counting the frequency to be It created the rough.
In the same manner as above, the modified TiCN layer is also measured for the inclination angle formed by the normal of the {112} plane, and based on the measurement results, the measurement inclination angle is within the range of 0 to 45 degrees. An inclination angle number distribution graph was created by dividing a certain measurement inclination angle for each pitch of 0.25 degrees and totaling the frequencies existing in each division.

この結果得られた改質(Ti,Zr)CN層および従来(Ti,Zr)CN層の傾斜角度数分布グラフにおいて、{111}面が最高ピークを示す傾斜角区分、並びに0〜10度の範囲内の傾斜角区分内に存在する傾斜角度数の傾斜角度数分布グラフ全体の傾斜角度数に占める割合を表5,6にそれぞれ示した。
また、改質TiCN層についても同様に、{112}面が最高ピークを示す傾斜角区分、0〜10度の範囲内の傾斜角区分内に存在する傾斜角度数の傾斜角度数分布グラフ全体の傾斜角度数に占める割合を表5,6にそれぞれ示した。
In the inclination angle number distribution graphs of the modified (Ti, Zr) CN layer and the conventional (Ti, Zr) CN layer obtained as a result of this, the inclination angle segment where the {111} plane shows the highest peak, and 0 to 10 degrees Tables 5 and 6 show the ratio of the number of tilt angles existing in the tilt angle section within the range to the number of tilt angles in the entire tilt angle number distribution graph.
Similarly, for the modified TiCN layer, the entire inclination angle distribution graph of the inclination angle number existing in the inclination angle section where the {112} plane has the highest peak, and the inclination angle section within the range of 0 to 10 degrees. Tables 5 and 6 show the proportion of the number of inclination angles.

上記の各種の傾斜角度数分布グラフにおいて、表5に示される通り、本発明被覆工具1〜10の改質(Ti,Zr)CN層は、いずれも{111}面の測定傾斜角の分布が0〜10度の範囲内の傾斜角区分に最高ピークが現れ、かつ0〜10度の範囲内の傾斜角区分内に存在する傾斜角度数の割合が45%以上である傾斜角度数分布グラフを示すのに対して、表6に示される通り、比較被覆工具1〜10の従来(Ti,Zr)CN層は、いずれも{111}面の測定傾斜角の分布が0〜45度の範囲内で不偏的で、最高ピークが存在せず、0〜10度の範囲内の傾斜角区分内に存在する傾斜角度数の割合も30%以下である傾斜角度数分布グラフを示すものであった。
図3は、本発明被覆工具2の改質(Ti,Zr)CN層の傾斜角度数分布グラフ、図4は、比較被覆工具2の従来(Ti,Zr)CN層の傾斜角度数分布グラフをそれぞれ示すものである。
なお、改質TiCN層については、本発明被覆工具1〜13および比較被覆工具1〜13のいずれもが、{112}面の測定傾斜角の分布が0〜10度の範囲内の傾斜角区分に最高ピークが現れ、かつ0〜10度の範囲内の傾斜角区分内に存在する傾斜角度数の割合が45%以上である傾斜角度数分布グラフを示した。
In the above-mentioned various inclination angle number distribution graphs, as shown in Table 5, each of the modified (Ti, Zr) CN layers of the present coated tools 1 to 10 has a distribution of measured inclination angles on the {111} plane. An inclination angle number distribution graph in which the highest peak appears in the inclination angle section in the range of 0 to 10 degrees, and the ratio of the inclination angle numbers existing in the inclination angle section in the range of 0 to 10 degrees is 45% or more. On the other hand, as shown in Table 6, the conventional (Ti, Zr) CN layers of the comparative coated tools 1 to 10 all have a measured inclination angle distribution on the {111} plane within the range of 0 to 45 degrees. And the inclination angle number distribution graph in which the highest peak does not exist and the ratio of the inclination angle number existing in the inclination angle section within the range of 0 to 10 degrees is 30% or less.
FIG. 3 is a graph showing the distribution of inclination angle numbers of the modified (Ti, Zr) CN layer of the coated tool 2 of the present invention, and FIG. 4 is a graph showing the distribution of inclination angle numbers of the conventional (Ti, Zr) CN layer of the comparative coating tool 2. Each is shown.
As for the modified TiCN layer, any of the inventive coated tools 1 to 13 and the comparative coated tools 1 to 13 has an inclination angle division in which the distribution of measured inclination angles on the {112} plane is in the range of 0 to 10 degrees. An inclination angle number distribution graph is shown in which the highest peak appears and the ratio of the inclination angle number existing in the inclination angle section in the range of 0 to 10 degrees is 45% or more.

