JP3994590B2 - Surface coated cemented carbide cutting tool with excellent chipping resistance with high efficiency cutting and hard coating layer - Google Patents

Surface coated cemented carbide cutting tool with excellent chipping resistance with high efficiency cutting and hard coating layer Download PDF

Info

Publication number
JP3994590B2
JP3994590B2 JP21882699A JP21882699A JP3994590B2 JP 3994590 B2 JP3994590 B2 JP 3994590B2 JP 21882699 A JP21882699 A JP 21882699A JP 21882699 A JP21882699 A JP 21882699A JP 3994590 B2 JP3994590 B2 JP 3994590B2
Authority
JP
Japan
Prior art keywords
layer
cutting
average
thickness
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21882699A
Other languages
Japanese (ja)
Other versions
JP2001038504A (en
Inventor
惠滋 中村
邦博 遠藤
高歳 大鹿
稔晃 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP21882699A priority Critical patent/JP3994590B2/en
Publication of JP2001038504A publication Critical patent/JP2001038504A/en
Application granted granted Critical
Publication of JP3994590B2 publication Critical patent/JP3994590B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、各種鋼や鋳鉄などの連続切削や断続切削を、高能率切削を目的として速い切削速度で行った場合や、さらなる高能率切削を目的として前記の速い切削速度での切削を高送りや高切り込みなどの重切削条件で行った場合にも、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆超硬合金製切削工具(以下、被覆超硬工具という)に関するものである。
【0002】
【従来の技術】
従来、一般に、炭化タングステン基超硬合金基体(以下、超硬基体という)の表面に、
(a)下部層として、それぞれ0.1〜5μmの平均層厚を有し、かつ、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、酸化物(以下、Tiで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、窒酸化物(以下、TiNOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの1種または2種以上からなるTi化合物層、
(b)中間層として、1〜15μmの平均層厚を有する酸化アルミニウム(以下、Alで示す)層、
(c)上部層として、自体が黄金色の表面色調を有することから、工具の使用前と使用後の識別を容易にする目的で、0.1〜3μmの平均層厚を有するTi窒化物(以下、TiNで示す)層、
以上(a)〜(c)で構成された硬質被覆層を3〜35μmの全体平均層厚で化学蒸着してなる被覆超硬工具が知られており、この被覆超硬工具が、例えば各種鋼や鋳鉄などの連続切削や断続切削に用いられていることも知られている。
【0003】
また、一般に、上記の被覆超硬工具の硬質被覆層を構成するTi化合物層およびAl層が粒状結晶組織を有し、かつ前記Al23層はα型結晶構造をもつものやκ型結晶構造をもつものなどが広く実用に供されることも良く知られており、さらに例えば特開平6−8010号公報や特開平7−328808号公報に記載されるように、前記Ti化合物層を構成するTiCN層を、層自身の靱性向上を目的として、通常の化学蒸着装置にて、反応ガスとして有機炭窒化物を含む混合ガスを使用し、700〜950℃の中温温度域で化学蒸着することにより縦長成長結晶組織とすると共に、その層厚を相対的に厚膜とし、3〜20μmの平均層厚をもつようにすることも知られている。
【0004】
【発明が解決しようとする課題】
一方、近年の切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高能率切削を行う傾向にあるが、上記の従来被覆超硬工具においては、上記の通りこれの硬質被覆層の上部層(最表面層)が使用前後の識別目的で蒸着形成されたTiN層からなり、このTiN層は被削材である各種鋼に対する付着性の強いものであるため、特に高能率切削を目的として切削速度を速くすると、この高速切削では高い発熱を伴うことから、切粉が高温加熱されることと相まって前記TiN層に強力に付着し、前記TiN層を硬質被覆層から局部的に剥がし取るように作用し、この場合前記TiN層は中間層であるAl層、このAl層は下部層であるTi化合物層に対していずれも密着性のすぐれたものであるので、これらの構成層も前記TiN層と一緒に局部的に剥がし取られ、この結果刃先にチッピング(微小欠け)が発生し、比較的短時間で使用寿命に至るものであり、またさらなる高能率切削を目的として前記の速い切削速度での切削を高送りや高切り込みなどの重切削条件で行った場合には、特に硬質被覆層を構成するAl層(中間層)の靭性不足が原因で刃先にチッピングが発生するのが一段と加速されるようになり、使用寿命の一段の短命化は避けられないのが現状である。
【0005】
【課題を解決するための手段】
そこで、本発明者等は、上述のような観点から、硬質被覆層がすぐれた耐チッピング性を発揮する被覆超硬工具を開発すべく、特に上記の従来被覆超硬工具に着目し、研究を行った結果、
(a)上記の従来被覆超硬工具の硬質被覆層を構成するAl層(中間層)に、Alとの合量に占める割合で、0.1〜10重量%の酸化ジルコニウム(以下、ZrOで示す)を分散相として分布させると、この結果のAl23主体層は、Alのもつすぐれた熱的安定性、耐熱性、および高硬度が損なわれることなく、すぐれた靭性を具備するようになり、したがってこのAl主体層を硬質被覆層の中間層とする被覆超硬工具は、高能率切削を目的として、速い切削速度での切削を高送りや高切り込みなどの重切削条件で行うのに用いても前記中間層の靭性不足が原因のチッピング発生がなくなり、長期に亘ってすぐれた耐摩耗性を発揮すること。
