JP2002233902A - Coated cutting tool - Google Patents

Coated cutting tool

Info

Publication number
JP2002233902A
JP2002233902A JP2001025126A JP2001025126A JP2002233902A JP 2002233902 A JP2002233902 A JP 2002233902A JP 2001025126 A JP2001025126 A JP 2001025126A JP 2001025126 A JP2001025126 A JP 2001025126A JP 2002233902 A JP2002233902 A JP 2002233902A
Authority
JP
Japan
Prior art keywords
layer
titanium
cutting tool
crystal structure
coated cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001025126A
Other languages
Japanese (ja)
Other versions
JP3462859B2 (en
Inventor
Yoshio Okada
吉生 岡田
Hideki Moriguchi
秀樹 森口
Kazuhiro Watabe
和広 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Hokkaido Sumiden Precision Co Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Hokkaido Sumiden Precision Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd, Hokkaido Sumiden Precision Co Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2001025126A priority Critical patent/JP3462859B2/en
Publication of JP2002233902A publication Critical patent/JP2002233902A/en
Application granted granted Critical
Publication of JP3462859B2 publication Critical patent/JP3462859B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a coated cutting tool capable of restraining a titanium carbonitride coat of a micro-columnar crystal structure from being separated by cracks generated in the columnar crystal grain boundary. SOLUTION: This coated cutting tool has a hard alloy base material and a hard coat formed on the surface thereof. The hard coat has the following constitution. A first layer is formed on the surface of the base material by a single layer or a plurality of layers made of titanium nitride, titanium carbide, titanium carbonate, titanium nitroxide, titanium carbonitride, and titanium boronitride. A second layer is formed right on the first layer by titanium carbonitroxide of a mixed crystal structure of a granular crystal and columnar crystal, in which the oxygen containing concentration in the coat satisfies 0.1 to 15% at the maximum value of atom %, and the average coat thickness is 0.2 or more and under 2.0 μm. A third layer is formed right on the second layer using titanium carbonitride of a columnar crystal structure.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、基材表面に硬質被
膜を有する被覆切削工具とその製造方法に関するもので
ある。特に、過酷な切削加工条件下にあって硬質被膜の
柱状結晶組織の粒界強度を増し、亀裂の進展を抑制する
ことにより優れた耐摩耗性を維持しつつ、耐剥離性を向
上させた被覆切削工具に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coated cutting tool having a hard coating on the surface of a substrate and a method for producing the same. In particular, under severe cutting conditions, the coating that increases the grain boundary strength of the columnar crystal structure of the hard coating and suppresses the growth of cracks while maintaining excellent wear resistance while improving peel resistance It relates to a cutting tool.

【0002】[0002]

【従来の技術】近年被覆超硬工具は省エネ化、省力化等
から切削加工が高速化に向かい、使用される環境がます
ます過酷になっており、一段と優れた耐摩耗性を備える
必要がある。そのため、耐摩耗性向上に効果のある縦長
成長結晶組織(以下、縦長成長結晶を柱状結晶と呼ぶ)
を有する炭窒化チタンの硬度を高め、耐摩耗性能を上げ
るため微細柱状結晶にする傾向がある。
2. Description of the Related Art In recent years, coated carbide tools have been used for high-speed cutting due to energy saving and labor saving, etc., and the environment in which they are used has become increasingly severe, and it is necessary to provide even more excellent wear resistance. . Therefore, a vertically elongated crystal structure that is effective in improving wear resistance (hereinafter, vertically elongated crystal is referred to as columnar crystal)
In order to increase the hardness of the titanium carbonitride having the above and to improve the wear resistance, there is a tendency to form fine columnar crystals.

【0003】微細柱状結晶を有する炭窒化チタンを製造
するためには、特開平11−172464号公報等にあるように
アセトニトリル等の有機CNを用いた柱状結晶組織を有す
る炭窒化チタン層の下部層に同じ柱状結晶組織を有する
炭窒酸化チタン層を介在させることが提案されている。
この公報によれば、炭窒酸化チタンの微細組織につづき
炭窒化チタンを核生成させるため、相対的に炭窒化チタ
ンが微細な柱状結晶になり耐摩耗性向上に寄与するとあ
る。
In order to produce titanium carbonitride having fine columnar crystals, a lower layer of a titanium carbonitride layer having a columnar crystal structure using organic CN such as acetonitrile as disclosed in Japanese Patent Application Laid-Open No. It has been proposed to interpose a titanium oxycarbonitride layer having the same columnar crystal structure.
According to this publication, since titanium carbonitride is nucleated following the microstructure of titanium carbonitride, titanium carbonitride becomes relatively fine columnar crystals and contributes to improvement of wear resistance.

【0004】[0004]

【発明が解決しようとする課題】しかし、この微細柱状
結晶組織の炭窒化チタンは柱状結晶粒界に亀裂が進展し
易く、被膜の剥離に起因するという欠点がある。硬質合
金基材上に粒状結晶組織の窒化チタン、窒酸化チタン、
炭化チタン、炭酸化チタン、炭窒化チタンを少なくとも
1層以上を被覆させると被覆表面が円筒状のドーム型に
なる。このドーム形状効果により、アセトニトリル等の
有機CNを用いた化学蒸着法による柱状炭窒酸化チタン
は、成長方向である上部にいく程広がった組織のテーパ
ー型の柱状組織になり易い。そのため、成膜が進むにつ
れて柱状結晶間に微細な空隙を生じる。この空隙は結晶
間の結合力を弱め切削加工時に膜中に発生するクラック
進展を助長し、耐剥離性を減じる要因となる。
However, the titanium carbonitride having a fine columnar crystal structure has a disadvantage that cracks are easily developed in the columnar crystal grain boundaries and the coating is peeled off. Titanium nitride, titanium oxynitride of granular crystal structure on hard alloy substrate,
At least titanium carbide, titanium carbonate, and titanium carbonitride
When one or more layers are coated, the coating surface becomes a cylindrical dome shape. Due to this dome-shaped effect, the columnar titanium carbonitride formed by the chemical vapor deposition method using organic CN such as acetonitrile tends to become a tapered columnar structure in which the structure expands toward the upper part in the growth direction. Therefore, as the film formation proceeds, fine voids are generated between the columnar crystals. These voids weaken the bonding force between the crystals, promote the development of cracks generated in the film during cutting, and reduce the peeling resistance.