さらに、上記の本発明被覆工具1〜13および比較被覆工具1〜13について、これの硬質被覆層の構成層を電子線マイクロアナライザー(EPMA)およびオージェ分光分析装置を用いて観察(層の縦断面を観察)したところ、前者および後者とも目標組成と実質的に同じ組成を有するTi化合物層(改質TiCN層を含む)、改質(Ti,Zr)CN層および従来(Ti,Zr)CN層、さらにAl23層からなることが確認された。また、これらの被覆工具の硬質被覆層の構成層の厚さを、走査型電子顕微鏡を用いて測定(同じく縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。 Further, for the above-described coated tools 1 to 13 and comparative coated tools 1 to 13 described above, the constituent layers of the hard coating layer were observed using an electron beam microanalyzer (EPMA) and an Auger spectroscopic analyzer (longitudinal section of the layer). The former and the latter both have a Ti compound layer (including a modified TiCN layer), a modified (Ti, Zr) CN layer, and a conventional (Ti, Zr) CN layer that have substantially the same composition as the target composition. Further, it was confirmed that the film further comprises an Al 2 O 3 layer. Moreover, when the thickness of the constituent layer of the hard coating layer of these coated tools was measured using a scanning electron microscope (similarly longitudinal section measurement), the average layer thickness (5 The average value of point measurement) was shown.

つぎに、上記の各種の被覆サーメット工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆工具1〜13および比較被覆工具1〜13について、
被削材:JIS・SCM440の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 410 m/min、
切り込み: 1.5 mm、
送り: 0.24 mm/rev、
切削時間: 8 分、
の条件(切削条件Aという)での合金鋼の湿式断続高速切削試験(通常の切削速度は、250m/min)、
被削材:JIS・S40Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度: 410 m/min、
切り込み: 1.5 mm、
送り: 0.35 mm/rev、
切削時間: 10 分、
の条件(切削条件Bという)での炭素鋼の湿式断続高速切削試験(通常の切削速度は、300m/min)、
被削材:JIS・FCD350の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 410 m/min、
切り込み: 1.5 mm、
送り: 0.25 mm/rev、
切削時間: 8 分、
の条件(切削条件Cという)でのダクタイル鋳鉄の湿式断続高速切削試験(通常の切削速度は、250m/min)を行い、
いずれの切削試験(水溶性切削油使用)でも切刃の逃げ面摩耗幅を測定した。この測定結果を表7に示した。
Next, with the various coated cermet tools described above, the present coated tool 1 to 13 and the comparative coated tools 1 to 13 in a state where all the above-mentioned coated cermet tools are screwed to the tip of the tool steel tool with a fixing jig.
Work material: JIS · SCM440 lengthwise equidistant 4 vertical grooved round bar,
Cutting speed: 410 m / min,
Cutting depth: 1.5 mm,
Feed: 0.24 mm / rev,
Cutting time: 8 minutes,
Wet intermittent high-speed cutting test (normal cutting speed is 250 m / min) of alloy steel under the above conditions (referred to as cutting condition A),
Work material: JIS · S40C lengthwise equal length 4 round bar with round groove,
Cutting speed: 410 m / min,
Cutting depth: 1.5 mm,
Feed: 0.35 mm / rev,
Cutting time: 10 minutes,
Wet intermittent high-speed cutting test (normal cutting speed is 300 m / min) of carbon steel under the conditions (referred to as cutting condition B),
Work material: JIS / FCD350 lengthwise equidistant round bars with 4 vertical grooves,
Cutting speed: 410 m / min,
Cutting depth: 1.5 mm,
Feed: 0.25 mm / rev,
Cutting time: 8 minutes,
We conduct a wet intermittent high-speed cutting test (normal cutting speed is 250 m / min) of ductile cast iron under the above conditions (referred to as cutting conditions C)
In any cutting test (using water-soluble cutting oil), the flank wear width of the cutting edge was measured. The measurement results are shown in Table 7.