【0006】
(b)上記(a)のAlの素地に、ZrO相が分散分布してなるAl主体層は、化学蒸着装置を用い、反応ガス組成を、容量%で、
AlCl:1〜10%、
ZrCl:0.01〜10%、
CO:1〜30%、
S:0.02〜2%、
HCl:0.5〜10%、
:1〜15%、
:残り、
とし、かつ、
反応雰囲気温度:850〜1050℃、
反応雰囲気圧力:40〜400Torr、
の条件で形成できること。
【0007】
(c)上記(a)のAl主体層の表面に、まず、下地層として、
反応ガス組成を、容量%で、
TiCl:0.2〜10%、
CO:0.1〜10%、
Ar:5〜60%、
:残り、
とし、かつ、
反応雰囲気温度:800〜1100℃、
反応雰囲気圧力:30〜500torr、
とした条件で、0.1〜3μmの平均層厚を有し、かつ、Tiに対する酸素の割合が原子比で1.60〜1.90、すなわち、
組成式:TiO
で表わした場合、
W:Tiに対する原子比で1.60〜1.90、
を満足するTi酸化物層を形成し、このTi酸化物層の上に、最表面層として、通常の条件、すなわち、
反応ガス組成を、容量%で、
TiCl:0.2〜10%、
:4〜60%、
:残り、
とし、かつ、
反応雰囲気温度:800〜1100℃、
反応雰囲気圧力:30〜650torr、
とした条件で、0.05〜2μmの平均層厚を有するTiN層を形成すると、この最表面層形成時に上記下地層を構成するTi酸化物層の酸素が拡散してきてTi窒酸化物層が形成されるようになり、この場合前記Ti窒酸化物層形成後の最表面下地層は、酸素の割合がTiに対する原子比で1.37〜1.7、すなわち、
組成式:TiO
で表わした場合、
X:Tiに対する原子比で1.37〜1.7、
を満足するTi酸化物層となり、一方前記最表面層は、拡散酸素の割合がTiに対する原子比で0.08〜0.4、すなわち、
組成式:TiN1- (O)
で表わした場合(ただし、括弧内のOは上記最表面下地層からの拡散酸素を示す)、
Y:Tiに対する原子比で0.08〜0.4、
を満足するTi窒酸化物層となり、この結果の上記Ti窒酸化物層およびTi酸化物層が硬質被覆層の最表面層および最表面下地層として化学蒸着された被覆超硬工具においては、特に前記Ti窒酸化物層が、上記TiN層と同等の黄金色の表面色調を具備するため、工具の使用前後の識別を可能とし、かつ被削材である各種鋼に対する付着性のきわめて低いものであるため、高能率切削を目的として切削速度を速くした条件で切削を行っても、高温加熱された切粉が付着することがなくなることから、切刃のチッピング発生が著しく抑制され、さらに上記(a)のAl主体層によってもたらされる硬質被覆層の靱性向上によるチッピング発生抑制効果と相俟って、長期に亘ってすぐれた切削性能を発揮するようになること。
以上(a)〜(c)に示される研究結果が得られたのである。
【0008】
この発明は、上記の研究結果に基づいてなされたものであって、超硬基体の表面に、
(a)それぞれ0.1〜20μmの平均層厚を有し、かつ、TiC層、TiN層、Ti層、TiCN層、TiCO層、TiNO層、およびTiCNO層のうちの1種または2種以上からなるTi化合物層で構成された下部層
(b)1〜15μmの平均層厚を有し、かつAlの素地に、Alとの合量に占める割合で、0.1〜10重量%のZrOが分散相として分布した組織を有するAl主体層で構成された中間層
(c)まず、反応ガス組成を、体積%で、
TiCl :0.2〜10%、
CO :0.1〜10%、
Ar:5〜60%、
:残り、
とし、かつ、
反応雰囲気温度:800〜1100℃、
反応雰囲気圧力:30〜500torr、
とした条件で、0.1〜3μmの平均層厚を有し、かつ、オージェ分光分析装置で測定して、Tiに対する酸素の割合が原子比で1.60〜1.90、すなわち、
組成式:TiO
で表わした場合、
W:Tiに対する原子比で1.60〜1.90、
を満足するTi酸化物層を形成し、このTi酸化物層の上に、
反応ガス組成を、体積%で、
TiCl :0.2〜10%、
:4〜60%、
:残り、
とし、かつ、
反応雰囲気温度:800〜1100℃、
反応雰囲気圧力:30〜650torr、
とした条件で、0.05〜2μmの平均層厚を有するTiN層を形成し、もって前記TiN層形成時に上記Ti酸化物層の酸素を拡散せしめることにより形成された
(c−1)0.1〜3μmの平均層厚を有し、かつ、
組成式:TiOX
で表わした場合、厚さ方向中央部をオージェ分光分析装置で測定して、
X:Tiに対する原子比で1.37〜1.7、
を満足するTi酸化物層からなる最表面下地層と、
(c−2)0.05〜2μmの平均層厚を有し、かつ、
組成式:TiN1−Y(O)
で表わした場合(ただし、(O)は上記最表面下地層からの拡散酸素を示す)、同じく厚さ方向中央部をオージェ分光分析装置で測定して、
Y:Tiに対する原子比で0.08〜0.4、
を満足するTi窒酸化物層からなる最表面層、
以上(c−1)および(c−2)で構成された上部層
上記の下部層、中間層、および上部層からなる硬質被覆層を3〜35μmの全体平均層厚で化学蒸着してなる、高能率切削で硬質被覆層がすぐれた耐チッピング性を発揮する被覆超硬工具に特徴を有するものである。
【0009】
つぎに、この発明の被覆超硬工具において、硬質被覆層に関して、上記の通りに数値限定した理由を説明する。
(1)中間層のAl主体層におけるZrO2の分布割合
上記の通りAlの素地に分散相として分布する微細なZrOには、Alのもつすぐれた熱的安定性、耐熱性、および高硬度を損なうことなく、靭性を向上させる作用があるが、その分布割合がAlとの合量に占める割合で0.1重量%未満では、速い切削速度での重切削に際して、切刃にチッピングが発生するのを抑制するのに十分な靭性を確保することができず、一方その分布割合が同10重量%を越えるとAlの素地によってもたらされる上記の特性に低下傾向が現れるようになることから、その分布割合をAlとの合量に占める割合で0.1〜10重量%、望ましくは0.3〜6重量%と定めた。
【0010】
(2)中間層の平均層厚
中間層を構成するAl23主体層は、Al素地によるすぐれた耐酸化性、熱的安定性、および高硬度、並びにZrOによるすぐれた靭性を具備するものであるが、その平均層厚が1μm未満では所望の耐摩耗性および靭性を確保することができず、一方その平均層厚が15μmを越えると、切刃に欠けやチッピングが発生し易くなることから、その平均層厚を1〜15μm、望ましくは2〜10μmと定めた。
【0011】
(3)上部層の最表面層を構成するTi窒酸物層の拡散酸素の割合(Y値)