【0005】また、柱状結晶組織を有する炭窒酸化チタ
ンがテーパー形状になると、その最表面は凹凸形状にな
り、上部に核生成し成膜する同じく柱状結晶組織を有す
る炭窒化チタンもテーパー状になる。結果的に炭窒化チ
タンも炭窒酸化チタンと同様に柱状結晶粒界に微細な空
隙を生じて粒界の結合力が弱くなり、耐剥離性を減じる
こととなる。
When the titanium carbonitride having a columnar crystal structure has a tapered shape, the outermost surface has an uneven shape, and the titanium carbonitride having the same columnar crystal structure, which forms a nucleus and forms a film on the top, also has a tapered shape. Become. As a result, similarly to titanium carbonitride, titanium carbonitride forms fine voids in the columnar crystal grain boundaries, weakens the bonding strength of the grain boundaries, and reduces the peeling resistance.

【0006】一方、特開平2-31202号公報(特許第28761
30号)等では、柱状結晶組織の亀裂伝播を防ぐ目的で粒
状結晶と柱状結晶の混在結晶組織にして耐摩耗性を維持
しつつ耐剥離性も向上させることが提案されている。こ
の技術は、柱状結晶を生成させてから炉内圧力を上げて
過飽和状態にし、柱状粒界に粒状結晶を析出させること
で炭窒酸化チタンを柱状結晶と粒状結晶の混在結晶組織
にしている。
On the other hand, JP-A-2-31202 (Patent No. 28761)
No. 30) and the like have proposed to improve the peeling resistance while maintaining the wear resistance by forming a mixed crystal structure of granular crystals and columnar crystals in order to prevent the propagation of cracks in the columnar crystal structure. In this technique, after the columnar crystals are generated, the pressure in the furnace is raised to a supersaturated state, and the granular crystals are precipitated at the columnar grain boundaries, whereby titanium oxycarbonitride has a mixed crystal structure of columnar crystals and granular crystals.

【0007】しかし、先に柱状結晶組織を析出するた
め、炭窒酸化チタンの結晶がテーパー状になり、その影
響で上部の炭窒化チタンもテーパー状になり、結局優れ
た耐摩耗性を持ちうる微細柱状結晶組織の炭窒化チタン
の耐剥離性を向上させるには至らない。
However, since the columnar crystal structure is first deposited, the crystal of titanium carbonitride becomes tapered, and the titanium carbonitride on the upper part also becomes tapered due to the influence, and eventually it can have excellent wear resistance. It does not lead to improving the peeling resistance of titanium carbonitride having a fine columnar crystal structure.

【0008】更に付け加えると、耐摩耗性と耐剥離性の
両方を兼ね備えるため粒状結晶と柱状結晶の混合組織の
炭窒化チタン層としたとしても、近年の高速切削加工条
件においては、耐摩耗性で明かに微細柱状結晶組織の炭
窒化チタンに遠く及ばない。
[0008] In addition, even if a titanium carbonitride layer having a mixed structure of granular crystals and columnar crystals is used in order to provide both wear resistance and peeling resistance, the wear resistance does not increase in recent high-speed cutting conditions. Obviously it is not as far as titanium carbonitride with a fine columnar crystal structure.

【0009】また、炭窒化チタンの下層における粒状結
晶のドーム効果が炭窒化チタンの柱状結晶をテーパー状
にするというなら、硬質合金基材を平滑にして直接炭窒
化チタンを成膜するという方法もある。しかし、硬質合
金基材と炭窒化チタン膜との密着力が弱く、優れた切削
工具とはなり得ない。
If the dome effect of the granular crystal in the lower layer of titanium carbonitride makes the columnar crystal of titanium carbonitride tapered, a method of directly forming a titanium carbonitride film by smoothing a hard alloy substrate is also available. is there. However, the adhesion between the hard alloy substrate and the titanium carbonitride film is weak, and it cannot be an excellent cutting tool.

【0010】従って、本発明の主目的は、テーパー状の
柱状結晶粒間からの亀裂による炭窒化チタンの剥離を抑
制し、優れた耐剥離性能を具える被覆切削工具とその製
造方法を提供することにある。
[0010] Accordingly, a main object of the present invention is to provide a coated cutting tool which suppresses peeling of titanium carbonitride due to cracks between tapered columnar crystal grains and has excellent peeling resistance, and a method of manufacturing the same. It is in.

【0011】[0011]

【課題を解決するための手段】本発明者は上記問題点に
対し研究を重ねたところ、以下の知見を得て本発明をな
し得るに至った。
Means for Solving the Problems The inventor of the present invention has conducted research on the above problems, and has obtained the following findings to accomplish the present invention.

【0012】a:粒状結晶の窒化チタンの上層に炭窒酸
化チタンの粒状結晶と柱状結晶が同時に析出する反応を
起こし、その炭窒酸化チタンの含有酸素濃度と膜厚が規
定範囲になるように成膜を施す。これにより、炭窒酸化
チタンの成膜反応の各過程で発生する凹部に粒状結晶が
優先的に埋まって平坦度が増すように成膜できる。
A: A reaction occurs in which a granular crystal and a columnar crystal of titanium oxycarbonitride are simultaneously precipitated on the upper layer of the titanium nitride of the granular crystal, so that the oxygen concentration and the film thickness of the titanium oxycarbonitride are within specified ranges. A film is formed. As a result, the film can be formed such that the granular crystals are preferentially buried in the concave portions generated in each step of the film forming reaction of titanium carbonitride and the flatness increases.

【0013】b:炭窒酸化チタン表面の平坦度が増す
と、それに伴い成膜速度の速い柱状結晶生成が優先的に
なり、同時に析出する粒状組織の結晶は、その表面がド
ーム形状となる効果を示さなくなる程微細になる。
B: When the flatness of the surface of the titanium oxycarbonitride increases, the generation of columnar crystals having a high film-forming speed is prioritized, and at the same time, the crystals having a granular structure that precipitates have the effect that the surface has a dome shape. Are so fine that they are no longer shown.

【0014】c:平滑になった炭窒酸化チタンの上層に
核生成、成膜する炭窒化チタンは、炭窒酸化チタンの直
上に成長する柱状結晶粒界が密で粒界結合力が強く亀裂
が進展し難い組織にすることができる。
C: The nucleation and film formation of titanium oxynitride on the smoothed upper layer of titanium oxycarbonitride have a dense columnar crystal grain boundary which grows directly above the titanium oxycarbonitride and have a strong grain boundary bonding force. Can be difficult to develop.