Figure 2009056560
Figure 2009056560

Figure 2009056560
Figure 2009056560

Figure 2009056560
Figure 2009056560

Figure 2009056560
Figure 2009056560

Figure 2009056560
Figure 2009056560

Figure 2009056560
Figure 2009056560

Figure 2009056560
Figure 2009056560

表5〜7に示される結果から、本発明被覆工具1〜13は、いずれも硬質被覆層の下部層のうちの改質(Ti,Zr)CN層が、{111}面の傾斜角が0〜10度の範囲内の傾斜角区分で最高ピークを示すと共に、前記0〜10度の傾斜角区分範囲内に存在する度数の合計割合が45%以上を占める傾斜角度数分布グラフを示し、高い熱発生を伴い、かつ、繰り返しの大きな衝撃的負荷がかかる鋼や鋳鉄の高速断続切削でも、前記改質(Ti,Zr)CN層が一段とすぐれた耐熱性と高温強度を有し、熱塑性変形、偏摩耗の発生が防がれることから、硬質被覆層がすぐれた耐チッピング性とともにすぐれた耐摩耗性を示すのに対して、硬質被覆層の下部層のうちの(Ti,Zr)CN層が、{111}面の測定傾斜角の分布が0〜45度の範囲内で不偏的で、最高ピークが存在しない傾斜角度数分布グラフを示す従来(Ti,Zr)CN層で構成された比較被覆工具1〜13においては、いずれも高速断続切削では硬質被覆層の熱塑性変形あるいは偏摩耗の発生により、硬質被覆層の耐摩耗性は非常に劣ったものであり、比較的短時間で使用寿命に至ることが明らかである。   From the results shown in Tables 5 to 7, in the coated tools 1 to 13 of the present invention, the modified (Ti, Zr) CN layer in the lower layer of the hard coating layer has an inclination angle of {111} plane of 0. An inclination angle distribution graph showing the highest peak in an inclination angle section within a range of -10 degrees and an inclination angle number distribution graph in which the total ratio of the frequencies existing in the inclination angle section range of 0 to 10 degrees occupies 45% or more is high. Even in high-speed intermittent cutting of steel or cast iron that is accompanied by heat generation and is repeatedly subjected to a large impact load, the modified (Ti, Zr) CN layer has excellent heat resistance and high-temperature strength, thermoplastic deformation, Since the occurrence of uneven wear is prevented, the hard coating layer exhibits excellent wear resistance as well as excellent chipping resistance, whereas the (Ti, Zr) CN layer of the lower layer of the hard coating layer has , The distribution of the measured inclination angle of the {111} plane is 0 to 45 degrees In comparison coated tools 1 to 13 composed of conventional (Ti, Zr) CN layers showing an inclination angle number distribution graph that is unbiased in the surroundings and does not have the highest peak, all of them are thermoplastic in the hard coating layer by high-speed intermittent cutting. It is clear that the wear resistance of the hard coating layer is very inferior due to the occurrence of deformation or uneven wear, and the service life is reached in a relatively short time.

上述のように、この発明の被覆工具は、各種鋼や鋳鉄などの通常の条件での連続切削や断続切削は勿論のこと、特に高い熱発生を伴い、かつ、繰り返しの大きな衝撃的負荷がかかる高速断続切削加工でも、硬質被覆層がすぐれた耐チッピング性とすぐれた耐摩耗性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention is not only continuous cutting and intermittent cutting under normal conditions such as various steels and cast irons, but also involves particularly high heat generation and is subjected to repeated large impact loads. Even in high-speed intermittent cutting, the hard coating layer exhibits excellent chipping resistance and excellent wear resistance, and exhibits excellent cutting performance over a long period of time. It can be used satisfactorily for labor saving, energy saving, and cost reduction.