Y値をTiに対する原子比で0.08〜0.40としたのは、その値が0.08未満では切粉に対する付着性抑制に所望の効果を確保することができず、一方その値が0.40を越えると、層中に気孔が形成され易くなり、健全な最表面層の安定的形成が難しくなるという理由によるものである。
【0012】
(4)上部層の最表面下地層における酸素の割合(W値およびX値)
上記の通り最表面層を構成するTi窒酸物層は、まず、下地層として、酸素の割合をTiに対する原子比で1.60〜1.90(W値)としたTi酸化物層を形成し、ついで前記下地層の上に通常の条件でTiN層を蒸着することにより形成されるものであり、したがって前記TiN層形成時における前記下地層からの酸素の拡散が不可欠となるが、前記下地層を構成するTi酸化物層のW値が1.60未満であると、前記TiN層への酸素の拡散反応が急激に低下し、最表面層における拡散酸素の割合(Y値)をTiに対する原子比で0.08以上にすることができず、一方同W値が1.90を越えると、前記最表面層における拡散酸素の割合がTiに対する原子比で0.40を越えて多くなってしまうことから、W値を1.60〜1.90と定めたものであり、この場合最表面層形成後の最表面下地層における酸素の割合(X値)はTiに対する原子比で1.37〜1.7の範囲内の値をとるようになる、言い換えれば最表面層形成後の最表面下地層のX値が1.37〜1.7を満足する場合に、前記最表面層のY値は0.08〜0.40を満足するものとなるのである。
【0013】
(5)硬質被覆層の中間層を除く構成層の平均層厚
まず、下部層を構成するTi化合物層には、いずれも共通する性質として構成層のいずれとも強固に密着する性質があり、この結果構成層相互間にすぐれた層間密着性が確保されるようになるが、この場合粒状結晶組織のものでは、その平均層厚が0.1μm未満では所望のすぐれた層間密着性を確保することができず、またすぐれた靭性を有する縦長成長結晶組織のTiCN層では、所望の靭性を確保するには3μm以上の平均層厚が必要であり、一方前記粒状結晶組織のものでは、その平均層厚が5μmを越え、また前記縦長成長結晶組織のTiCN層では、その平均層厚が20μmを越えると、いずれも急激に粒成長するようになって、切刃にチッピングが発生し易くなることから、その平均層厚を、粒状結晶組織のものでは0.1〜5μm、縦長成長結晶組織のTiCN層では、3〜20μm、すなわちTi化合物層としての平均層厚を0.1〜20μmと定めた。
また、硬質被覆層を構成する最表面層および最表面下地層の平均層厚を、それぞれ0.05〜2μmおよび0.1〜3μmとしたのは、その平均層厚が0.05μm未満および0.1μm未満では、前者にあっては所望の表面色調(黄金色)を確保することができず、また後者にあっては最表面層への酸素供給が不十分になり、一方前者の色調付与作用は2μm、後者の酸素供給作用は3μmの平均層厚で十分満足に行うことができるという理由にもとづくものである。
さらに、硬質被覆層の平均層厚を3〜35μmとしたのは、その層厚が3μmでは所望のすぐれた耐摩耗性を確保することができず、一方その層厚が35μmを越えると、切刃に欠けやチッピングが発生し易くなるという理由によるものである。
【0014】
【発明の実施の形態】
つぎに、この発明の被覆超硬工具を実施例により具体的に説明する。
原料粉末として、いずれも0.5〜4μmの範囲内の所定の平均粒径を有するWC粉末、(Ti,W)C(重量比で、以下同じ、TiC/WC=30/70)粉末、(Ti,W)CN(TiC/TiN/WC=24/20/56)粉末、(Ta,Nb)C(TaC/NbC=90/10)粉末、Cr32粉末、およびCo粉末を用意し、これら原料粉末を表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、1ton/cm2の圧力で所定形状の圧粉体にプレス成形し、この圧粉体を同じく表1に示される条件で真空焼結することによりISO・CNMG120412に規定するスローアウエイチップ形状をもった超硬基体A〜Fをそれぞれ製造した。
【0015】
ついで、これらの超硬基体A〜Fのうちの超硬基体C〜Eの表面に、ホーニングを施した状態で、通常の化学蒸着装置を用い、表2〜4(表2中のl−TiCNは特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される条件にて、表5に示される組成および目標層厚の下部層(Ti化合物層)および中間層(Al主体層)、さらに上部層(拡散酸素含有のTi窒酸化物層からなる最表面層および拡散酸素供給用Ti酸化物層からなる最表面下地層)で構成された硬質被覆層を形成することにより本発明被覆超硬工具1〜5をそれぞれ製造するとともに、超硬基体A〜Fを用い、表2に示される条件にて、表6に示される組成および目標層厚の下部層(Ti化合物層)、 中間層(Al 層)、および上部層(TiN層)で構成された硬質被覆層を形成することにより従来被覆超硬工具1〜10をそれぞれ製造した。
【0016】
なお、この結果得られた本発明被覆超硬工具1〜5の硬質被覆層について、これの中間層であるAl主体層におけるZrOの分布割合を電子プローブマイクロアナライザー(EPMA)を用いて測定したところ、表3に示される目標値と実質的に同じ値を示し、また、上部層を構成する最表面層および最表面下地層について、酸素の含有割合(Y値およびX値)をオージェ発光分光分析装置を用いて測定したところ、表7に示される値を示した。
また、いずれの被覆超硬工具も黄金色の表面色調を有し、かつ硬質被覆層を構成する構成層もそれぞれ目標層厚と実質的に同じ平均層厚を示した。
【0017】
つぎに、上記本発明被覆超硬工具1〜5および従来被覆超硬工具1〜10について、
被削材:JIS・S30C(硬さ:H168)の丸棒、
切削速度:355m/min.、
切り込み:1.5mm、
送り:0.2mm/rev.、
切削時間:5分、
の条件での炭素鋼の乾式高速連続切削試験、
被削材:JIS・SNCM439(硬さ:H245)の長さ方向等間隔4本縦溝入り丸棒、
切削速度:300m/min.、
切り込み:1.7mm、
送り:0.25mm/rev.、
切削時間:5分、
の条件での合金鋼の乾式高速断続切削試験、
被削材:JIS・SCM440(硬さ:H180)の丸棒、
切削速度:250m/min.、
切り込み:1.7mm、
送り:0.7mm/rev.、
切削時間:5分、
の条件での合金鋼の乾式高送り高速連続切削試験、
被削材:JIS・S25C(硬さ:H162)の長さ方向等間隔4本縦溝入り丸棒、
切削速度:250m/min.、
切り込み:7.3mm、
送り:0.25mm/rev.、
切削時間:5分、
の条件での炭素鋼の乾式高切り込み高速断続切削試験、
を行い、いずれの切削試験でも切刃の最大逃げ面摩耗幅を測定した。この測定結果を表7に示した。
【0018】
【表1】