【0015】d:炭窒酸化チタンの柱状結晶が微細にな
り、混在する粒状結晶も非常に微細になることで、相対
的に上層の炭窒化チタンも微細になり、優れた耐摩耗性
を維持することが可能になる。
D: The columnar crystal of titanium carbonitride becomes finer and the mixed granular crystal becomes very fine, so that the titanium carbonitride in the upper layer becomes finer, and excellent wear resistance is maintained. It becomes possible to do.

【0016】即ち、本発明は、硬質合金基材と、その表
面に形成される硬質被膜とを具える被覆切削工具におい
て、前記硬質被膜が下記の構成を有することを特徴とす
る。 前記基材表面に形成され、窒化チタン、炭化チタン、
炭酸化チタン、窒酸化チタン、炭窒化チタンおよび硼窒
化チタンの単層または複数層からなる第一層。 第一層の直上に形成され、粒状結晶と柱状結晶の混在
結晶構造の炭窒酸化チタンで、その膜中の酸素含有濃度
が原子%の最大値で0.1%〜15%を満たし、かつ平均膜
厚が0.2以上2.0μm以下である第二層。 第二層の直上に形成される柱状結晶構造の炭窒化チタ
ンである第三層。
That is, the present invention relates to a coated cutting tool comprising a hard alloy substrate and a hard coating formed on the surface thereof, wherein the hard coating has the following configuration. Formed on the surface of the base material, titanium nitride, titanium carbide,
A first layer comprising a single layer or a plurality of layers of titanium carbonate, titanium oxynitride, titanium carbonitride, and titanium boronitride. A titanium oxycarbonitride formed directly above the first layer and having a mixed crystal structure of granular crystals and columnar crystals. The oxygen concentration in the film satisfies 0.1% to 15% at the maximum of atomic%, and the average film A second layer having a thickness of 0.2 to 2.0 μm. A third layer made of titanium carbonitride having a columnar crystal structure and formed immediately above the second layer.

【0017】ここで、さらに以下の少なくとも1つの構
成を具えることが好ましい。
Here, it is preferable to further include at least one of the following structures.

【0018】(A)前記第一層の膜結晶組織が粒状組織を
有する。
(A) The film crystal structure of the first layer has a granular structure.

【0019】(B)前記第二層の平均膜厚が0.3μm〜1.5μ
mで、その酸素含有濃度が原子%の最大値で1%〜6%を満
たす。
(B) The second layer has an average thickness of 0.3 μm to 1.5 μm.
At m, its oxygen content satisfies 1% to 6% with a maximum of atomic%.

【0020】(C)前記基材の刃先稜線部付近における第
三層の結晶粒がアスペクト比6以上ある。
(C) The crystal grains of the third layer in the vicinity of the edge line of the substrate have an aspect ratio of 6 or more.

【0021】(D)前記第三層の平均膜厚が2〜20μmを満
たす。
(D) The average thickness of the third layer satisfies 2 to 20 μm.

【0022】(E)前記硬質被膜は、前記第三層の上方に
形成される1層以上からなる第四層を具える。この第四
層は、チタン化合物で化学式Ti(Cw'Nx'Oy'Bz'){w'+
x'+y'+z'=1,0≦w',x',y',z'≦1}、酸化アルミニウ
ム、酸化ジルコニウムおよび酸化ハフニウムから選ばれ
る1種以上からなる。そして、硬質被膜全体の膜厚が平
均膜厚で2.5〜30μmである。
(E) The hard coating comprises a fourth layer composed of one or more layers formed above the third layer. This fourth layer is made of a titanium compound and has a chemical formula of Ti (Cw'Nx'Oy'Bz ') {w' +
x ′ + y ′ + z ′ = 1, 0 ≦ w ′, x ′, y ′, z ′ ≦ 1}, and one or more selected from aluminum oxide, zirconium oxide and hafnium oxide. The average thickness of the hard coating is 2.5 to 30 μm.

【0023】(F)前記基材が超硬合金またはサーメット
である。
(F) The base material is a cemented carbide or cermet.

【0024】(G)前記基材の刃先稜線部近傍の表面粗さ
が、基材断面から観測する方法によって測定される基準
長さ5μmに対してRmaxで0.2〜1.3μmである。
(G) The surface roughness in the vicinity of the ridge of the cutting edge of the substrate is 0.2 to 1.3 μm in Rmax with respect to a reference length of 5 μm measured by a method of observing from the cross section of the substrate.

【0025】(H)前記硬質被覆膜の刃先稜線部近傍が基
準長さ5μmに対して面粗さRmaxで0.2μm以下の滑らかな
面で実質的に構成されている。
(H) The vicinity of the ridge of the cutting edge of the hard coating film is substantially constituted by a smooth surface having a surface roughness Rmax of 0.2 μm or less with respect to a reference length of 5 μm.

【0026】上記の各構成要件について詳述する。The above components will be described in detail.

【0027】<炭窒酸化チタン(第二層)における柱状
結晶と粒状結晶の同時生成>第二層である炭窒酸化チタ
ンの柱状結晶と粒状結晶を同時に生成するには、まず、
柱状結晶構造の有機CN系ガスを用いたTiCN反応と、粒状
結晶構造を持つTiCO反応を同時に進行させる。そして、
反応過程で発生する活性なO,N原子をそれぞれ固溶反応
させることにより、柱状結晶のTiCNOと粒状結晶のTiCNO
を同時生成させる。
<Simultaneous Formation of Columnar Crystals and Granular Crystals in Titanium Carbonitride Oxide (Second Layer)> To simultaneously form columnar crystals and granular crystals of titanium carbonitride oxide as the second layer, first,
A TiCN reaction using an organic CN-based gas having a columnar crystal structure and a TiCO reaction having a granular crystal structure proceed simultaneously. And
The active O and N atoms generated in the reaction process are caused to undergo solid solution reactions, respectively, to form columnar crystal TiCNO and granular crystal TiCNO.
Are generated simultaneously.