硬質被覆層の下部層を構成する改質(Ti,Zr)CN層および従来(Ti,Zr)CN層における結晶粒の{111}面の傾斜角の測定範囲を示す概略説明図である。It is a schematic explanatory drawing which shows the measurement range of the inclination angle of the {111} plane of crystal grains in the modified (Ti, Zr) CN layer and the conventional (Ti, Zr) CN layer constituting the lower layer of the hard coating layer. 硬質被覆層の下部層を構成する改質TiCN層における結晶粒の{112}面の傾斜角の測定範囲を示す概略説明図である。It is a schematic explanatory drawing which shows the measurement range of the inclination angle of the {112} plane of the crystal grain in the modified TiCN layer which comprises the lower layer of a hard coating layer. 本発明被覆工具2の硬質被覆層の下部層を構成する改質(Ti,Zr)CN層の{111}面の傾斜角度数分布グラフである。It is an inclination angle number distribution graph of the {111} plane of the modified (Ti, Zr) CN layer constituting the lower layer of the hard coating layer of the present coated tool 2. 比較被覆工具2の硬質被覆層の下部層を構成する従来(Ti,Zr)CN層の{111}面の傾斜角度数分布グラフである。6 is a graph showing the inclination angle number distribution of the {111} plane of a conventional (Ti, Zr) CN layer constituting the lower layer of the hard coating layer of the comparative coating tool 2.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に上部層と下部層とからなる硬質被覆層を蒸着形成した表面被覆切削工具において、
(a)上記上部層は、化学蒸着で形成された1〜15μmの平均層厚を有する酸化アルミニウム層からなり、
(b)上記下部層は、4〜20μmの合計平均層厚を有し、いずれも化学蒸着で形成されたTi化合物層と改質Ti系炭窒化物層とからなり、
(c)上記Ti化合物層は、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなり、
(d)上記Ti化合物層のうちの少なくとも1層は、2〜10μmの平均層厚を有し、かつ、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{112}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示すTiの炭窒化物層であり、
(e)上記改質Ti系炭窒化物層は、2〜15μmの平均層厚を有し、かつ、
組成式:(Ti1−XZr)CN
で表した場合、0.02≦X≦0.25(但し、原子比)を満足するTiとZrの複合炭窒化物層からなり、さらに、上記改質Ti系炭窒化物層は、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{111}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示すこと、
を特徴とする表面被覆切削工具。
In a surface-coated cutting tool in which a hard coating layer composed of an upper layer and a lower layer is vapor-deposited on the surface of a tool base composed of a tungsten carbide-based cemented carbide or a titanium carbonitride-based cermet,
(A) The upper layer is made of an aluminum oxide layer having an average layer thickness of 1 to 15 μm formed by chemical vapor deposition,
(B) The lower layer has a total average layer thickness of 4 to 20 μm, each consisting of a Ti compound layer and a modified Ti carbonitride layer formed by chemical vapor deposition,
(C) The Ti compound layer is composed of one or more of a Ti carbide layer, a nitride layer, a carbonitride layer, a carbonate layer, and a carbonitride layer,
(D) At least one of the Ti compound layers has an average layer thickness of 2 to 10 μm, and a cubic crystal existing within the measurement range of the surface polished surface using a field emission scanning electron microscope The crystal grains having a lattice are irradiated with an electron beam, and the inclination angle formed by the normal of the {112} plane, which is the crystal plane of the crystal grain, is measured with respect to the normal of the surface-polished surface. In the inclination angle number distribution graph formed by dividing the measured inclination angles within the range of 0 to 45 degrees out of the inclination angles for each pitch of 0.25 degrees and totaling the frequencies existing in each section, 0 The highest peak exists in the inclination angle section within the range of -10 degrees, and the total of the frequencies existing within the range of 0 to 10 degrees occupies a ratio of 45% or more of the entire degrees in the inclination angle frequency distribution graph. Ti carbonitride layer showing an inclination angle distribution graph Yes,
(E) The modified Ti carbonitride layer has an average layer thickness of 2 to 15 μm, and
Composition formula: (Ti 1-X Zr X ) CN
In this case, it is composed of a composite carbonitride layer of Ti and Zr that satisfies 0.02 ≦ X ≦ 0.25 (however, the atomic ratio), and the modified Ti-based carbonitride layer further comprises field emission. Using a scanning electron microscope, irradiate each crystal grain having a cubic crystal lattice existing within the measurement range of the surface polished surface with an electron beam, and the crystal of the crystal grain with respect to the normal of the surface polished surface Measuring the inclination angle formed by the normal of the {111} plane that is a surface, and dividing the measurement inclination angle within the range of 0 to 45 degrees out of the measurement inclination angles for each pitch of 0.25 degrees; In the slope angle distribution graph obtained by summing up the frequencies existing in each section, the highest peak exists in the tilt angle section within the range of 0 to 10 degrees, and the frequencies existing in the range of 0 to 10 degrees. Is a ratio of 45% or more of the total frequency in the slope angle distribution graph To indicate an inclination angle frequency distribution graph occupied,
A surface-coated cutting tool characterized by
JP2007227128A 2007-08-31 2007-08-31 Surface coated cutting tool Active JP5023895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007227128A JP5023895B2 (en) 2007-08-31 2007-08-31 Surface coated cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007227128A JP5023895B2 (en) 2007-08-31 2007-08-31 Surface coated cutting tool