Figure 0003994590
【0019】
【表2】
Figure 0003994590
【0020】
【表3】
Figure 0003994590
【0021】
【表4】
Figure 0003994590
【0022】
【表5】
Figure 0003994590
【0023】
【表6】
Figure 0003994590
【0024】
【表7】
Figure 0003994590
【0025】
【発明の効果】
表5〜7に示される結果から、硬質被覆層の上部層を構成する最表面層がTiN層の形成時に下地層から拡散してきた酸素と反応して形成されたTi窒酸化物層からなると共に、同中間層がAl主体層で構成された本発明被覆超硬工具1〜5は、高い発熱を伴う鋼の速い切削速度での切削でも、前記Ti窒酸化物層が高温加熱の切粉との親和性がきわめて低く、切粉が前記Ti窒酸化物層に付着することがないことから、切刃にチッピングの発生なく、またさらなる高能率切削を目的として、前記の速い切削速度での切削を高送りおよび高切込みの重切削条件で行っても、前期Al主体層がすぐれた靭性をもつことから、切刃にチッピングが発生することはなく、すぐれた耐摩耗性を発揮するのに対して、硬質被覆層の上部層(最表面層)がTiN層で、かつ中間層がAl層で構成された従来被覆超硬工具1〜10においては、いずれも速い切削速度での切削では、切粉が前記TiN層に付着し易く、前記TiN層が他の構成層と共に前記切粉によって剥がし取られることから、切刃にチッピングが発生し易く、比較的短時間で使用寿命に至り、また特に前記の速い切削速度での切削に加えて、切削条件が高送りおよび高切込みの重切削である場合には、中間層であるAl
層の靭性不足が原因でチッピングの発生が加速されるようになり、使用寿命の一段の短命化が避けられないことが明らかである。
上述のように、この発明の被覆超硬工具は、通常の条件での各種鋼や鋳鉄などの連続切削および断続切削は勿論のこと、高能率切削を目標としてこれらの切削を速い切削速度で行っても、さらに苛酷な条件として速い切削速度での切削を高送りおよび高切込みの重切削条件で行っても、使用前後の識別を可能とした状態で、切刃にチッピングの発生なく、すぐれた耐摩耗性を長期に亘って発揮するものであるから、切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。[0001]
BACKGROUND OF THE INVENTION
This invention provides high feed for cutting at high cutting speeds for continuous cutting and intermittent cutting of various steels and cast irons at high cutting speeds for the purpose of high-efficiency cutting. The present invention also relates to a surface-coated cemented carbide cutting tool (hereinafter referred to as a coated cemented carbide tool) that exhibits excellent chipping resistance even when performed under heavy cutting conditions such as high cutting.
[0002]
[Prior art]
Conventionally, in general, on the surface of a tungsten carbide base cemented carbide substrate (hereinafter referred to as a cemented carbide substrate),
(A) Each of the lower layers has an average layer thickness of 0.1 to 5 μm, and is a Ti carbide (hereinafter referred to as TiC) layer, nitride (hereinafter also referred to as TiN) layer, oxide ( Hereinafter, a Ti 2 O 3 layer, a carbonitride (hereinafter referred to as TiCN) layer, a carbon oxide (hereinafter referred to as TiCO) layer, a nitrogen oxide (hereinafter referred to as TiNO) layer, and a carbonitriding oxidation A Ti compound layer composed of one or more of the material (hereinafter referred to as TiCNO) layers,
(B) As an intermediate layer, an aluminum oxide (hereinafter referred to as Al 2 O 3 ) layer having an average layer thickness of 1 to 15 μm,
(C) Ti nitride having an average layer thickness of 0.1 to 3 μm for the purpose of facilitating identification before and after the use of the tool because it has a golden surface color tone as the upper layer ( (Hereinafter referred to as TiN) layer,
A coated carbide tool formed by chemical vapor deposition of the hard coating layer constituted by the above (a) to (c) with an overall average layer thickness of 3 to 35 μm is known. It is also known that it is used for continuous cutting and intermittent cutting of cast iron and the like.
[0003]
In general, the Ti compound layer and the Al 2 O 3 layer constituting the hard coating layer of the above coated carbide tool have a granular crystal structure, and the Al 2 O 3 layer has an α-type crystal structure. It is well known that those having a κ-type crystal structure are widely used in practical use. Further, for example, as described in JP-A-6-8010 and JP-A-7-328808, the Ti compound For the purpose of improving the toughness of the layer itself, the TiCN layer constituting the layer is chemically grown at a medium temperature range of 700 to 950 ° C. using a mixed gas containing an organic carbonitride as a reaction gas in an ordinary chemical vapor deposition apparatus. It is also known that a vertically elongated crystal structure is formed by vapor deposition, and the layer thickness is relatively thick so as to have an average layer thickness of 3 to 20 μm.
[0004]
[Problems to be solved by the invention]
On the other hand, there is a strong demand for labor-saving and energy-saving and cost reduction for cutting in recent years, and along with this, cutting tends to perform highly efficient cutting. The upper layer (outermost surface layer) of this hard coating layer is composed of a TiN layer formed by vapor deposition for the purpose of identification before and after use, and this TiN layer has a strong adhesion to various steels as work materials. Therefore, especially when the cutting speed is increased for the purpose of high-efficiency cutting, this high-speed cutting is accompanied by high heat generation. Therefore, the chip is strongly attached to the TiN layer in combination with high-temperature heating, and the TiN layer is hardened. act to locally peeled taken from the coating layer, the Al 2 O 3 layer in this case the TiN layer is an intermediate layer, adhesion none of Ti compound layer is the Al 2 O 3 layer which is the lower layer Immediately Therefore, these constituent layers are also peeled off together with the TiN layer, and as a result, chipping (microchips) occurs at the cutting edge, leading to a service life in a relatively short time, In addition, when cutting at the above-mentioned high cutting speed is performed under heavy cutting conditions such as high feed and high cutting for the purpose of further high-efficiency cutting, particularly the Al 2 O 3 layer (intermediate layer) constituting the hard coating layer Due to the lack of toughness, the occurrence of chipping at the cutting edge is accelerated further, and it is inevitable that the service life will be further shortened.
[0005]
[Means for Solving the Problems]
In view of the above, the inventors of the present invention focused on the above-mentioned conventional coated carbide tools, particularly in order to develop a coated carbide tool that exhibits excellent chipping resistance with a hard coating layer. As a result,
(A) Oxidation of 0.1 to 10% by weight in the Al 2 O 3 layer (intermediate layer) constituting the hard coating layer of the above-mentioned conventional coated carbide tool in the proportion of the total amount with Al 2 O 3 When zirconium (hereinafter referred to as ZrO 2 ) is distributed as a dispersed phase, the resulting Al 2 O 3 main layer loses the excellent thermal stability, heat resistance, and high hardness of Al 2 O 3. Therefore, the coated carbide tool having the Al 2 O 3 main layer as an intermediate layer of the hard coating layer can perform cutting at a high cutting speed for the purpose of high-efficiency cutting. Even when used in heavy cutting conditions such as high feed and high cutting, chipping due to insufficient toughness of the intermediate layer is eliminated, and excellent wear resistance is exhibited over a long period of time.
[0006]
(B) The Al 2 O 3 main layer in which the ZrO 2 phase is dispersed and distributed on the Al 2 O 3 substrate of (a) above uses a chemical vapor deposition apparatus , and the reaction gas composition is in volume%.
AlCl 3: 1~10%,
ZrCl 4 : 0.01 to 10%,
CO 2: 1~30%,
H 2 S: 0.02~2%,
HCl: 0.5-10%
N 2: 1~15%,
H 2 : Remaining
And
Reaction atmosphere temperature: 850 to 1050 ° C.
Reaction atmosphere pressure: 40 to 400 Torr,
It can be formed under the conditions of
[0007]
(C) On the surface of the Al 2 O 3 main layer of (a), first, as an underlayer,
Reactant gas composition in volume%
TiCl 4 : 0.2 to 10%,
CO 2: 0.1~10%,
Ar: 5 to 60%,
H 2 : Remaining
And
Reaction atmosphere temperature: 800-1100 ° C.
Reaction atmosphere pressure: 30 to 500 torr,
And having an average layer thickness of 0.1 to 3 μm, and the ratio of oxygen to Ti is 1.60 to 1.90 in atomic ratio,
Composition formula: TiO W ,
In the case of
W: 1.60 to 1.90 in atomic ratio to Ti,
A Ti oxide layer that satisfies the following conditions is formed, and on this Ti oxide layer, as an outermost surface layer, normal conditions, that is,
Reactant gas composition in volume%
TiCl 4 : 0.2 to 10%,
N 2: 4~60%,
H 2 : Remaining
And
Reaction atmosphere temperature: 800-1100 ° C.
Reaction atmosphere pressure: 30 to 650 torr,
When a TiN layer having an average layer thickness of 0.05 to 2 μm is formed under the conditions described above, oxygen in the Ti oxide layer constituting the underlayer diffuses during the formation of the outermost surface layer, and the Ti nitride oxide layer becomes In this case, the outermost surface underlayer after the Ti nitride oxide layer is formed has an oxygen ratio of 1.37 to 1.7 in terms of atomic ratio to Ti,