【0028】TiCNO成膜過程における膜表面の凹部にそ
の粒状結晶が析出する理由は、反応ガスが成膜過程の膜
表面を移動していく際、凸部に比較的反応の速い有機CN
系ガスを用いた柱状結晶が析出し、反応ガスが凹部に到
達するころには有機CN系ガスが少なくなり粒状結晶の生
成が支配的になるためである。
The reason why the granular crystals precipitate in the concave portions on the film surface during the TiCNO film formation process is that the reaction gas moves on the film surface during the film formation process, and the organic CN having a relatively fast reaction is formed on the convex portions.
This is because columnar crystals using the system gas are precipitated, and the amount of the organic CN-based gas decreases by the time the reaction gas reaches the concave portion, so that the generation of granular crystals becomes dominant.

【0029】これにより、粒状結晶が凹部を埋めて膜表
面が平坦になっていく。平坦になるに従って比較的反応
の速い有機CN系ガスを用いた柱状結晶は表面形状効果を
受けなくなって優先的に生成する。同時に粒状結晶生成
は減じられ、その粒状組織は微細化していき、第一層の
ドーム形状による第二層における柱状結晶のテーパー状
成長が抑制される。
As a result, the granular crystals fill the recesses and the film surface becomes flat. As the surface becomes flat, columnar crystals using an organic CN-based gas, which reacts relatively quickly, are not affected by the surface shape effect and are preferentially formed. At the same time, the generation of granular crystals is reduced, the granular structure is refined, and the tapered growth of columnar crystals in the second layer due to the dome shape of the first layer is suppressed.

【0030】<炭窒酸化チタン(第二層)の含有酸素濃
度規定>炭窒酸化チタン膜の含有酸素濃度を規定した理
由は、酸素原子%の最大値が0.1atm%未満では柱状結晶
効果が強く表れ、凹部に柱状結晶が十分析出せず、逆に
15atm%を超えると粒状結晶の析出が多くなり、上部に
成膜する柱上結晶組織のTiCN(第三層)がテーパー状に
成長するためである。より好ましい範囲は1〜6atm%で
ある。
<Regulation of Oxygen Concentration in Titanium Carbonitride (Second Layer)> The reason for defining the oxygen concentration in the titanium oxycarbonitride film is that when the maximum value of oxygen atom% is less than 0.1 atm%, the columnar crystal effect is not obtained. It appears strongly, and columnar crystals do not sufficiently precipitate in the recesses.
When the content exceeds 15 atm%, the precipitation of granular crystals increases, and TiCN (third layer) having a columnar crystal structure formed on the upper portion grows in a tapered shape. A more preferred range is 1 to 6 atm%.

【0031】<炭窒酸化チタン(第二層)の膜厚規定>
炭窒酸化チタンの膜厚を規定した理由は、その厚みが0.
2μm未満では下層の粒状結晶の影響を受けるため炭窒酸
化チタンが十分平坦化せず、逆に2.0μmを超えるとその
炭窒酸化チタンの平坦化が飽和され、更に積層する意味
がないからである。より好ましい範囲は0.3〜1.5μmで
ある。
<Film thickness regulation of titanium carbonitride (second layer)>
The reason for defining the thickness of titanium carbonitride is that the thickness is 0.
If it is less than 2 μm, the titanium carbonitride is not sufficiently flattened because it is affected by the granular crystals in the lower layer.On the other hand, if it exceeds 2.0 μm, the flattening of the titanium carbonitride is saturated and there is no point in further laminating is there. A more preferred range is 0.3 to 1.5 μm.

【0032】<第一層と第二層の配置>柱状結晶と粒状
結晶の混在結晶の炭窒酸化チタン層(第二層)が、粒状
結晶層(第一層)直上に被覆されていれば、さらに硬質被
膜の基材に対する密着性を高くし、切削工具として耐剥
離性を改善することができるからである。
<Arrangement of First and Second Layers> If the titanium oxycarbonitride layer (second layer), which is a mixture of columnar crystals and granular crystals, is coated directly on the granular crystal layer (first layer), This is because the adhesion of the hard coating to the substrate can be further increased, and the peeling resistance as a cutting tool can be improved.

【0033】<炭窒化チタン(第三層)のアスペクト比
の規定>まず、アスペクト比について説明する。図1に
示すように、工具の破断面で柱状結晶TiCNの膜厚Aの中
心線を基準として膜厚Aの70%の厚みDに相当する上端位
置と下端位置を求め、各位置における水平方向の上端側
粒径Bと下端側粒径Cを求める。そして、D/{(B+C)/2}
をアスペクト比とする。アスペクト比を規定した理由
は、柱状結晶組織の炭窒化チタンの結晶粒が硬質合金基
材の刃先稜線部付近において、そのアスペクト比が6以
上あれば切削性能が上がり望ましいからである。
<Definition of Aspect Ratio of Titanium Carbonitride (Third Layer)> First, the aspect ratio will be described. As shown in FIG. 1, the upper and lower positions corresponding to the thickness D of 70% of the film thickness A are determined based on the center line of the film thickness A of the columnar crystal TiCN in the fracture surface of the tool, and the horizontal direction at each position is determined. The upper-side particle size B and the lower-side particle size C are determined. And D / {(B + C) / 2}
Is the aspect ratio. The reason for specifying the aspect ratio is that if the aspect ratio of the crystal grains of titanium carbonitride having a columnar crystal structure in the vicinity of the ridgeline of the cutting edge of the hard alloy base material is 6 or more, the cutting performance is increased and it is desirable.

【0034】<炭窒化チタン(第三層)の平均膜厚>炭
窒化チタンの膜厚が平均膜厚で2.0μm以下では優れた耐
摩耗性が発揮できず、逆に20μmを超えると耐剥離性が
落ちることから第三層の平均膜厚を2.0〜20μmとした。
<Average Film Thickness of Titanium Carbonitride (Third Layer)> If the average thickness of titanium carbonitride is 2.0 μm or less, excellent abrasion resistance cannot be exhibited. The average film thickness of the third layer was set to 2.0 to 20 μm because the property deteriorated.