Publications (2)

Publication Number Publication Date
JP2009056560A true JP2009056560A (en) 2009-03-19
JP5023895B2 JP5023895B2 (en) 2012-09-12

Family

ID=40552781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007227128A Active JP5023895B2 (en) 2007-08-31 2007-08-31 Surface coated cutting tool

Country Status (1)

Country Link
JP (1) JP5023895B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009166193A (en) * 2008-01-18 2009-07-30 Mitsubishi Materials Corp Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting
JP2009166195A (en) * 2008-01-18 2009-07-30 Mitsubishi Materials Corp Surface-coated cutting tool with hard coating layer for exhibiting excellent chipping resistance and abrasion resistance by high-speed intermittent cutting work
JP2009166194A (en) * 2008-01-18 2009-07-30 Mitsubishi Materials Corp Surface coated cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001011632A (en) * 1999-06-29 2001-01-16 Hitachi Metals Ltd Zirconium-containing film-coated tool
JP2006015426A (en) * 2004-06-30 2006-01-19 Mitsubishi Materials Corp Surface-coated cermet cutting tool with hard coating layer exerting excellent chipping resistance in high-speed intermittent cutting
JP2006159397A (en) * 2004-11-09 2006-06-22 Mitsubishi Materials Corp Surface-coated cermet cutting tool with hard coating layer exerting excellent chipping resistance in high-speed intermittent cutting
JP2006231433A (en) * 2005-02-23 2006-09-07 Mitsubishi Materials Corp Surface-coated cermet cutting tool with hard coating layer exerting excellent chipping resistance in high-speed intermittent cutting
JP2006315154A (en) * 2005-05-16 2006-11-24 Mitsubishi Materials Corp SURFACE COATED CERMET CUTTING TOOL IN WHICH THICK FILM alpha-TYPE ALUMINUM OXIDE LAYER EXHIBITS EXCELLENT CHIPPING RESISTANCE
JP2006326730A (en) * 2005-05-25 2006-12-07 Mitsubishi Materials Corp CUTTING TOOL OF SURFACE-COATED CERMET WITH THICK FILM alpha-TYPE ALUMINUM OXIDE LAYER ACHIEVING EXCELLENT CHIPPING RESISTANCE
JP2006334721A (en) * 2005-06-02 2006-12-14 Mitsubishi Materials Corp SURFACE COATED CERMET CUTTING TOOL WITH THICKENED alpha TYPE ALUMINUM OXIDE LAYER EXHIBITING EXCELLENT CHIPPING RESISTANCE
JP2007167988A (en) * 2005-12-20 2007-07-05 Mitsubishi Materials Corp Surface coated cermet-made cutting tool having hard coating layer exhibiting chipping resistance in high-speed cutting material hard to cut
JP2009006426A (en) * 2007-06-27 2009-01-15 Mitsubishi Materials Corp Surface coated cutting tool with hard coating layer exerting superior wear resistance in high speed cutting