Composition formula: TiO x ,
In the case of
X: The atomic ratio with respect to Ti is 1.37 to 1.7,
While the outermost surface layer has a diffusion oxygen ratio of 0.08 to 0.4 in terms of atomic ratio to Ti, that is,
Composition formula: TiN 1- Y (O) Y ,
(Where O in parentheses indicates diffused oxygen from the outermost surface underlayer),
Y: 0.08 to 0.4 in atomic ratio to Ti,
In the coated carbide tool in which the Ti nitride oxide layer and the Ti oxide layer resulting from the above are chemically vapor-deposited as the outermost surface layer and the outermost surface underlayer of the hard coating layer, in particular, Since the Ti nitride oxide layer has a golden surface tone equivalent to that of the TiN layer, it can be distinguished before and after use of the tool, and has extremely low adhesion to various steels as work materials. Therefore, even if the cutting is performed under the condition that the cutting speed is increased for the purpose of high-efficiency cutting, the chips heated at a high temperature will not adhere, and the occurrence of chipping of the cutting edge is remarkably suppressed. Combined with the effect of suppressing the occurrence of chipping by improving the toughness of the hard coating layer provided by the Al 2 O 3 main layer of a), it will exhibit excellent cutting performance over a long period of time.
The research results shown in (a) to (c) above were obtained.
[0008]
This invention was made based on the above research results, and on the surface of the carbide substrate,
(A) one or two of TiC layer, TiN layer, Ti 2 O 3 layer, TiCN layer, TiCO layer, TiNO layer, and TiCNO layer each having an average layer thickness of 0.1 to 20 μm A lower layer composed of a Ti compound layer composed of more than seeds,
(B) it has an average layer thickness of 1 to 15 m, and the matrix of Al 2 O 3, a percentage of the total amount of the Al 2 O 3, as ZrO 2 is dispersed phase of 0.1 to 10 wt% An intermediate layer composed of an Al 2 O 3 main layer having a distributed structure ;
(C) First, the reaction gas composition in volume%,
TiCl 4 : 0.2 to 10%,
CO 2: 0.1~10%,
Ar: 5 to 60%,
H 2 : Remaining
And
Reaction atmosphere temperature: 800-1100 ° C.
Reaction atmosphere pressure: 30 to 500 torr,
And having an average layer thickness of 0.1 to 3 μm and an oxygen ratio of 1.60 to 1.90 in terms of atomic ratio as measured with an Auger spectrometer,
Composition formula: TiO W ,
In the case of
W: 1.60 to 1.90 in atomic ratio to Ti,
A Ti oxide layer satisfying the above is formed, and on this Ti oxide layer,
Reactive gas composition in volume%
TiCl 4 : 0.2 to 10%,
N 2: 4~60%,
H 2 : Remaining
And
Reaction atmosphere temperature: 800-1100 ° C.
Reaction atmosphere pressure: 30 to 650 torr,
The TiN layer having an average layer thickness of 0.05 to 2 μm was formed under the conditions described above, and thus formed by diffusing oxygen in the Ti oxide layer when forming the TiN layer .
(C-1) having an average layer thickness of 0.1 to 3 μm, and
Composition formula: TiO x ,
, Measure the central part in the thickness direction with an Auger spectrometer,
X: The atomic ratio with respect to Ti is 1.37 to 1.7,
An outermost surface underlayer composed of a Ti oxide layer satisfying
(C-2) having an average layer thickness of 0.05 to 2 μm, and
Composition formula: TiN 1-Y (O) Y ,
(However, (O) indicates the diffused oxygen from the outermost surface underlayer), the central portion in the thickness direction is also measured with an Auger spectrometer,
Y: 0.08 to 0.4 in atomic ratio to Ti,
An outermost surface layer comprising a Ti nitride oxide layer satisfying
The upper layer composed of (c-1) and (c-2) above ,
Super hard coating layer that exhibits excellent chipping resistance by high-efficiency cutting, formed by chemical vapor deposition of the hard coating layer comprising the lower layer, intermediate layer, and upper layer with an overall average layer thickness of 3 to 35 μm. It is characterized by a hard tool.
[0009]
Next, in the coated carbide tool of the present invention, the reason why the hard coating layer is numerically limited as described above will be described.
(1) ZrO 2 distribution ratio in the Al 2 O 3 main layer of the intermediate layer As described above, the fine ZrO 2 distributed as a dispersed phase on the Al 2 O 3 substrate has excellent thermal properties of Al 2 O 3. Although there is an effect of improving toughness without impairing stability, heat resistance, and high hardness, if the distribution ratio is less than 0.1% by weight in the total amount with Al 2 O 3 , the high cutting speed In heavy cutting, it is not possible to ensure sufficient toughness to suppress the occurrence of chipping on the cutting edge. On the other hand, if the distribution ratio exceeds 10% by weight, it is caused by the Al 2 O 3 substrate. Therefore, the distribution ratio is determined to be 0.1 to 10% by weight, preferably 0.3 to 6% by weight in terms of the total amount with Al 2 O 3. It was.
[0010]
(2) Average layer thickness of intermediate layer The Al 2 O 3 main layer constituting the intermediate layer has excellent oxidation resistance, thermal stability and high hardness due to the Al 2 O 3 substrate, and excellent toughness due to ZrO 2 . However, if the average layer thickness is less than 1 μm, the desired wear resistance and toughness cannot be ensured. On the other hand, if the average layer thickness exceeds 15 μm, chipping and chipping may occur in the cutting edge. The average layer thickness is determined to be 1 to 15 μm, desirably 2 to 10 μm.
[0011]
(3) Proportion of diffusion oxygen (Y value) in the Ti nitride layer constituting the uppermost surface layer
The reason why the Y value is 0.08 to 0.40 in terms of the atomic ratio with respect to Ti is that if the value is less than 0.08 , a desired effect cannot be ensured in suppressing adhesion to chips, while the value is If it exceeds 0.40, pores are easily formed in the layer, and it is difficult to stably form a sound outermost layer.
[0012]
(4) Oxygen ratio in the uppermost surface underlayer of the upper layer (W value and X value)
As described above, the Ti nitride layer constituting the outermost surface layer first forms a Ti oxide layer having an oxygen ratio of 1.60 to 1.90 (W value) as an underlayer with respect to Ti. Then, it is formed by depositing a TiN layer on the underlayer under normal conditions. Therefore, diffusion of oxygen from the underlayer during formation of the TiN layer is indispensable. When the W value of the Ti oxide layer constituting the base layer is less than 1.60 , the diffusion reaction of oxygen to the TiN layer rapidly decreases, and the ratio of diffused oxygen (Y value) in the outermost surface layer to Ti If the atomic ratio cannot be 0.08 or more, while the W value exceeds 1.90, the proportion of diffused oxygen in the outermost surface layer exceeds 0.40 in terms of atomic ratio to Ti. since it put away, the W value of 1.60 to 1. Are as defined as 0, the ratio (X value) of oxygen in the outermost surface underlayer after this outermost layer formed so as to take a value in the range of 1.37 to 1.7 in atomic ratio to Ti In other words, when the X value of the outermost surface underlayer after formation of the outermost surface layer satisfies 1.37 to 1.7, the Y value of the outermost surface layer satisfies 0.08 to 0.40. It becomes.
[0013]
(5) The average layer thickness of the constituent layers excluding the intermediate layer of the hard coating layer First, the Ti compound layer constituting the lower layer has the property of being firmly adhered to any of the constituent layers as a common property. As a result, excellent interlaminar adhesion can be ensured between the constituent layers. In this case, in the case of a granular crystal structure, if the average layer thickness is less than 0.1 μm, the desired excellent interlaminar adhesion is ensured. In the case of a TiCN layer having a vertically grown crystal structure that cannot be manufactured and has excellent toughness, an average layer thickness of 3 μm or more is required to ensure the desired toughness, whereas in the case of the granular crystal structure, the average layer If the thickness exceeds 5 μm and the TiCN layer with the above-mentioned vertically grown crystal structure has an average layer thickness exceeding 20 μm, both grains will grow rapidly, and chipping tends to occur at the cutting edge. , That The average layer thickness, than that of the granular crystal structure 0.1 to 5 [mu] m, the TiCN layer of longitudinal growth crystal structure, 3 to 20 [mu] m, i.e. defined as 0.1~20μm an average layer thickness of the Ti compound layer.