【0035】<第四層の形成>第三層の外層にチタン化
合物で化学式Ti(Cw'Nx'Oy'Bz'){w'+x'+y'+z'≦1,0
≦w',x',y',z'≦1}、酸化アルミニウム、酸化ジルコニ
ウム、酸化ハフニウムから選ばれる1種以上の単層また
は多層膜を被覆することによってより耐摩耗性が向上し
切削工具として好ましい。そして、その際の硬質被膜全
体の平均膜厚が2.0〜30μmであれば、耐摩耗性および耐
クレーター性のバランスが良くなり長期にわたり優れた
性能を発揮できる。
<Formation of Fourth Layer> The outer layer of the third layer is made of a titanium compound with a chemical formula of Ti (Cw'Nx'Oy'Bz ') {w' + x '+ y' + z'≤1,0.
≤w ', x', y ', z'≤1}, cutting tool with improved wear resistance by coating at least one kind of single layer or multilayer film selected from aluminum oxide, zirconium oxide, hafnium oxide Is preferred. If the average thickness of the entire hard coating at that time is 2.0 to 30 μm, the balance between wear resistance and crater resistance is improved, and excellent performance can be exhibited over a long period of time.

【0036】<基材材料>基材が超硬合金もしくはサー
メットであれば優れた性能を発揮することが可能であ
る。超硬合金はWCを主体とする硬質相とCoを主体とする
結合相とからなるものが一般に用いられる。サーメット
にはTiC基、Cr3C2基、Al2O3基サーメットなどがある。
<Substrate Material> If the substrate is a cemented carbide or cermet, excellent performance can be exhibited. As the cemented carbide, those composed of a hard phase mainly composed of WC and a binder phase mainly composed of Co are generally used. The cermet and the like TiC group, Cr 3 C 2 group, Al 2 O 3 group cermet.

【0037】<基材表面粗さ>被覆切削工具における基
材の刃先稜線部近傍の表面粗さが、基材断面から観測し
て測定される基準長さ5μmに対してRmaxで0.2〜1.3μm
であれば、更に切削性能が上がり望ましいからである。
<Substrate Surface Roughness> The surface roughness of the coated cutting tool near the ridge of the cutting edge of the substrate is 0.2 to 1.3 μm in Rmax with respect to a reference length of 5 μm measured from the cross section of the substrate.
If so, the cutting performance further increases, which is desirable.

【0038】<硬質被膜の表面粗さ>被覆切削工具にお
ける硬質被覆膜の刃先稜線部近傍の面粗さが、基材断面
からしてRmaxが0.2μm以下の滑らかな面で実質的に構成
されていると、更に切削性能が上がり望ましいからであ
る。
<Surface Roughness of Hard Coating> The surface roughness of the hard coating film of the coated cutting tool near the edge of the cutting edge is substantially composed of a smooth surface having a Rmax of 0.2 μm or less from the cross section of the base material. This is because the cutting performance is further improved if it is performed.

【0039】<製造方法>本発明切削工具における硬質
合金基材は、公知の焼結方法により製造することができ
る。硬質被覆は化学的蒸着法(CVD法)により形成する
ことができる。CVD法には、熱CVD法、プラズマCVD法、
光CVD法などが挙げられる。第一層、第三層、第四層
は、これらのCVD法により公知の条件にて形成すれば良
い。また、膜厚の制御は成膜時間により調整を行う。上
部が平坦で柱状結晶と粒状結晶の混在結晶構造をもつ炭
窒酸化チタン(第二層)は、特に熱CVD法により下記の
条件で形成することが好ましい。
<Production Method> The hard alloy substrate in the cutting tool of the present invention can be produced by a known sintering method. The hard coating can be formed by a chemical vapor deposition method (CVD method). Thermal CVD, plasma CVD,
An optical CVD method and the like can be mentioned. The first layer, the third layer, and the fourth layer may be formed by these CVD methods under known conditions. The control of the film thickness is adjusted by the film forming time. The titanium carbonitride (second layer) having a flat upper portion and a mixed crystal structure of columnar crystals and granular crystals is preferably formed by a thermal CVD method under the following conditions.

【0040】反応ガス組成(容量%) TiCl4:0.4〜4.0% CH3CN:0.1〜2.0% CO:1.0〜3.0% N2:3.0〜35% CH4:0.1〜0.5% HCl:0.1〜0.5% Ar:0.5〜10% H2:残り 雰囲気温度:820〜880℃ 雰囲気圧力:53〜267hPa(40〜200torr)Reaction gas composition (% by volume) TiCl 4 : 0.4 to 4.0% CH 3 CN: 0.1 to 2.0% CO: 1.0 to 3.0% N 2 : 3.0 to 35% CH 4 : 0.1 to 0.5% HCl: 0.1 to 0.5 % Ar: 0.5~10% H 2: remainder atmosphere temperature: eight hundred and twenty to eight hundred eighty ° C. ambient pressure: 53~267hPa (40~200torr)

【0041】[0041]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。 (試験例1)硬質合金基材として表1に示された原料粉
末を用いて表1記載の配合組成に配合し、ボールミルで7
2時間湿式混合し乾燥した後、ISO・CNMG120408の形状に
ブレーカー形状が施された圧粉体にプレス成型し、真空
雰囲気中で表1記載の条件で焼結を行って基材を作製し
た。その後、基材表面に平面研磨、刃先ホーニングを施
し、基材の表面粗さを表4、5に示した値にブラシ研磨に
より調整した後、化学蒸着装置(熱CVD)を用いて表2、3
に示される条件で硬質被膜を形成して表4、5、6に示さ
れる被覆切削工具を得た。表4の硬質被膜は第一層〜第
三層までの3層構造を有し、表5、6の硬質被膜は第一層
〜第四層までの積層構造で、第四層を単層もしくは複層
としている。表4、6における「total平均膜厚」は、硬
質被膜全体の厚さのことである。
Embodiments of the present invention will be described below. (Test Example 1) The raw material powder shown in Table 1 was used as a hard alloy base material, and the mixture was blended in the composition shown in Table 1, and the mixture was mixed with a ball mill.
After wet mixing for 2 hours and drying, the mixture was press-molded into a compact having a breaker shape in the form of ISO • CNMG120408, and sintered in a vacuum atmosphere under the conditions shown in Table 1 to produce a substrate. After that, the surface of the base material is subjected to flat polishing and cutting edge honing, and the surface roughness of the base material is adjusted by brush polishing to the values shown in Tables 4 and 5, and then, using a chemical vapor deposition device (thermal CVD), Table 2, Three
A hard coating was formed under the conditions shown in Table 4 to obtain coated cutting tools shown in Tables 4, 5, and 6. The hard coating of Table 4 has a three-layer structure of first to third layers, and the hard coatings of Tables 5 and 6 have a laminated structure of first to fourth layers, and the fourth layer is a single layer or It has multiple layers. "Total average film thickness" in Tables 4 and 6 refers to the thickness of the entire hard coating.