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001011632A (en) * 1999-06-29 2001-01-16 Hitachi Metals Ltd Zirconium-containing film-coated tool
JP2006015426A (en) * 2004-06-30 2006-01-19 Mitsubishi Materials Corp Surface-coated cermet cutting tool with hard coating layer exerting excellent chipping resistance in high-speed intermittent cutting
JP2006159397A (en) * 2004-11-09 2006-06-22 Mitsubishi Materials Corp Surface-coated cermet cutting tool with hard coating layer exerting excellent chipping resistance in high-speed intermittent cutting
JP2006231433A (en) * 2005-02-23 2006-09-07 Mitsubishi Materials Corp Surface-coated cermet cutting tool with hard coating layer exerting excellent chipping resistance in high-speed intermittent cutting
JP2006315154A (en) * 2005-05-16 2006-11-24 Mitsubishi Materials Corp SURFACE COATED CERMET CUTTING TOOL IN WHICH THICK FILM alpha-TYPE ALUMINUM OXIDE LAYER EXHIBITS EXCELLENT CHIPPING RESISTANCE
JP2006326730A (en) * 2005-05-25 2006-12-07 Mitsubishi Materials Corp CUTTING TOOL OF SURFACE-COATED CERMET WITH THICK FILM alpha-TYPE ALUMINUM OXIDE LAYER ACHIEVING EXCELLENT CHIPPING RESISTANCE
JP2006334721A (en) * 2005-06-02 2006-12-14 Mitsubishi Materials Corp SURFACE COATED CERMET CUTTING TOOL WITH THICKENED alpha TYPE ALUMINUM OXIDE LAYER EXHIBITING EXCELLENT CHIPPING RESISTANCE
JP2007167988A (en) * 2005-12-20 2007-07-05 Mitsubishi Materials Corp Surface coated cermet-made cutting tool having hard coating layer exhibiting chipping resistance in high-speed cutting material hard to cut
JP2009006426A (en) * 2007-06-27 2009-01-15 Mitsubishi Materials Corp Surface coated cutting tool with hard coating layer exerting superior wear resistance in high speed cutting

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009166193A (en) * 2008-01-18 2009-07-30 Mitsubishi Materials Corp Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting
JP2009166195A (en) * 2008-01-18 2009-07-30 Mitsubishi Materials Corp Surface-coated cutting tool with hard coating layer for exhibiting excellent chipping resistance and abrasion resistance by high-speed intermittent cutting work
JP2009166194A (en) * 2008-01-18 2009-07-30 Mitsubishi Materials Corp Surface coated cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting

Also Published As

Publication number Publication date
JP5023895B2 (en) 2012-09-12

Similar Documents

Publication Publication Date Title
JP4466841B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4811781B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer
JP4474646B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP2006231433A (en) Surface-coated cermet cutting tool with hard coating layer exerting excellent chipping resistance in high-speed intermittent cutting
JP5023839B2 (en) Surface coated cutting tool with excellent wear resistance with high hard coating layer in high speed cutting
JP4518259B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6139057B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4716250B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting
JP5023896B2 (en) Surface coated cutting tool
JP5003308B2 (en) Surface coated cutting tool
JP5023895B2 (en) Surface coated cutting tool
JP5170828B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP5023897B2 (en) Surface coated cutting tool
JP2008080476A (en) Surface coated cutting tool with hard coated layer exerting excellent abrasion resistance in high speed cutting work
JP4936211B2 (en) Surface-coated cutting tool whose hard coating layer exhibits excellent wear resistance in high-speed cutting
JP4761136B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in heavy cutting
JP5019258B2 (en) Surface coated cutting tool
JP4747338B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP5170830B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance with a hard coating layer in high-speed interrupted cutting
JP5170829B2 (en) Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP4857950B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting
JP5187573B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance with a hard coating layer in high-speed heavy cutting
JP2006231423A (en) Surface coated cermet cutting tool with hard coating layer exerting excellent chipping resistance in high-speed intermittent cutting
JP5019257B2 (en) Surface coated cutting tool
JP5023898B2 (en) Surface coated cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5023895

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150