In addition, the average layer thicknesses of the outermost surface layer and the outermost surface base layer constituting the hard coating layer were set to 0.05 to 2 μm and 0.1 to 3 μm, respectively, because the average layer thickness was less than 0.05 μm and 0 If the thickness is less than 1 μm, the desired surface color tone (golden color) cannot be secured in the former, and the oxygen supply to the outermost surface layer is insufficient in the latter, while the former color tone is imparted. This is based on the reason that the action can be performed satisfactorily with an average layer thickness of 2 μm and the latter oxygen supply action of 3 μm.
Further, the reason why the average thickness of the hard coating layer is 3 to 35 μm is that if the layer thickness is 3 μm, the desired excellent wear resistance cannot be ensured, while if the layer thickness exceeds 35 μm, This is because chipping and chipping are likely to occur in the blade.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Next, the coated carbide tool of the present invention will be specifically described with reference to examples.
As raw material powders, WC powder having a predetermined average particle diameter in the range of 0.5 to 4 μm, (Ti, W) C (weight ratio, the same below, TiC / WC = 30/70) powder, Ti, W) CN (TiC / TiN / WC = 24/20/56) powder, (Ta, Nb) C (TaC / NbC = 90/10) powder, Cr 3 C 2 powder, and Co powder are prepared, These raw material powders are blended in the composition shown in Table 1, wet-mixed for 72 hours with a ball mill, dried, and pressed into a green compact of a predetermined shape at a pressure of 1 ton / cm 2. Carbide substrates A to F having a throwaway tip shape defined in ISO · CNMG120212 were manufactured by vacuum sintering under the conditions shown in Table 1, respectively.
[0015]
Then, in the state in which the surfaces of the cemented carbide substrates C to E among these cemented carbide substrates A to F are honed, an ordinary chemical vapor deposition apparatus is used, and Tables 2 to 4 (l-TiCN in Table 2) are used. Indicates the conditions for forming a TiCN layer having a vertically grown crystal structure described in JP-A-6-8010, and the other conditions indicate the conditions for forming a normal granular crystal structure). The outermost surface comprising the lower layer (Ti compound layer) and intermediate layer (Al 2 O 3 main layer) having the composition and target layer thickness shown in Table 5 and the upper layer (diffused oxygen-containing Ti nitride oxide layer) The coated carbide tools 1 to 5 of the present invention are manufactured by forming a hard coating layer composed of a layer and an outermost surface underlayer comprising a Ti oxide layer for supplying diffusion oxygen), and carbide substrates A to F are manufactured. Table 6 under the conditions shown in Table 2 The composition and the target layer thickness lower layer of the indicated (Ti compound layer), an intermediate layer (Al 2 O 3 layer), and the upper layer prior coated cemented carbide by forming a hard coating layer composed of a (TiN layer) 1 to 10 were produced.
[0016]
In addition, about the hard coating layer of this invention coated carbide tools 1-5 obtained as a result, the distribution ratio of ZrO 2 in the Al 2 O 3 main layer, which is an intermediate layer thereof, was measured using an electron probe microanalyzer (EPMA). As a result, the oxygen content ratios (Y value and X value) of the outermost surface layer and the outermost surface underlayer constituting the upper layer are substantially the same as the target values shown in Table 3. When measured using an Auger emission spectrometer, the values shown in Table 7 were shown.
All the coated carbide tools had a golden surface color tone, and the constituent layers constituting the hard coating layer each showed an average layer thickness substantially the same as the target layer thickness.
[0017]
Next, for the present invention coated carbide tools 1-5 and conventional coated carbide tools 1-10,
Work material: JIS S30C (Hardness: H B 168) round bar,
Cutting speed: 355 m / min. ,
Incision: 1.5mm,
Feed: 0.2 mm / rev. ,
Cutting time: 5 minutes
Dry high-speed continuous cutting test of carbon steel under the conditions of
Work material: JIS / SNCM439 (Hardness: H B 245) lengthwise equidistant four round grooved round bars,
Cutting speed: 300 m / min. ,
Incision: 1.7 mm,
Feed: 0.25 mm / rev. ,
Cutting time: 5 minutes
Dry high-speed interrupted cutting test of alloy steel under the conditions of
Work material: JIS SCM440 (Hardness: H B 180) round bar,
Cutting speed: 250 m / min. ,
Incision: 1.7 mm,
Feed: 0.7 mm / rev. ,
Cutting time: 5 minutes
Dry-type high-feed high-speed continuous cutting test of alloy steel under the conditions of
Work material: JIS · S25C (Hardness: H B 162) lengthwise equidistant 4 round bars with flutes,
Cutting speed: 250 m / min. ,
Cutting depth: 7.3 mm,
Feed: 0.25 mm / rev. ,
Cutting time: 5 minutes
Carbon steel dry-type high-cut high-speed intermittent cutting test,
In each cutting test, the maximum flank wear width of the cutting edge was measured. The measurement results are shown in Table 7.
[0018]
[Table 1]
Figure 0003994590
[0019]
[Table 2]
Figure 0003994590
[0020]
[Table 3]
Figure 0003994590
[0021]
[Table 4]
Figure 0003994590
[0022]
[Table 5]
Figure 0003994590
[0023]
[Table 6]
Figure 0003994590
[0024]
[Table 7]
Figure 0003994590
[0025]
【The invention's effect】
From the results shown in Tables 5 to 7, the outermost surface layer constituting the upper layer of the hard coating layer is composed of a Ti nitride oxide layer formed by reacting with oxygen diffused from the underlayer when the TiN layer is formed. The coated carbide tools 1 to 5 according to the present invention, in which the intermediate layer is composed of an Al 2 O 3 main layer, are capable of heating the Ti nitride oxide layer at a high temperature even when cutting steel with high heat generation at a high cutting speed. Since the affinity with the chip is extremely low and the chip does not adhere to the Ti nitride oxide layer, the above-mentioned high cutting speed is used for the purpose of further efficient cutting without generating chipping on the cutting edge. Even when cutting with heavy feed conditions with high feed and high depth of cut, the cutting edge does not generate chipping because the Al 2 O 3 main layer has excellent toughness, and excellent wear resistance The upper part of the hard coating layer In (outermost surface layer) is TiN layer, and the conventional coated cemented carbide tools 1 to 10 that is configured intermediate layer in the Al 2 O 3 layer, in cutting both fast cutting speeds, cuttings the TiN layer Since the TiN layer is peeled off by the chips together with other constituent layers, chipping is likely to occur on the cutting edge, resulting in a service life in a relatively short time. in addition to cutting, when the cutting conditions are heavy cutting of high feed and high cut is an intermediate layer Al 2 O
It is clear that chipping is accelerated due to the lack of toughness of the three layers, and a further shortening of the service life is inevitable.
As described above, the coated carbide tool of the present invention performs these cuttings at a high cutting speed with the goal of high-efficiency cutting as well as continuous cutting and intermittent cutting of various steels and cast irons under normal conditions. However, even with severe conditions, cutting at high cutting speeds was performed under heavy feed conditions with high feed and high cutting depth, and it was possible to identify before and after use, and it was excellent without chipping on the cutting edge. Since the wear resistance is exhibited over a long period of time, it can sufficiently satisfy the labor-saving and energy-saving of the cutting process and the cost reduction.

Claims (1)

炭化タングステン基超硬合金基体の表面に、
(a)それぞれ0.1〜20μmの平均層厚を有し、かつ、Tiの炭化物層、窒化物層、酸化物層、炭窒化物層、炭酸化物層、窒酸化物層、および炭窒酸化物層のうちの1種または2種以上からなるTi化合物層で構成された下部層
(b)1〜15μmの平均層厚を有し、かつ酸化アルミニウムの素地に、酸化アルミニウムとの合量に占める割合で、0.1〜10重量%の酸化ジルコニウムが分散相として分布した組織を有する酸化アルミニウム主体層で構成された中間層
(c)まず、反応ガス組成を、体積%で、
TiCl :0.2〜10%、
CO :0.1〜10%、
Ar:5〜60%、
:残り、
とし、かつ、
反応雰囲気温度:800〜1100℃、
反応雰囲気圧力:30〜500torr、
とした条件で、0.1〜3μmの平均層厚を有し、かつ、オージェ分光分析装置で測定して、Tiに対する酸素の割合が原子比で1.60〜1.90、すなわち、
組成式:TiO
で表わした場合、
W:Tiに対する原子比で1.60〜1.90、
を満足するTi酸化物層を形成し、このTi酸化物層の上に、
反応ガス組成を、体積%で、
TiCl :0.2〜10%、
:4〜60%、
:残り、
とし、かつ、
反応雰囲気温度:800〜1100℃、
反応雰囲気圧力:30〜650torr、
とした条件で、0.05〜2μmの平均層厚を有する窒化チタニウム層を形成し、もって前記窒化チタニウム層形成時に上記Ti酸化物層の酸素を拡散せしめることにより形成された
(c−1)0.1〜3μmの平均層厚を有し、かつ、
組成式:TiOX
で表わした場合、厚さ方向中央部をオージェ分光分析装置で測定して、
X:Tiに対する原子比で1.37〜1.7、
を満足するTi酸化物層からなる最表面下地層と、
(c−2)0.05〜2μmの平均層厚を有し、かつ、
組成式:TiN1−Y(O)
で表わした場合(ただし、(O)は上記最表面下地層からの拡散酸素を示す)、同じく厚さ方向中央部をオージェ分光分析装置で測定して、
Y:Tiに対する原子比で0.08〜0.4、
を満足するTi窒酸化物層からなる最表面層、
以上(c−1)および(c−2)で構成された上部層
上記の下部層、中間層、および上部層からなる硬質被覆層を3〜35μmの全体平均層厚で化学蒸着したこと、を特徴とする高能率切削で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆超硬合金製切削工具。
On the surface of the tungsten carbide base cemented carbide substrate,
(A) each having an average layer thickness of 0.1 to 20 μm, and Ti carbide layer, nitride layer, oxide layer, carbonitride layer, carbonate layer, nitride oxide layer, and carbonitride oxidation A lower layer composed of a Ti compound layer composed of one or more of the physical layers ,
(B) A structure having an average layer thickness of 1 to 15 μm and a structure in which 0.1 to 10 wt% of zirconium oxide is distributed as a dispersed phase in a proportion of the total amount of aluminum oxide on the aluminum oxide substrate. An intermediate layer composed of an aluminum oxide main layer ,
(C) First, the reaction gas composition in volume%,
TiCl 4 : 0.2 to 10%,
CO 2: 0.1~10%,
Ar: 5 to 60%,
H 2 : Remaining
And
Reaction atmosphere temperature: 800-1100 ° C.
Reaction atmosphere pressure: 30 to 500 torr,
And having an average layer thickness of 0.1 to 3 μm and an oxygen ratio of 1.60 to 1.90 in terms of atomic ratio as measured with an Auger spectrometer,
Composition formula: TiO W ,
In the case of
W: 1.60 to 1.90 in atomic ratio to Ti,
A Ti oxide layer satisfying the above is formed, and on this Ti oxide layer,
Reactive gas composition in volume%
TiCl 4 : 0.2 to 10%,
N 2: 4~60%,
H 2 : Remaining
And
Reaction atmosphere temperature: 800-1100 ° C.
Reaction atmosphere pressure: 30 to 650 torr,
The titanium nitride layer having an average layer thickness of 0.05 to 2 μm was formed under the conditions described above, and thus formed by diffusing oxygen in the Ti oxide layer when the titanium nitride layer was formed .
(C-1) having an average layer thickness of 0.1 to 3 μm, and
Composition formula: TiO x ,
, Measure the central part in the thickness direction with an Auger spectrometer,
X: The atomic ratio with respect to Ti is 1.37 to 1.7,
An outermost surface underlayer composed of a Ti oxide layer satisfying
(C-2) having an average layer thickness of 0.05 to 2 μm, and
Composition formula: TiN 1-Y (O) Y ,
(However, (O) indicates the diffused oxygen from the outermost surface underlayer), the central portion in the thickness direction is also measured with an Auger spectrometer,
Y: 0.08 to 0.4 in atomic ratio to Ti,
An outermost surface layer comprising a Ti nitride oxide layer satisfying
The upper layer composed of (c-1) and (c-2) above ,
The hard coating layer consisting of the lower layer, the intermediate layer, and the upper layer is chemically vapor-deposited with an overall average layer thickness of 3 to 35 μm. Surface coated cemented carbide cutting tool.
JP21882699A 1999-08-02 1999-08-02 Surface coated cemented carbide cutting tool with excellent chipping resistance with high efficiency cutting and hard coating layer Expired - Lifetime JP3994590B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21882699A JP3994590B2 (en) 1999-08-02 1999-08-02 Surface coated cemented carbide cutting tool with excellent chipping resistance with high efficiency cutting and hard coating layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21882699A JP3994590B2 (en) 1999-08-02 1999-08-02 Surface coated cemented carbide cutting tool with excellent chipping resistance with high efficiency cutting and hard coating layer