【0042】[0042]

【表1】 [Table 1]

【0043】[0043]

【表2】 [Table 2]

【0044】[0044]

【表3】 [Table 3]

【0045】[0045]

【表4】 [Table 4]

【0046】[0046]

【表5】 [Table 5]

【0047】[0047]

【表6】 [Table 6]

【0048】次いで、得られた被覆切削工具における炭
窒化チタン層をSIMS(Secondary Ion Mass Spectros
copy)を用いてライン分析し、含有酸素の最大atm%を
算定した。また、その炭窒酸化チタンの組織は被覆切削
工具の膜破断面を透過型電子顕微鏡を用いて粒状結晶と
柱状結晶の混在結晶組織を確認した。アスペクト比は、
図1に示したように、D/{(B+C)/2}により求めた。基
材の面粗さは、刃先稜線部近傍の断面において、基準長
さ5μmに対するRmaxにより求めた。
Next, the titanium carbonitride layer in the obtained coated cutting tool was subjected to SIMS (Secondary Ion Mass Spectros
Copy) was used for line analysis, and the maximum atm% of the contained oxygen was calculated. As for the structure of the titanium carbonitride, a mixed crystal structure of granular crystals and columnar crystals was confirmed on the film fracture surface of the coated cutting tool using a transmission electron microscope. The aspect ratio is
As shown in FIG. 1, it was determined by D / {(B + C) / 2}. The surface roughness of the substrate was determined by Rmax with respect to a reference length of 5 μm in a cross section near the edge of the cutting edge.

【0049】この結果から得られた各種の被覆切削工具
について、耐摩耗試験は以下の条件1で切削試験を行っ
てフランク摩耗量を求め、耐剥離性試験は以下の条件2
で切削試験を行って欠損までの時間を求めた。それらの
結果を表4および表6に示す。
With respect to the various coated cutting tools obtained from the results, abrasion resistance test was performed under the following conditions 1 to determine the flank wear amount, and peel resistance test was performed under the following conditions 2
A cutting test was performed to determine the time until a defect. The results are shown in Tables 4 and 6.

【0050】(条件1) 被削材:SCM435 丸棒 切削速度:150m/min 送り:0.3mm/rev 切り込み:1.8mm 切削時間:40min 切削油:使用せず(Condition 1) Work material: SCM435 round bar Cutting speed: 150m / min Feed: 0.3mm / rev Depth of cut: 1.8mm Cutting time: 40min Cutting oil: not used

【0051】(条件2) 被削材:SCM415 溝付き丸棒 切削速度:400m/min 送り:0.3mm/rev 切り込み:1.5mm 切削油:使用せず(Condition 2) Work material: SCM415 Grooved round bar Cutting speed: 400 m / min Feed: 0.3 mm / rev Cutting depth: 1.5 mm Cutting oil: not used

【0052】表4、6から明らかなように本発明品の被覆
切削工具を用いて加工を行った場合、優れた耐摩耗性を
具えると共に、優れた耐剥離性を持つことが明かになっ
た。
As is evident from Tables 4 and 6, it is clear that when the machining is performed using the coated cutting tool of the present invention, it has not only excellent wear resistance but also excellent peeling resistance. Was.

【0053】(試験例2)上記試験例1で得られたチッ
プブレーカ付き被覆切削工具のうち発明品1〜21につい
て、刃先稜線部近傍の硬質被膜を平均粒径4μmのダイヤ
モンドパウダーでラッピングして硬質被膜の表面粗さを
調整した。表面粗さは、硬質被膜の断面を観察して基準
長さ5μmに対する面粗さRmaxを測定した。そして、表面
粗さが0.2μm以下の硬質被膜と0.2μmを越える硬質被膜
に調整して前記2つの切削条件で切削試験を行った。
(Test Example 2) Among the coated cutting tools with a chip breaker obtained in Test Example 1 above, the hard coating near the ridge of the cutting edge was wrapped with diamond powder having an average particle size of 4 μm for the invention products 1 to 21. The surface roughness of the hard coating was adjusted. The surface roughness was measured by observing the cross section of the hard coating and measuring the surface roughness Rmax with respect to the reference length of 5 μm. Then, a cutting test was performed under the above two cutting conditions by adjusting the hard coating having a surface roughness of 0.2 μm or less and the hard coating having a surface roughness of more than 0.2 μm.

【0054】その結果、切削条件1では逃げ面の摩耗幅
が20%程度減少し、切削条件2では寿命が20〜40%延び
ることが確認でき、性能向上が図れた。
As a result, it was confirmed that the wear width of the flank was reduced by about 20% under the cutting condition 1, and the life was extended by 20 to 40% under the cutting condition 2, and the performance was improved.

【0055】[0055]

【発明の効果】以上詳述した通り、本発明被覆切削工具
の製造方法によれば、炭窒酸化チタン層を粒状結晶と柱
状結晶の混在結晶構造にし、その含有酸素濃度を特定の
範囲にすることで表面が平滑な炭窒酸化チタンを造り出
すことができる。その結果、本発明被覆切削工具は、炭
窒化チタン層の柱上結晶がテーパー状ではなくより直上
に成長し、その粒界強度が増して亀裂が入り難くなり、
耐摩耗性を損なうことなく優れた耐剥離性を具えること
ができる。
As described in detail above, according to the method for producing a coated cutting tool of the present invention, the titanium carbonitride oxide layer has a mixed crystal structure of granular crystals and columnar crystals, and the concentration of oxygen contained in the mixed crystal has a specific range. This makes it possible to produce titanium carbonitride having a smooth surface. As a result, in the coated cutting tool of the present invention, the on-column crystals of the titanium carbonitride layer grow more directly, rather than in a tapered shape, and the grain boundary strength increases, making it difficult to crack.
Excellent peel resistance can be provided without deteriorating wear resistance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】アスペクト比の計算方法の説明図である。FIG. 1 is an explanatory diagram of a method of calculating an aspect ratio.

【符号の説明】[Explanation of symbols]

1 結晶粒 1 grain

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森口 秀樹 兵庫県伊丹市昆陽北一丁目1番1号 住友 電気工業株式会社伊丹製作所内 (72)発明者 渡部 和広 北海道空知郡奈井江町字奈井江776番地 北海道住電精密株式会社内 Fターム(参考) 3C046 FF03 FF05 FF10 FF16 FF22 FF25 FF27 4K030 AA03 AA09 AA14 AA17 AA18 BA18 BA36 BA38 BA41 CA03 FA10 JA01 JA06 JA20 LA22 4K044 AA09 AB10 BA12 BA18 BB04 BC01 BC05 CA14  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hideki Moriguchi 1-1-1, Koyo-Kita, Itami-shi, Itami-shi, Hyogo Sumitomo Electric Industries, Ltd. Itami Works (72) Inventor Kazuhiro Watanabe 776, Naie, Naie-cho, Sorachi-gun, Hokkaido F-term (reference) in Hokkaido Sumiden Seimitsu Co., Ltd.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 硬質合金基材と、その表面に形成される
硬質被膜とを具える被覆切削工具において、 前記硬質被膜は下記の構成を有することを特徴とする被
覆切削工具。 前記基材表面に形成され、窒化チタン、炭化チタン、
炭酸化チタン、窒酸化チタン、炭窒化チタンおよび硼窒
化チタンの単層または複数層からなる第一層。 第一層の直上に形成され、粒状結晶と柱状結晶の混在
結晶構造の炭窒酸化チタンで、その膜中の酸素含有濃度
が原子%の最大値で0.1%〜15%を満たし、かつ平均膜
厚が0.2以上2.0μm以下である第二層。 第二層の直上に形成される柱状結晶構造の炭窒化チタ
ンである第三層。
1. A coated cutting tool comprising a hard alloy substrate and a hard coating formed on the surface thereof, wherein the hard coating has the following configuration. Formed on the surface of the base material, titanium nitride, titanium carbide,
A first layer comprising a single layer or a plurality of layers of titanium carbonate, titanium oxynitride, titanium carbonitride, and titanium boronitride. A titanium oxycarbonitride formed directly above the first layer and having a mixed crystal structure of granular crystals and columnar crystals. The oxygen concentration in the film satisfies 0.1% to 15% at the maximum of atomic%, and the average film A second layer having a thickness of 0.2 to 2.0 μm. A third layer made of titanium carbonitride having a columnar crystal structure and formed immediately above the second layer.
【請求項2】 前記第一層の膜結晶組織が粒状結晶組織
を有していることを特徴とする請求項1に記載の被覆切
削工具。
2. The coated cutting tool according to claim 1, wherein the film crystal structure of the first layer has a granular crystal structure.
【請求項3】 前記第二層の平均膜厚が0.3μm〜1.5μm
で、その酸素含有濃度が原子%の最大値で1%〜6%を満
たすことを特徴とする請求項1または2に記載の被覆切削
工具。
3. An average film thickness of the second layer is 0.3 μm to 1.5 μm.
3. The coated cutting tool according to claim 1, wherein the oxygen content concentration satisfies 1% to 6% at a maximum value of atomic%.
【請求項4】 前記基材の刃先稜線部付近における第三
層の結晶粒がアスペクト比6以上あることを特徴とする
請求項l〜3のいずれかに記載の被覆切削工具。
4. The coated cutting tool according to claim 1, wherein crystal grains of the third layer in the vicinity of the edge line of the base material have an aspect ratio of 6 or more.
【請求項5】 前記第三層の平均膜厚が2〜20μmを満た
すことを特徴とする請求項1〜4のいずれかに記載の被覆
切削工具。
5. The coated cutting tool according to claim 1, wherein the average thickness of the third layer satisfies 2 to 20 μm.
【請求項6】 前記硬質被膜は、前記第三層の上方に形
成される単層または複数層からなる第四層を具え、 この第四層は、チタン化合物で化学式Ti(Cw'Nx'Oy'B
z'){w'+x'+y'+z'=1,0≦w',x',y',z'≦1}、酸化ア
ルミニウム、酸化ジルコニウムおよび酸化ハフニウムか
ら選ばれる1種以上からなり、 硬質被膜全体の膜厚が平均膜厚で2.5〜30μmであること
を特徴とする請求項1〜5のいずれかに記載の被覆切削工
具。
6. The hard coating comprises a fourth layer composed of a single layer or a plurality of layers formed above the third layer, wherein the fourth layer is made of a titanium compound and has a chemical formula of Ti (Cw'Nx'Oy). 'B
z ') It is composed of at least one selected from {w' + x '+ y' + z '= 1,0≤w', x ', y', z'≤1}, aluminum oxide, zirconium oxide and hafnium oxide, and is hard. The coated cutting tool according to any one of claims 1 to 5, wherein the entire coating has an average thickness of 2.5 to 30 µm.
【請求項7】 前記基材が超硬合金またはサーメットで
あることを特徴とする請求項1〜6のいずれかに記載の被
覆切削工具。
7. The coated cutting tool according to claim 1, wherein the substrate is a cemented carbide or a cermet.
【請求項8】 前記基材の刃先稜線部近傍の表面粗さ
が、基材断面から観測する方法によって測定される基準
長さ5μmに対してRmaxで0.2〜1.3μmであることを特徴
とする請求項1〜7のいずれかに記載の被覆切削工具。
8. The surface roughness of the base near the ridge of the cutting edge is 0.2 to 1.3 μm in Rmax with respect to a reference length of 5 μm measured by a method of observing from the cross section of the base. A coated cutting tool according to any one of claims 1 to 7.
【請求項9】 前記硬質被覆膜の刃先稜線部近傍が基準
長さ5μmに対して面粗さRmaxで0.2μm以下の滑らかな面
で実質的に構成されていることを特徴とする請求項1〜8
のいずれかに記載の被覆切削工具。
9. The hard coating film according to claim 1, wherein the vicinity of the ridge of the cutting edge is substantially constituted by a smooth surface having a surface roughness Rmax of 0.2 μm or less with respect to a reference length of 5 μm. 1-8
A coated cutting tool according to any one of the above.
【請求項10】 硬質合金基材の表面に化学的蒸着法によ
り粒状結晶構造を有する窒化チタン、炭化チタン、炭酸
化チタン、窒酸化チタン、炭窒化チタンおよび硼窒化チ
タンの1層以上からなる被膜を形成する工程と、 化学蒸着法により、炭窒酸化チタンの粒状結晶と柱状結
晶が同時に析出する反応を起こし、粒状結晶と柱状結晶
の混在結晶構造の炭窒酸化チタン層を形成する工程と、 化学的蒸着法により柱状結晶構造の炭窒化チタン層を形
成する工程とを含むことを特徴とする被覆切削工具の製
造方法。
10. A coating comprising at least one of titanium nitride, titanium carbide, titanium carbonate, titanium oxynitride, titanium carbonitride, and titanium boronitride having a granular crystal structure on the surface of a hard alloy substrate by a chemical vapor deposition method. A step of forming a titanium carbonitride layer having a mixed crystal structure of granular crystals and columnar crystals by causing a reaction in which granular crystals and columnar crystals of titanium carbonitride are simultaneously precipitated by a chemical vapor deposition method, Forming a titanium carbonitride layer having a columnar crystal structure by a chemical vapor deposition method.
JP2001025126A 2001-02-01 2001-02-01 Coated cutting tool Expired - Fee Related JP3462859B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001025126A JP3462859B2 (en) 2001-02-01 2001-02-01 Coated cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001025126A JP3462859B2 (en) 2001-02-01 2001-02-01 Coated cutting tool