Publications (2)

Publication Number Publication Date
JP2001038504A JP2001038504A (en) 2001-02-13
JP3994590B2 true JP3994590B2 (en) 2007-10-24

Family

ID=16725962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21882699A Expired - Lifetime JP3994590B2 (en) 1999-08-02 1999-08-02 Surface coated cemented carbide cutting tool with excellent chipping resistance with high efficiency cutting and hard coating layer

Country Status (1)

Country Link
JP (1) JP3994590B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE522736C2 (en) * 2001-02-16 2004-03-02 Sandvik Ab Aluminum-coated cutting tool and method for making the same
JP4888771B2 (en) * 2006-11-17 2012-02-29 三菱マテリアル株式会社 Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5240604B2 (en) * 2008-04-18 2013-07-17 住友電工ハードメタル株式会社 Surface coated cutting tool
JP5240605B2 (en) * 2008-05-30 2013-07-17 住友電工ハードメタル株式会社 Surface coated cutting tool
DE102009044927A1 (en) * 2009-09-23 2011-04-07 Walter Ag tool coating
CN103205728B (en) * 2012-01-17 2015-04-08 株洲钻石切削刀具股份有限公司 Surface-modified coated cutting tool and preparation method thereof

Also Published As

Publication number Publication date
JP2001038504A (en) 2001-02-13

Similar Documents

Publication Publication Date Title
JP4019246B2 (en) Surface coated cemented carbide cutting tools with excellent chipping resistance
JP4432097B2 (en) Method of manufacturing a surface-coated cemented carbide cutting tool that exhibits excellent surface lubricity against chips during high-speed cutting of highly viscous difficult-to-cut materials
JPH09174304A (en) Surface coated cemented carbide-made cutting tool excellent in pitching resistance
JP4019244B2 (en) Surface coated cemented carbide cutting tools with excellent chipping resistance
JP3887811B2 (en) Cutting tool made of surface-coated tungsten carbide based cemented carbide with a hard coating layer that provides excellent wear resistance in high-speed cutting
JP3989664B2 (en) Slow-away tip made of surface-coated cemented carbide with excellent chipping resistance
JP3994590B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with high efficiency cutting and hard coating layer
JP3893804B2 (en) Surface coated cemented carbide cutting tools with excellent chipping resistance
JP4461407B2 (en) Cutting tool made of surface-coated cemented carbide with excellent chipping resistance in high-speed intermittent cutting
JPH09262705A (en) Surface coated tungsten carbide group super hard alloy cutting tool having excellent toughness in hard coating layer thereof
JPH11172464A (en) Cutting tool made of surface coated sintered hard alloy exhibiting excellent wear resistance in high-speed cutting
JP4232333B2 (en) Surface coated cemented carbide cutting tool with excellent surface lubricity against chips
JP3837959B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool with excellent wear resistance due to hard coating layer
JP3988176B2 (en) Surface-coated cemented carbide throwaway tip-shaped cutting tool with excellent surface lubricity against chips
JP3460565B2 (en) Milling tool with excellent wear resistance
JP3912494B2 (en) Slow-away tip made of surface-coated cemented carbide that exhibits excellent heat-resistant plastic deformation with a hard coating layer
JP3371796B2 (en) Surface coated cemented carbide cutting tool with excellent fracture resistance
JP3994591B2 (en) Surface coated cemented carbide cutting tool with excellent surface lubricity against chips
JP2001150206A (en) Surface-coated tungsten carbide group sintered allow- made cutting tool which displays excellent defect resistance in interrupted double cutting
JP2000246509A (en) Throw-awy cutting tip made of surface sheathed super hard alloy exhibiting excellent initial tipping resistant property at its hard coated layer
JP3994592B2 (en) Surface coated cemented carbide cutting tool with excellent surface lubricity against chips
JP3887812B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool with excellent chipping resistance with hard coating layer in intermittent heavy cutting
JP3358538B2 (en) Slow-away cutting insert made of cemented carbide with excellent wear resistance
JP3855260B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance due to hard coating layer
JP2000117509A (en) Throw away cut tip made of surface covering cemented carbide having excellent wear resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3994590

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

EXPY Cancellation because of completion of term