Publications (2)

Publication Number Publication Date
JP2002233902A true JP2002233902A (en) 2002-08-20
JP3462859B2 JP3462859B2 (en) 2003-11-05

Family

ID=18890169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001025126A Expired - Fee Related JP3462859B2 (en) 2001-02-01 2001-02-01 Coated cutting tool

Country Status (1)

Country Link
JP (1) JP3462859B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006068844A (en) * 2004-09-01 2006-03-16 Hitachi Tool Engineering Ltd Hard film coated small-diameter member
JP2007090470A (en) * 2005-09-28 2007-04-12 Mitsubishi Materials Corp Surface coated cermet-made cutting throw-away tip having hard coating layer exhibiting excellent chipping resistance in high
JP2007144992A (en) * 2005-10-28 2007-06-14 Fujifilm Corp Recessed and projected structure and its manufacturing method, piezoelectric element, ink jet type recording head, ink jet type recording apparatus
US7409177B2 (en) 2005-03-17 2008-08-05 Ricoh Co., Ltd. Method and apparatus for image forming capable of effectively positioning a supporting member
JP2009018362A (en) * 2007-07-11 2009-01-29 Mitsubishi Materials Corp Surface coated cutting tool
JP2013136114A (en) * 2011-12-28 2013-07-11 Mitsubishi Materials Corp Surface-coated cutting tool exhibiting excellent chipping resistance in hard coating layer
CN103252509A (en) * 2012-02-16 2013-08-21 三菱综合材料株式会社 A surface coating cutting tool with a hard coating layer exhibiting excellent broken fracture resistance

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2876130B2 (en) 1989-05-19 1999-03-31 京セラ株式会社 Coated cutting tool
JP3282592B2 (en) 1997-09-18 2002-05-13 三菱マテリアル株式会社 Surface-coated cemented carbide cutting tool that demonstrates excellent wear resistance in high-speed cutting

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006068844A (en) * 2004-09-01 2006-03-16 Hitachi Tool Engineering Ltd Hard film coated small-diameter member
US7409177B2 (en) 2005-03-17 2008-08-05 Ricoh Co., Ltd. Method and apparatus for image forming capable of effectively positioning a supporting member
JP2007090470A (en) * 2005-09-28 2007-04-12 Mitsubishi Materials Corp Surface coated cermet-made cutting throw-away tip having hard coating layer exhibiting excellent chipping resistance in high
JP2007144992A (en) * 2005-10-28 2007-06-14 Fujifilm Corp Recessed and projected structure and its manufacturing method, piezoelectric element, ink jet type recording head, ink jet type recording apparatus
JP2009018362A (en) * 2007-07-11 2009-01-29 Mitsubishi Materials Corp Surface coated cutting tool
JP2013136114A (en) * 2011-12-28 2013-07-11 Mitsubishi Materials Corp Surface-coated cutting tool exhibiting excellent chipping resistance in hard coating layer
CN103252509A (en) * 2012-02-16 2013-08-21 三菱综合材料株式会社 A surface coating cutting tool with a hard coating layer exhibiting excellent broken fracture resistance
JP2013166226A (en) * 2012-02-16 2013-08-29 Mitsubishi Materials Corp Surface coated cutting tool that demonstrates chipping resistance with excellent hard coating layer

Also Published As

Publication number Publication date
JP3462859B2 (en) 2003-11-05

Similar Documents

Publication Publication Date Title
RU2623547C2 (en) Cutting tool with coating and method for its production
KR101314504B1 (en) CUTTING TOOL INSERT COMPRISING α-ALUMINA LAYER AND METHOD OF MAKING α-ALUMINA LAYER
KR100250587B1 (en) Coated hard alloy
US7163735B2 (en) Enhanced alumina layer produced by CVD
US7011867B2 (en) α-alumina coated cutting tool
US8747990B2 (en) Coated tool
US8999532B2 (en) Coating layer for cutting tools
USRE49475E1 (en) Coated cutting tool
KR101104493B1 (en) Coating materials for a cutting tool or an abrasion resistance tool
KR20160113138A (en) Alumina coated cutting tool
KR101179255B1 (en) Surface coating layer for cutting tools
JP7393946B2 (en) coated cutting tools
JP2002233902A (en) Coated cutting tool
CN110678579A (en) Coated cutting tool
JP3377090B2 (en) Coated cutting tool
EP1477581A1 (en) Enhanced alumina layer produced by CVD
JP2002273607A (en) Multilayer coat tool
JP7205039B1 (en) Cutting tools
JP2004148503A (en) Aluminum oxide coated tool
WO2022201229A1 (en) Cutting tool
KR102425215B1 (en) Surface Coated Cutting Tool and Method for Manufacturing Coated Layers
WO2022201230A1 (en) Cutting tool
WO2021250841A1 (en) Cutting tool
JPH0890311A (en) Composite head layer surface coat cutting tool
JP2002192401A (en) Coated tool and method of manufacturing the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3462859

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100815

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100815

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100815

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees