JP2014128837A - Surface-coated cutting tool with hard coating layer exerting excellent anti-chipping properties - Google Patents
Surface-coated cutting tool with hard coating layer exerting excellent anti-chipping properties Download PDFInfo
- Publication number
- JP2014128837A JP2014128837A JP2012286381A JP2012286381A JP2014128837A JP 2014128837 A JP2014128837 A JP 2014128837A JP 2012286381 A JP2012286381 A JP 2012286381A JP 2012286381 A JP2012286381 A JP 2012286381A JP 2014128837 A JP2014128837 A JP 2014128837A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- hard coating
- layer thickness
- cutting tool
- average
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005520 cutting process Methods 0.000 title claims abstract description 60
- 239000011247 coating layer Substances 0.000 title claims abstract description 48
- 239000010410 layer Substances 0.000 claims abstract description 195
- 239000002131 composite material Substances 0.000 claims abstract description 49
- 239000000203 mixture Substances 0.000 claims abstract description 31
- 238000005229 chemical vapour deposition Methods 0.000 claims abstract description 14
- 239000010936 titanium Substances 0.000 claims description 88
- 229910052719 titanium Inorganic materials 0.000 claims description 61
- 229910052782 aluminium Inorganic materials 0.000 claims description 54
- 229910052757 nitrogen Inorganic materials 0.000 claims description 19
- 238000000034 method Methods 0.000 claims description 18
- 229910052799 carbon Inorganic materials 0.000 claims description 10
- 229910052582 BN Inorganic materials 0.000 claims description 6
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 6
- 239000011195 cermet Substances 0.000 claims description 6
- 150000001875 compounds Chemical class 0.000 claims description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 5
- 239000012495 reaction gas Substances 0.000 claims description 5
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 claims description 5
- 150000004767 nitrides Chemical class 0.000 claims description 2
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 claims description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims 1
- 230000007547 defect Effects 0.000 abstract description 2
- 238000013467 fragmentation Methods 0.000 abstract 2
- 238000006062 fragmentation reaction Methods 0.000 abstract 2
- 239000012634 fragment Substances 0.000 abstract 1
- 239000000843 powder Substances 0.000 description 24
- 239000000460 chlorine Substances 0.000 description 13
- 230000015572 biosynthetic process Effects 0.000 description 12
- 239000013078 crystal Substances 0.000 description 11
- 230000000694 effects Effects 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 10
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 9
- 229910052801 chlorine Inorganic materials 0.000 description 9
- 239000011248 coating agent Substances 0.000 description 8
- 238000000576 coating method Methods 0.000 description 8
- 230000020169 heat generation Effects 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 238000005245 sintering Methods 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 238000007740 vapor deposition Methods 0.000 description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 238000005219 brazing Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 2
- 229910001018 Cast iron Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 235000000396 iron Nutrition 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910001315 Tool steel Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 238000001004 secondary ion mass spectrometry Methods 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B27/00—Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
- B23B27/14—Cutting tools of which the bits or tips or cutting inserts are of special material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23C—MILLING
- B23C5/00—Milling-cutters
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/36—Carbonitrides
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
本発明は、高熱発生を伴うとともに、切れ刃に断続的・衝撃的負荷が作用する各種の鋼や鋳鉄の高速断続切削加工などにおいて、硬質被覆層がすぐれた耐チッピング性を備えることにより、長期の使用に亘ってすぐれた切削性能を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。 The present invention provides high chipping resistance with an excellent hard coating layer in high-speed intermittent cutting of various steels and cast irons that are accompanied by high heat generation and intermittent and impact loads are applied to the cutting edge. The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent cutting performance over the course of use.
従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金、炭窒化チタン(以下、TiCNで示す)基サーメットまたは立方晶窒化ホウ素基超高圧焼結体(以下、cBNで示す)などで構成された工具基体(以下、これらを総称して工具基体という)の表面に、TiとAlの複合窒化物(以下、(Ti,Al)Nで示す)層、炭窒化物(以下、(Ti,Al)CNで示す)層のうちの1層または2層以上からなるTiとAlの複合化合物層で形成された硬質被覆層を被覆してなる被覆工具が知られており、この被覆工具は、各種の鋼や鋳鉄などの切削加工に用いられていることが知られている。
ただ、前記被覆工具は、切れ刃に大きな負荷がかかる切削条件では、チッピングや欠損等を発生しやすく、工具寿命が短命であるという問題があるため、これを解消するために、従来からいくつかの提案がなされている。
Conventionally, in general, tungsten carbide (hereinafter referred to as WC) based cemented carbide, titanium carbonitride (hereinafter referred to as TiCN) based cermet or cubic boron nitride based ultra high pressure sintered body (hereinafter referred to as cBN), etc. A composite nitride of Ti and Al (hereinafter referred to as (Ti, Al) N) layer, carbonitride (hereinafter referred to as (Ti) , Al) a coating tool formed by coating a hard coating layer formed of a composite compound layer of Ti and Al composed of one or more of the layers (shown by CN) is known. It is known that it is used for cutting various steels and cast irons.
However, the above-mentioned coated tool has problems that chipping and chipping are likely to occur under cutting conditions in which a heavy load is applied to the cutting edge, and the tool life is short-lived. Proposals have been made.
例えば、特許文献1には、工具基体の表面に、(Al,Ti)Nからなる硬質被覆層が蒸着形成された被覆工具において、前記硬質被覆層は、粒状晶(Al,Ti)Nからなる薄層Aと柱状晶(Al,Ti)Nからなる薄層Bの交互積層構造として構成され、薄層Aおよび薄層Bはそれぞれ0.05〜2μmの層厚を有し、さらに、前記粒状晶の結晶粒径は30nm以下、また、前記柱状晶の結晶粒径は50〜500nmである被覆工具が開示されている。 For example, in Patent Document 1, in a coated tool in which a hard coating layer made of (Al, Ti) N is deposited on the surface of a tool base, the hard coating layer is made of granular crystals (Al, Ti) N. The thin layer A and the thin layer B composed of columnar crystals (Al, Ti) N are configured as an alternately laminated structure, and each of the thin layer A and the thin layer B has a layer thickness of 0.05 to 2 μm. A coated tool is disclosed in which the crystal grain size is 30 nm or less, and the crystal grain size of the columnar crystals is 50 to 500 nm.
また、特許文献2、3には、工具基体の表面に、化学蒸着法によって形成された複数層を含む硬質被覆層が形成され、主たる層は、Ti1−xAlxN、Ti1−xAlxC、および/またはTi1−xAlxCNでできており、0.65≦x≦0.9であり、TiCN層またはAl2O3層が前記主たる層の上部または下部に配置されている被覆工具が開示されている。 In Patent Documents 2 and 3, a hard coating layer including a plurality of layers formed by chemical vapor deposition is formed on the surface of a tool base, and the main layers are Ti 1-x Al x N, Ti 1-x. Made of Al x C, and / or Ti 1-x Al x CN, 0.65 ≦ x ≦ 0.9, and a TiCN layer or an Al 2 O 3 layer is disposed above or below the main layer. A coated tool is disclosed.
さらに、特許文献4には、硬質被覆層として、Ti、AlおよびNによって構成されるTixAl1−xNおよびTiyAl1−yN(0≦x<0.5、0.5<y≦1)からなる2種類の化合物(A、B)を交互に繰り返し積層し、その繰り返しの積層周期λを0.5〜20nmとし、全体の膜厚が0.5〜10μmとした超薄膜積層体を、工具基体の表面に被覆した被覆工具が開示されている。 Furthermore, Patent Document 4 discloses that Ti x Al 1-x N and Ti y Al 1-y N (0 ≦ x <0.5, 0.5 <) composed of Ti, Al, and N as the hard coating layer. Two types of compounds (A, B) consisting of y ≦ 1) are alternately and repeatedly laminated, the repeated lamination period λ is 0.5 to 20 nm, and the total film thickness is 0.5 to 10 μm. A coated tool in which a laminate is coated on the surface of a tool base is disclosed.
近年の切削加工における省力化および省エネ化の要求は強く、これに伴い、被覆工具は一段と過酷な条件下で使用されるようになってきているが、例えば、前記特許文献1乃至4に示される被覆工具においても、高熱発生を伴うとともに、より一段と切れ刃に断続的・衝撃的負荷が作用する高速断続切削加工などに用いられた場合には、硬質被覆層の熱伝導率が高く、熱遮蔽効果が十分ではなく、また、靭性においても十分でないために、切削加工時の高負荷によって切れ刃にチッピング、欠損が発生しやすく、その結果、比較的短時間で使用寿命に至るのが現状である。 In recent years, there is a strong demand for labor saving and energy saving in cutting, and with this, coated tools are increasingly used under more severe conditions. For example, Patent Documents 1 to 4 show the above. Even when a coated tool is used for high-speed interrupted cutting with high heat generation and more intermittent and impact loads on the cutting edge, the thermal conductivity of the hard coating layer is high and heat shielding Since the effect is not sufficient and the toughness is not sufficient, chipping and chipping are likely to occur at the cutting edge due to high load during cutting, and as a result, the service life is reached in a relatively short time. is there.
本発明者らは、前述のような観点から、高熱発生を伴い、かつ、切れ刃に断続的・衝撃的負荷が作用する高速断続切削加工などに用いられた場合でも、硬質被覆層がすぐれた靭性および熱遮蔽効果を備え、その結果、長期の使用に亘ってすぐれた耐チッピング性、耐欠損性を発揮する被覆工具を開発すべく、TiとAlの複合炭窒化物層について鋭意研究を行った結果、以下の知見を得た。 From the above viewpoint, the present inventors have excellent hard coating layers even when they are used for high-speed intermittent cutting that involves generation of high heat and an intermittent / impact load acts on the cutting edge. In order to develop a coated tool that has toughness and heat shielding effect, and as a result, exhibits excellent chipping resistance and fracture resistance over long-term use, we have conducted intensive research on a composite carbonitride layer of Ti and Al. As a result, the following knowledge was obtained.
即ち、硬質被覆層として、従来の少なくとも1層の(Ti,Al)N層および/または(Ti,Al)CN層を含み、かつ所定の合計平均層厚を有する1層または2層以上からなるTiとAlの複合化合物層を形成したものにおいては、TiとAlの複合化合物層が基体的に垂直方向に柱状をなして形成されている。そのため、耐摩耗性および熱伝導率は向上する。その反面、TiとAlの複合化合物層の異方性が高くなるほど、靭性および熱遮蔽効果が低下し、その結果、耐チッピング性、耐欠損性が低下し、長期の使用に亘って十分な耐摩耗性を発揮することができず、また、工具寿命も満足できるものであるとはいえなかった。
そこで、本発明者らは、硬質被覆層を構成する(Ti,Al)CN層について鋭意研究したところ、(Ti,Al)CN層の異方性を緩和し靭性および熱遮蔽効果を高めることによって、硬質被覆層の耐チッピング性、耐欠損性を向上させることができるという新規な知見を見出した。
That is, the hard coating layer includes at least one conventional (Ti, Al) N layer and / or (Ti, Al) CN layer and has one or more layers having a predetermined total average layer thickness. In the case where a composite compound layer of Ti and Al is formed, the composite compound layer of Ti and Al is formed in a columnar shape in the vertical direction as a substrate. Therefore, wear resistance and thermal conductivity are improved. On the other hand, the higher the anisotropy of the composite compound layer of Ti and Al, the lower the toughness and the heat shielding effect. As a result, the chipping resistance and chipping resistance are reduced, and sufficient resistance over a long period of use. It was not possible to exhibit wear and to satisfy the tool life.
Therefore, the present inventors conducted extensive research on the (Ti, Al) CN layer that constitutes the hard coating layer. By relaxing the anisotropy of the (Ti, Al) CN layer and improving the toughness and heat shielding effect, The present inventors have found a novel finding that the chipping resistance and chipping resistance of the hard coating layer can be improved.
具体的には、硬質被覆層に少なくとも含まれる複合炭窒化物層を組成式:(Ti1−xAlx)(CyN1−y)で表した場合、TiとAlの合量に占めるAlの含有割合xおよびCとNの合量に占めるCの含有割合y(但し、x、yはいずれも原子比)が、それぞれ、0.80≦x≦0.95、0.001≦y≦0.01を満足するとともに、層内に層厚方向を分断する複数の薄い低塩素濃度の分断層を存在させることにより、(Ti,Al)CN層の異方性が緩和され、靭性および熱遮蔽効果が高められる。 Specifically, when the composite carbonitride layer contained at least in the hard coating layer is represented by a composition formula: (Ti 1-x Al x ) (C y N 1-y ), it occupies the total amount of Ti and Al. The Al content ratio x and the C content ratio y in the total amount of C and N (where x and y are atomic ratios) are 0.80 ≦ x ≦ 0.95 and 0.001 ≦ y, respectively. In addition to satisfying .ltoreq.0.01, the presence of a plurality of thin, low chlorine concentration dividing layers that divide the layer thickness direction in the layer alleviates the anisotropy of the (Ti, Al) CN layer, and improves toughness and The heat shielding effect is enhanced.
そして、前述のような構成の(Ti,Al)CN層は、例えば、以下の化学蒸着法によって成膜することができる。
(a)成膜工程
工具基体表面に、反応ガス組成(容量%)を、TiCl4:1.5〜2.5%、Al(CH3)3:1.0〜3.0%、AlCl3:6.0〜10.0%、NH3:2.0〜5.0%、N2:6.0〜7.0%、C2H4:0〜1.0%、Ar:0〜10.0%、H2:残、反応雰囲気圧力:2〜5kPa、反応雰囲気温度:750〜900℃として、所定時間、熱CVD法を行うことにより、所定の目標層厚の柱状組織の(Ti,Al)CN層を成膜する。
(b)パルス工程
前記(a)の成膜工程の途中で、所定の周期でAl(CH3)3とAlCl3の添加量をAl(CH3)3:4.0〜6.0%、AlCl3:0〜1.0%に変化させたパルス工程を所定時間挟む。
The (Ti, Al) CN layer having the above-described configuration can be formed by, for example, the following chemical vapor deposition method.
(A) Film formation process On the surface of the tool base, the reaction gas composition (volume%) is TiCl 4 : 1.5 to 2.5%, Al (CH 3 ) 3 : 1.0 to 3.0%, AlCl 3. : 6.0~10.0%, NH 3: 2.0~5.0 %, N 2: 6.0~7.0%, C 2 H 4: 0~1.0%, Ar: 0~ 10.0%, H 2 : remaining, reaction atmosphere pressure: 2 to 5 kPa, reaction atmosphere temperature: 750 to 900 ° C., and by performing a thermal CVD method for a predetermined time, (Ti , Al) CN layer is formed.
(B) Pulse process In the course of the film formation process of (a), the addition amount of Al (CH 3 ) 3 and AlCl 3 is changed to Al (CH 3 ) 3 : 4.0 to 6.0% in a predetermined cycle. AlCl 3 : A pulse process changed to 0 to 1.0% is sandwiched for a predetermined time.
そして、通常、物理蒸着法では、TiAlCN層中のAlとTiの合量に占めるAlの含有割合xが0.5を超えると立方晶構造を形成することが難しいが、前述した化学蒸着法によれば、TiAlCN層中のAlとTiの合量に占めるAlの含有割合xが0.80≦x≦0.95とAlリッチであっても、安定的に立方晶結晶構造が出来ることを見出した。さらに、分断層のTiAlCN層中のAlとTiの合量に占めるAlの含有割合xが0.50≦x≦0.70であり、平均層厚が1〜10nm、周期が10〜50層/μmすなわち平均間隔が20〜100nmである場合には、特に、耐欠損性、耐チッピング性が向上し、切れ刃に断続的・衝撃的負荷が作用する鋼や鋳鉄の高速断続切削加工に用いた場合でも、硬質被覆層が、長期の使用に亘ってすぐれた切削性能を発揮し得ることを見出した。 Usually, in the physical vapor deposition method, it is difficult to form a cubic structure when the Al content ratio x in the total amount of Al and Ti in the TiAlCN layer exceeds 0.5. According to the finding, even when the Al content ratio x in the total amount of Al and Ti in the TiAlCN layer is 0.80 ≦ x ≦ 0.95 and Al-rich, a stable cubic crystal structure can be formed. It was. Furthermore, the Al content ratio x in the total amount of Al and Ti in the TiAlCN layer of the dividing layer is 0.50 ≦ x ≦ 0.70, the average layer thickness is 1 to 10 nm, and the cycle is 10 to 50 layers / When μm, that is, the average interval is 20 to 100 nm, it was used for high-speed intermittent cutting of steel and cast iron in which fracture resistance and chipping resistance were improved and intermittent and impact loads acted on the cutting edge. Even in this case, it has been found that the hard coating layer can exhibit excellent cutting performance over a long period of use.
本発明は、前記知見に基づいてなされたものであって、
「(1) 炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体の表面に硬質被覆層を被覆した表面被覆切削工具において、
(a)前記硬質被覆層は、化学蒸着法により成膜された平均層厚1〜20μmのTiとAlの複合炭窒化物層を少なくとも含み、
(b)前記複合炭窒化物層は、組成式:(Ti1−xAlx)(CyN1−y)で表した場合、TiとAlの合量に占めるAlの含有割合xおよびCとNの合量に占めるCの含有割合y(但し、x、yはいずれも原子比)が、それぞれ、0.80≦x≦0.95、0.005≦y≦0.05を満足するとともに、層内に層厚方向を分断する複数の薄い分断層を有し、
(c)前記分断層は、平均層厚が1〜10nmであり、前記複合炭窒化物層の層厚方向1μmあたり10〜50層存在し、かつ、組成式:(Ti1−xAlx)(CyN1−y)で表した場合、TiとAlの合量に占めるAlの含有割合xおよびCとNの合量に占めるCの含有割合y(但し、x、yはいずれも原子比)が、それぞれ、0.50≦x≦0.70、0.005≦y≦0.05を満足する、
ことを特徴とする表面被覆切削工具。
(2) 前記分断層を構成する原子の合量に占めるClの含有割合z(但し、zは原子比)が、z≦0.01であることを特徴とする(1)に記載の表面被覆切削工具。
(3) 前記複合炭窒化物層は、少なくともトリメチルアルミニウムを反応ガス成分として含有する化学蒸着法により成膜されたものであることを特徴とする(1)または(2)に記載の表面被覆切削工具。」
に特徴を有するものである。
The present invention has been made based on the above findings,
“(1) In a surface-coated cutting tool in which a hard coating layer is coated on the surface of a tool base composed of tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, or cubic boron nitride-based ultrahigh-pressure sintered body ,
(A) The hard coating layer includes at least a composite carbonitride layer of Ti and Al having an average layer thickness of 1 to 20 μm formed by a chemical vapor deposition method,
(B) When the composite carbonitride layer is expressed by a composition formula: (Ti 1-x Al x ) (C y N 1-y ), the Al content ratio x and C in the total amount of Ti and Al The proportion of C in the total amount of N and N (where x and y are atomic ratios) satisfies 0.80 ≦ x ≦ 0.95 and 0.005 ≦ y ≦ 0.05, respectively. And having a plurality of thin dividing faults dividing the layer thickness direction in the layer,
(C) The dividing layer has an average layer thickness of 1 to 10 nm, 10 to 50 layers per 1 μm in the layer thickness direction of the composite carbonitride layer, and a composition formula: (Ti 1-x Al x ) When expressed by (C y N 1-y ), the Al content ratio x in the total amount of Ti and Al and the C content ratio y in the total amount of C and N (where x and y are atoms) Ratio) satisfies 0.50 ≦ x ≦ 0.70 and 0.005 ≦ y ≦ 0.05, respectively.
A surface-coated cutting tool characterized by that.
(2) The surface covering according to (1), wherein the content ratio z (where z is an atomic ratio) of Cl in the total amount of atoms constituting the dividing layer is z ≦ 0.01. Cutting tools.
(3) The surface-coated cutting according to (1) or (2), wherein the composite carbonitride layer is formed by a chemical vapor deposition method containing at least trimethylaluminum as a reaction gas component. tool. "
It has the characteristics.
本発明について、以下に詳細に説明する。 The present invention will be described in detail below.
硬質被覆層を構成するTiとAlの複合炭窒化物層((Ti1−xAlx)(CyN1−y)層)の平均組成および平均層厚:
硬質被覆層を構成するTiとAlの複合炭窒化物層は、組成式:(Ti1−xAlx)(CyN1−y)で表した場合、TiとAlの合量に占めるAlの含有割合x(原子比)の値が0.80未満になると、高温硬さが不足し耐摩耗性が低下するようになり、一方、x(原子比)の値が0.95を超えると、相対的なTi含有割合の減少により、立方晶構造を維持できず、そのため高温強度が低下し、チッピング、欠損を発生しやすくなることから、x(原子比)の値は、0.80以上0.95以下とすることが必要である。
なお、PVD法によって前記組成の((Ti1−xAlx)(CyN1−y)層を蒸着形成した場合には、結晶構造は六方晶となるが、本発明では、前述した化学蒸着法によって蒸着形成していることから、立方晶構造を維持したままで前記組成の(Ti1−xAlx)(CyN1−y)層を得ることができるので、Alを高濃度で含有しているにもかかわらず、皮膜硬さの低下がほとんど起こらない。
また、前記(Ti1−xAlx)(CyN1−y)層において、C成分には層の硬さを向上させ、一方、N成分には層の高温強度を向上させる作用があるが、C成分の含有割合y(原子比)が0.005未満となると高硬度が得られなくなり、一方、y(原子比)が0.05を超えると、高温強度が低下してくることから、y(原子比)の値は、0.005以上0.05以下と定めた。
また、前記(Ti1−xAlx)(CyN1−y)層は、その平均層厚が1μm未満では、基体との密着性を十分確保することができず、一方、その平均層厚が20μmを越えると、高熱発生を伴う高速ミーリング切削で熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その合計平均層厚は1〜20μmと定めた。
Average composition and average layer thickness of the composite carbonitride layer of Ti and Al constituting the hard layer ((Ti 1-x Al x ) (C y N 1-y) layer):
The composite carbonitride layer of Ti and Al constituting the hard coating layer is represented by the composition formula: (Ti 1-x Al x ) (C y N 1-y ), and Al occupies the total amount of Ti and Al. When the content ratio x (atomic ratio) is less than 0.80, the high-temperature hardness is insufficient and wear resistance decreases, while when the x (atomic ratio) value exceeds 0.95 However, since the cubic structure cannot be maintained due to the relative decrease in the Ti content, the high-temperature strength is reduced, and chipping and defects are likely to occur. Therefore, the value of x (atomic ratio) is 0.80 or more. It is necessary to set it to 0.95 or less.
When the ((Ti 1-x Al x ) (C y N 1-y ) layer having the above composition is formed by vapor deposition by the PVD method, the crystal structure becomes a hexagonal crystal. Since it is formed by vapor deposition, a (Ti 1-x Al x ) (C y N 1-y ) layer having the above composition can be obtained while maintaining the cubic structure, so that Al is highly concentrated. Despite being contained in the film, the film hardness hardly decreases.
Further, in the (Ti 1-x Al x ) (C y N 1-y ) layer, the C component improves the hardness of the layer, while the N component has an effect of improving the high temperature strength of the layer. However, when the content ratio y (atomic ratio) of the C component is less than 0.005, high hardness cannot be obtained. On the other hand, when y (atomic ratio) exceeds 0.05, the high-temperature strength decreases. , Y (atomic ratio) was set to 0.005 or more and 0.05 or less.
The (Ti 1-x Al x ) (C y N 1-y ) layer has an average layer thickness of less than 1 μm, and cannot sufficiently secure the adhesion to the substrate. If the thickness exceeds 20 μm, it becomes easy to cause thermoplastic deformation by high-speed milling with high heat generation, which causes uneven wear. Therefore, the total average layer thickness is set to 1 to 20 μm.
本発明は、前記硬質被覆層の構成に加えて、この硬質被覆層内に下記の条件を満足する分断層を有するとき、硬質被覆層を構成する立方晶構造を有する複合炭窒化物の粗粒化を抑制することができるため、その結果、すぐれた耐摩耗性および耐チッピング性を発揮する。 In the present invention, in addition to the structure of the hard coating layer, when the hard coating layer has a dividing layer that satisfies the following conditions, the coarse particles of the composite carbonitride having a cubic structure constituting the hard coating layer As a result, it exhibits excellent wear resistance and chipping resistance.
TiとAlの複合炭窒化物層内の分断層の平均層厚:
前記分断層の平均層厚は、1〜10nmのとき、その効果が際立って発揮される。その理由は、分断層の平均層厚が1nm未満であると分断層が複合炭窒化物の粗粒化を抑制する効果が十分に発揮されないため、靭性および耐チッピング性を高めるという分断層の持つ作用が十分に発揮されない。一方、分断層の平均層厚が10nmを超えると立方晶結晶組織を完全に分断させてしまい、その結果、立方晶結晶組織が有する高硬度を維持できなくなる。したがって、分断層の平均層厚は、1〜10nmと定めた。
Average layer thickness of split faults in Ti and Al composite carbonitride layers:
When the average thickness of the dividing layer is 1 to 10 nm, the effect is remarkably exhibited. The reason for this is that if the average layer thickness of the dividing fault is less than 1 nm, the dividing fault does not sufficiently exert the effect of suppressing the coarsening of the composite carbonitride, so the dividing fault has an improved toughness and chipping resistance. The effect is not fully demonstrated. On the other hand, if the average layer thickness of the dividing layer exceeds 10 nm, the cubic crystal structure is completely divided, and as a result, the high hardness of the cubic crystal structure cannot be maintained. Accordingly, the average layer thickness of the dividing fault is set to 1 to 10 nm.
TiとAlの複合炭窒化物層内の分断層の平均組成:
前記分断層は、組成式:(Ti1−xAlx)(CyN1−y)で表した場合、TiとAlの合量に占めるAlの含有割合x(原子比)の値が0.50〜0.70とすることにより、素地の組織の格子定数と分断層の組織の格子定数との間に有意な差が出来、その結果、素地の組織の粗粒化を抑制することができる。一方、x(原子比)の値が0.70を超えると、素地の組織の格子定数と分断層の組織の格子定数との間に有意な差が出来ず、素地の組織の粗粒化を抑制するという分断層の作用が十分に発揮されない。またxが0.50よりも小さいと高温での耐酸化性を維持できない。
また、C成分には層の硬さを向上させ、一方、N成分には層の高温強度を向上させる作用があるが、C成分の含有割合y(原子比)が0.005未満となると高硬度が得られなくなり、一方、y(原子比)が0.05を超えると、高温強度が低下してくることから、y(原子比)の値は、0.005以上0.05以下と定めた。
Average composition of splitting in a composite carbonitride layer of Ti and Al:
When the dividing line is represented by a composition formula: (Ti 1-x Al x ) (C y N 1-y ), the value of the Al content ratio x (atomic ratio) in the total amount of Ti and Al is 0. .50 to 0.70 makes it possible to make a significant difference between the lattice constant of the base tissue and the lattice constant of the dividing fault, and as a result, suppress coarsening of the base tissue. it can. On the other hand, if the value of x (atomic ratio) exceeds 0.70, there is no significant difference between the lattice constant of the matrix structure and the lattice constant of the split layer structure, and coarsening of the matrix structure is not possible. The action of the fault to suppress is not fully demonstrated. If x is smaller than 0.50, oxidation resistance at high temperatures cannot be maintained.
The C component improves the hardness of the layer, while the N component has the effect of improving the high-temperature strength of the layer. However, when the C component content ratio y (atomic ratio) is less than 0.005, the C component is high. On the other hand, when y (atomic ratio) exceeds 0.05, the strength at high temperature decreases, so the value of y (atomic ratio) is set to 0.005 or more and 0.05 or less. It was.
TiとAlの複合炭窒化物層内の分断層の周期:
前記分断層は、層厚方向1μmあたり10〜50層存在するときに前述した靭性および耐チッピング性を高めるという分断層の持つ作用がより一層発揮される。その理由は、分断層が1μm当たり10層を下回ると靭性の向上効果が十分に発揮されず、一方、50層を超えると硬さが低下し、耐逃げ面摩耗性が低下するからである。
Period of split faults in Ti and Al composite carbonitride layers:
When the dividing line has 10 to 50 layers per 1 μm in the layer thickness direction, the above-described action of the dividing line to enhance toughness and chipping resistance is further exhibited. The reason is that if the dividing layer is less than 10 layers per 1 μm, the effect of improving the toughness is not sufficiently exhibited, while if it exceeds 50 layers, the hardness is lowered and the flank wear resistance is lowered.
TiとAlの複合炭窒化物層内の分断層中のCl濃度:
硬質被覆層を化学蒸着法で形成した場合には、反応ガス成分に起因するClが微量に層中に含まれる。しかしながら、平均塩素含有量が1原子%以下であれば、硬質被覆層の脆化は生じず、硬質被覆層の特性に悪影響を与えないばかりか、硬質被覆層と基体との界面から、硬質被覆層の表面側に向かうにしたがって、低濃度塩素含有層が10〜50層/μmの間隔で存在する膜構造を有する場合には、硬質被覆層は潤滑性を備えるばかりか、耐チッピング性も向上することを見出した。そこで、本発明では、分断層を形成するときの反応ガスであるAlCl3の含有割合を低減することにより、分断層中のClの含有割合を1原子%以下に制御することにより、硬質被覆層の潤滑性、耐チッピング性を向上させることに成功した。
本発明の硬質被覆層を構成するTiとAlの複合炭窒化物層の縦断面の概略模式図を図1に示す。
Cl concentration in the dividing fault in the composite carbonitride layer of Ti and Al:
When the hard coating layer is formed by the chemical vapor deposition method, a trace amount of Cl due to the reaction gas component is contained in the layer. However, if the average chlorine content is 1 atomic% or less, the hard coating layer does not become brittle and does not adversely affect the properties of the hard coating layer. In the case where the low-concentration chlorine-containing layer has a film structure existing at intervals of 10 to 50 layers / μm toward the surface side of the layer, the hard coating layer not only has lubricity but also improves chipping resistance. I found out. Therefore, in the present invention, the hard coating layer is controlled by reducing the content ratio of AlCl 3 which is a reaction gas when forming the dividing line, and controlling the Cl content ratio in the dividing line to 1 atomic% or less. Succeeded in improving the lubricity and chipping resistance.
FIG. 1 shows a schematic diagram of a longitudinal section of a composite carbonitride layer of Ti and Al constituting the hard coating layer of the present invention.
本発明は、炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体の表面に硬質被覆層を被覆した表面被覆切削工具において、(a)前記硬質被覆層は、化学蒸着法により成膜された平均層厚1〜20μmのTiとAlの複合炭窒化物層からなり、(b)前記複合炭窒化物層は、組成式:(Ti1−xAlx)(CyN1−y)で表した場合、TiとAlの合量に占めるAlの含有割合xおよびCとNの合量に占めるCの含有割合y(但し、x、yはいずれも原子比)が、それぞれ、0.80≦x≦0.95、0.005≦y≦0.05を満足するとともに、層内に層厚方向を分断する複数の薄い分断層を有し、(c)前記分断層は、平均層厚が1〜10nmであり、前記複合炭窒化物層の層厚方向1μmあたり10〜50層存在し、かつ、組成式:(Ti1−xAlx)(CyN1−y)で表した場合、TiとAlの合量に占めるAlの含有割合xおよびCとNの合量に占めるCの含有割合y(但し、x、yはいずれも原子比)が、それぞれ、0.50≦x≦0.70、0.005≦y≦0.05を満足するように構成したため、硬質被覆層を構成する立方晶構造を有する複合炭窒化物の粗粒化を分断層によって抑制することができる。その結果、すぐれた耐摩耗性および耐チッピング性を発揮し、長期に亘ってすぐれた切削性能を維持することが出来る。 The present invention relates to a surface-coated cutting tool in which a hard coating layer is coated on the surface of a tool base composed of any of tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, or cubic boron nitride-based ultrahigh-pressure sintered body. (A) The hard coating layer is composed of a composite carbonitride layer of Ti and Al having an average layer thickness of 1 to 20 μm formed by chemical vapor deposition, and (b) the composite carbonitride layer has a composition formula : (Ti 1-x Al x ) (C y N 1-y ), the content ratio x of Al in the total amount of Ti and Al and the content ratio y of C in the total amount of C and N ( However, x and y are both atomic ratios) satisfying 0.80 ≦ x ≦ 0.95 and 0.005 ≦ y ≦ 0.05, respectively, and a plurality of layers dividing the layer thickness direction in the layer (C) the split layer has an average layer thickness of 1 to 10 nm. Yes, when there are 10 to 50 layers per 1 μm in the thickness direction of the composite carbonitride layer and the composition formula is represented by (Ti 1-x Al x ) (C y N 1-y ), Ti and Al The content ratio x of Al in the total amount of C and the content ratio y of C in the total amount of C and N (where x and y are atomic ratios) are 0.50 ≦ x ≦ 0.70, respectively. Since it comprised so that 0.005 <= y <= 0.05, the coarsening of the composite carbonitride which has the cubic structure which comprises a hard coating layer can be suppressed by a dividing layer. As a result, excellent wear resistance and chipping resistance can be exhibited, and excellent cutting performance can be maintained over a long period of time.
つぎに、本発明の被覆工具を実施例により具体的に説明する。 Next, the coated tool of the present invention will be specifically described with reference to examples.
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、TaC粉末、NbC粉末、Cr3C2粉末およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG120408に規定するインサート形状をもったWC基超硬合金製の工具基体A〜Dをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, ZrC powder, TaC powder, NbC powder, Cr 3 C 2 powder and Co powder all having an average particle diameter of 1 to 3 μm are prepared. After blending into the composition shown, adding wax, mixing with ball mill in acetone for 24 hours, drying under reduced pressure, press-molding into a green compact of a predetermined shape at a pressure of 98 MPa, and this green compact was vacuumed at 5 Pa. Medium: Sintered in vacuum at a predetermined temperature within the range of 1370 to 1470 ° C. for 1 hour. After sintering, the cutting edge is subjected to honing of R: 0.07 mm. WC base cemented carbide tool bases A to D each having an insert shape were manufactured.
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG120408のインサート形状をもったTiCN基サーメット製の工具基体a〜dを形成した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after the sintering, the cutting edge portion was subjected to a honing process of R: 0.07 mm. Tool bases a to d made of TiCN-based cermet having an insert shape of standard / CNMG120408 were formed.
つぎに、これらの工具基体A〜Dおよび工具基体a〜dの表面に、通常の化学蒸着装置を用い、(a)硬質被覆層として、表4の成膜種別A〜Eの上段に示される成膜工程形成条件で、表5に示される目標層厚(μm)および目標組成のTiとAlの複合炭窒化物層を蒸着形成する。
(b)この時、TiとAlの複合炭窒化物層を成膜中に、表4の成膜種別A〜Eの下段に示されるに示されるパルス工程形成条件を所定周期で所定時間挟むことにより、表5に示される目標層厚、周期(層厚方向1μm当たりの層数)および目標組成の分断層を形成する。
前記(a)、(b)の工程により、表5に示される本発明被覆工具1〜10を作製した。
なお、本発明被覆工具1〜8については、表3に示される形成条件で、下部層および/または上部層を形成した。
Next, a normal chemical vapor deposition apparatus is used on the surfaces of the tool bases A to D and the tool bases a to d, and (a) a hard coating layer is shown in the upper part of the film formation types A to E in Table 4. Under the film forming process formation conditions, a composite carbonitride layer of Ti and Al having a target layer thickness (μm) and a target composition shown in Table 5 is formed by vapor deposition.
(B) At this time, during the formation of the composite carbonitride layer of Ti and Al, the pulse process formation conditions shown in the lower stages of the film formation types A to E in Table 4 are sandwiched for a predetermined time with a predetermined period. Thus, a dividing layer having the target layer thickness, period (number of layers per 1 μm in the layer thickness direction) and target composition shown in Table 5 is formed.
The coated tools 1 to 10 of the present invention shown in Table 5 were produced by the steps (a) and (b).
In addition, about this invention coated tools 1-8, the lower layer and / or the upper layer were formed on the formation conditions shown in Table 3.
前記本発明被覆工具1〜10の硬質被覆層について、走査型電子顕微鏡(倍率20000倍)を用いて縦断面観察したところ、図1に示した膜構成模式図に示されるようにTiAlCN層内に分断層が存在する膜構造が確認された。 About the hard coating layer of the said coating tools 1-10 of this invention, when a longitudinal cross-section was observed using the scanning electron microscope (magnification 20000 times), as shown in the film | membrane structural schematic diagram shown in FIG. 1, in a TiAlCN layer A membrane structure with a dividing fault was confirmed.
また、比較の目的で、工具基体A〜Dおよび工具基体a〜dの表面に、表4の成膜種別F〜Jに示される条件かつ表6に示される目標層厚(μm)および目標組成のTiとAlの複合炭窒化物層を本発明被覆工具1〜10と同様に蒸着形成した。この時には、分断層の形成を行わないか、あるいは、前述の本発明における分断層の条件から外れる分断層を形成することにより、表6の比較被覆工具1〜10を作製した。
なお、比較被覆工具1〜8については、表3に示される形成条件で、下部層および/または上部層を形成した。
Further, for comparison purposes, on the surfaces of the tool bases A to D and the tool bases a to d, the conditions shown in the film formation types F to J in Table 4 and the target layer thickness (μm) and target composition shown in Table 6 are used. The composite carbonitride layer of Ti and Al was formed by vapor deposition in the same manner as the coated tools 1 to 10 of the present invention. At this time, comparative coating tools 1 to 10 shown in Table 6 were produced by forming no dividing line or forming a dividing line that deviates from the dividing line condition in the present invention described above.
In addition, about the comparison coating tools 1-8, the lower layer and / or the upper layer were formed on the formation conditions shown in Table 3.
また、本発明被覆工具1〜10および比較被覆工具1〜10の硬質被覆層の層厚を、走査型電子顕微鏡(倍率5000倍)を用いて5か所測定し、その平均をとって平均層厚とした。その結果、いずれも表5および表6に示した目標層厚と実質的に同じ平均層厚を示した。 Further, the thicknesses of the hard coating layers of the inventive coated tools 1 to 10 and the comparative coated tools 1 to 10 were measured at five locations using a scanning electron microscope (magnification 5000 times), and the average was taken. Thickness. As a result, all showed the average layer thickness substantially the same as the target layer thickness shown in Table 5 and Table 6.
また、本発明被覆工具1〜10および比較被覆工具1〜10について、同じく走査型電子顕微鏡(倍率50000倍)を用いて、硬質被覆層に存在する各分断層の層間隔を5か所測定し、その平均値として各分断層の平均間隔を求め、層厚方向1μmに存在する分断層の数を求めた。その値を表5および表6に示した。
また、複合炭窒化物層および各分断層の平均層厚、平均Al含有割合x、平均C含有割合yおよび平均塩素含有量zについては、二次イオン質量分析(SIMS,Secondary−Ion−Mass−Spectroscopy)により求めた。イオンビームを試料表面側から70μm×70μmの範囲に照射し、スパッタリング作用によって放出された成分について深さ方向の濃度測定を行った。このようにして得られたTiとAlの複合炭窒化物層についての深さ方向とAl含有割合x、C含有割合yおよび塩素含有量zの関係より、Alの含有割合xおよびCとNの合量に占めるCの含有割合y(但し、x、yはいずれも原子比)が、それぞれ、0.50≦x≦0.70、0.005≦y<0.05を満足する測定点を分断層での測定結果とし、その分断層での測定が深さ方向について連続して得られる区間より各分断層の平均層厚、平均Al含有割合x、平均C含有割合yおよび平均塩素含有量zを求めた。さらに硬質被覆層の平均Al含有割合x、平均C含有割合yおよび平均塩素含有量zはTiとAlの複合炭窒化物層についての深さ方向のAl含有割合x、C含有割合yおよび塩素含有量zの濃度プロファイル全体の結果を平均することによって求めた。さらに、本発明被覆工具1〜10および比較被覆工具1〜10の硬質被覆層を構成するTiAlCN層の結晶構造について、X線回折装置を用い、JCPDS00−038−1420 TiNとJCPDS00−046−1200 AlNと回折角度を比較することによって調査した。表5および表6に、その結果を示す。
Moreover, about this invention coated tool 1-10 and comparative coated tool 1-10, using the same scanning electron microscope (50000 times magnification), the layer space | interval of each division | segmentation fault which exists in a hard coating layer is measured five places. As an average value, the average interval of each fault was obtained, and the number of faults existing in the layer thickness direction of 1 μm was obtained. The values are shown in Tables 5 and 6.
Moreover, about the average layer thickness, average Al content rate x, average C content rate y, and average chlorine content z of a composite carbonitride layer and each partial fault, secondary ion mass spectrometry (SIMS, Secondary-Ion-Mass- (Spectroscope). The ion beam was irradiated in the range of 70 μm × 70 μm from the sample surface side, and the concentration in the depth direction was measured for the components emitted by the sputtering action. From the relationship between the depth direction and the Al content ratio x, the C content ratio y, and the chlorine content z of the Ti and Al composite carbonitride layer thus obtained, the Al content ratio x and the C and N Measurement points where the content ratio y of C in the total amount (where x and y are atomic ratios) satisfy 0.50 ≦ x ≦ 0.70 and 0.005 ≦ y <0.05, respectively The measurement results at the split fault, and the average layer thickness, average Al content ratio x, average C content ratio y, and average chlorine content of each split fault from the section in which measurements at the split fault are continuously obtained in the depth direction z was determined. Further, the average Al content ratio x, the average C content ratio y and the average chlorine content z of the hard coating layer are the Al content ratio x, the C content ratio y and the chlorine content in the depth direction of the composite carbonitride layer of Ti and Al. It was determined by averaging the results across the concentration profile for the quantity z. Furthermore, regarding the crystal structure of the TiAlCN layer constituting the hard coating layer of the present coated tool 1-10 and comparative coated tool 1-10, using an X-ray diffractometer, JCPDS00-038-1420 TiN and JCPDS00-046-1200 AlN And was investigated by comparing the diffraction angle. Tables 5 and 6 show the results.
つぎに、前記本発明被覆工具1〜10および比較被覆工具1〜10について、表7に示す条件で切削加工試験を実施し、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。
表8に、この測定結果を示した。
Next, a cutting test was carried out under the conditions shown in Table 7 for the inventive coated tools 1 to 10 and the comparative coated tools 1 to 10, and the flank wear width of the cutting edge was measured in any cutting test.
Table 8 shows the measurement results.
表5および表8に示される結果から、本発明の被覆工具1〜10は、硬質被覆層が、化学蒸着法により成膜された平均層厚1〜20μmのTiとAlの複合炭窒化物層を少なくとも含み該複合炭窒化物層は、組成式:(Ti1−xAlx)(CyN1−y)で表した場合、TiとAlの合量に占めるAlの含有割合xおよびCとNの合量に占めるCの含有割合y(但し、x、yはいずれも原子比)が、それぞれ、0.80≦x≦0.95、0.005≦y≦0.05を満足するとともに、層内に層厚方向を分断する複数の薄い分断層を有し該分断層は、平均層厚が1〜10nmであり、複合炭窒化物層の層厚方向1μmあたり10〜50層存在し、かつ、組成式:(Ti1−xAlx)(CyN1−y)で表した場合、TiとAlの合量に占めるAlの含有割合xおよびCとNの合量に占めるCの含有割合y(但し、x、yはいずれも原子比)が、それぞれ、0.50≦x≦0.70、0.005≦y<0.05を満足していることにより、硬質被覆層を構成する立方晶構造を有する複合炭窒化物層の粗粒化を分断層によって抑制することができ、その結果、すぐれた耐摩耗性および耐チッピング性を発揮し、長期に亘ってすぐれた切削性能を維持することが出来ることが明らかである。 From the results shown in Table 5 and Table 8, the coated tools 1 to 10 of the present invention are a composite carbonitride layer of Ti and Al having an average layer thickness of 1 to 20 μm in which the hard coating layer is formed by chemical vapor deposition. The composite carbonitride layer containing at least, when represented by the composition formula: (Ti 1-x Al x ) (C y N 1-y ), the Al content ratio x and C in the total amount of Ti and Al The proportion of C in the total amount of N and N (where x and y are atomic ratios) satisfies 0.80 ≦ x ≦ 0.95 and 0.005 ≦ y ≦ 0.05, respectively. In addition, the layer has a plurality of thin dividing lines that divide the layer thickness direction in the layer, the dividing layer has an average layer thickness of 1 to 10 nm, and 10 to 50 layers per 1 μm in the layer thickness direction of the composite carbonitride layer. and, and, the composition formula: (Ti 1-x Al x ) if (C y N 1-y) expressed in, Ti and Al The Al content ratio x in the total amount and the C content ratio y (where x and y are atomic ratios) in the total amount of C and N are 0.50 ≦ x ≦ 0.70, 0, respectively. By satisfying .005 ≦ y <0.05, coarsening of the composite carbonitride layer having a cubic structure constituting the hard coating layer can be suppressed by dividing lines, and as a result, excellent It is apparent that excellent cutting performance can be maintained over a long period of time with excellent wear resistance and chipping resistance.
これに対して、硬質被覆層を構成する立方晶構造を有する複合炭窒化物層が分断層を有していないか、あるいは、有していても所定の条件を満たしていない比較被覆工具1〜10については、高熱発生を伴い、しかも、切れ刃に断続的・衝撃的高負荷が作用する高速断続切削加工に用いた場合、チッピング、欠損等の発生により短時間で寿命にいたることが明らかである。 On the other hand, the composite carbonitride layer having a cubic structure constituting the hard coating layer does not have a dividing line, or even if it has a comparative coated tool 1 to 1 that does not satisfy a predetermined condition As for No. 10, when it is used for high-speed intermittent cutting with high heat generation and intermittent / impact high load acting on the cutting edge, it is clear that the life is shortened due to occurrence of chipping, chipping, etc. is there.
原料粉末として、いずれも0.5〜4μmの範囲内の平均粒径を有するcBN粉末、TiN粉末、TiCN粉末、TiC粉末、Al粉末、Al2O3粉末を用意し、これら原料粉末を表9に示される配合組成に配合し、ボールミルで80時間湿式混合し、乾燥した後、120MPaの圧力で直径:50mm×厚さ:1.5mmの寸法をもった圧粉体にプレス成形し、ついでこの圧粉体を、圧力:1Paの真空雰囲気中、900〜1300℃の範囲内の所定温度に60分間保持の条件で焼結して切刃片用予備焼結体とし、この予備焼結体を、別途用意した、Co:8質量%、WC:残りの組成、並びに直径:50mm×厚さ:2mmの寸法をもったWC基超硬合金製支持片と重ね合わせた状態で、通常の超高圧焼結装置に装入し、通常の条件である圧力:4GPa、温度:1200〜1400℃の範囲内の所定温度に保持時間:0.8時間の条件で超高圧焼結し、焼結後上下面をダイヤモンド砥石を用いて研磨し、ワイヤー放電加工装置にて所定の寸法に分割し、さらにCo:5質量%、TaC:5質量%、WC:残りの組成およびJIS規格CNGA120412の形状(厚さ:4.76mm×内接円直径:12.7mmの80°菱形)をもったWC基超硬合金製インサート本体のろう付け部(コーナー部)に、質量%で、Zr:37.5%、Cu:25%、Ti:残りからなる組成を有するTi−Zr−Cu合金のろう材を用いてろう付けし、所定寸法に外周加工した後、切刃部に幅:0.13mm、角度:25°のホーニング加工を施し、さらに仕上げ研摩を施すことによりISO規格CNGA120412のインサート形状をもった工具基体イ〜ニをそれぞれ製造した。 As the raw material powder, cBN powder, TiN powder, TiCN powder, TiC powder, Al powder, and Al 2 O 3 powder each having an average particle diameter in the range of 0.5 to 4 μm were prepared. The mixture is blended in the composition shown in FIG. 1, wet mixed with a ball mill for 80 hours, dried, and then pressed into a green compact having a diameter of 50 mm × thickness: 1.5 mm under a pressure of 120 MPa. The green compact is sintered in a vacuum atmosphere at a pressure of 1 Pa at a predetermined temperature within a range of 900 to 1300 ° C. for 60 minutes to obtain a presintered body for a cutting edge piece. In addition, Co: 8% by mass, WC: remaining composition, and diameter: 50 mm × thickness: 2 mm, superposed on a WC-based cemented carbide support piece with a normal super-high pressure Insert into the sintering machine and under normal conditions Pressure: 4 GPa, temperature: 1200 ° C. to 1400 ° C. at a predetermined temperature holding time: 0.8 hour sintering, and after sintering, the upper and lower surfaces are polished using a diamond grindstone, and wire discharge It is divided into predetermined dimensions by a processing apparatus, and further Co: 5 mass%, TaC: 5 mass%, WC: remaining composition and shape of JIS standard CNGA12041 (thickness: 4.76 mm × inscribed circle diameter: 12. The brazing part (corner part) of the WC-based cemented carbide insert body having a 7 mm 80 ° rhombus) has a composition consisting of Zr: 37.5%, Cu: 25%, Ti: the rest in mass%. After brazing using a brazing material of Ti-Zr-Cu alloy and having a predetermined dimension, the cutting edge is subjected to honing with a width of 0.13 mm and an angle of 25 °, followed by finishing polishing. ISO standard The tool substrate (a) to (k) two having the insert shape of NGA120412 were produced, respectively.
つぎに、これらの工具基体イ〜ニの表面に、通常の化学蒸着装置を用い、実施例1と同様の方法により表3および表4に示される条件で、少なくとも(Ti1−xAlx)(CyN1−y)層を含む硬質被覆層を表10に示される目標層厚および目標組成で蒸着形成することにより、本発明被覆工具11〜16を製造した。
なお、本発明被覆工具13〜16については、表3に示される形成条件で、下部層および/または上部層を形成した。
Next, at least (Ti 1-x Al x ) is used on the surfaces of these tool substrates a to d under the conditions shown in Tables 3 and 4 by the same method as in Example 1 using a normal chemical vapor deposition apparatus. The coated tools 11 to 16 of the present invention were manufactured by vapor-depositing a hard coating layer including the (C y N 1-y ) layer with a target layer thickness and a target composition shown in Table 10.
In addition, about this invention coated tools 13-16, the lower layer and / or the upper layer were formed on the formation conditions shown in Table 3.
また、比較の目的で、同じく工具基体イ〜ニの表面に、通常の化学蒸着装置を用い、表3および表4に示される条件で、少なくとも(Ti1−xAlx)(CyN1−y)層を含む硬質被覆層を表11に示される目標層厚および目標組成で蒸着形成することにより、比較被覆工具11〜16を製造した。
なお、本発明被覆工具13〜16と同様に、比較被覆工具13〜16については、表3に示される形成条件で、下部層および/または上部層を形成した。
Further, for the purpose of comparison, at least (Ti 1-x Al x ) (C y N 1 ) is used on the surfaces of the tool bases a to d under the conditions shown in Tables 3 and 4 using a normal chemical vapor deposition apparatus. the hard coating layer containing -y) layer by vapor deposited at a target layer thickness, and the target composition shown in Table 11, were prepared to compare coated tools 11-16.
In addition, similarly to this invention coating | coated tool 13-16, about the comparison coating tools 13-16, the lower layer and / or the upper layer were formed on the formation conditions shown in Table 3.
また、本発明被覆工具11〜16、比較被覆工具11〜16の各構成層の断面を、走査電子顕微鏡(倍率5000倍)を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めたところ、いずれも表10および表11に示される目標層厚と実質的に同じ平均層厚を示した。 Moreover, the cross section of each component layer of this invention coated tool 11-16 and comparative coated tool 11-16 is measured using a scanning electron microscope (5000 times magnification), and the layer thickness of five points in an observation visual field is measured. When the average layer thickness was obtained by averaging, all showed the same average layer thickness as the target layer thickness shown in Table 10 and Table 11.
また、前記本発明被覆工具11〜16、比較被覆工具11〜16の複合炭窒化物層および各分断層について、実施例1に示される方法と同様の方法を用いて、平均層厚、平均Al含有割合x、平均C含有割合yおよび平均塩素含有量zならびに分断層の平均間隔および平均層厚を求めた。その結果を、表10および表11に示す。 Moreover, about the composite carbonitride layer of each of the present invention coated tools 11 to 16 and the comparative coated tools 11 to 16 and each split layer, the same method as the method shown in Example 1 was used, and the average layer thickness and the average Al The content ratio x, the average C content ratio y, the average chlorine content z, the average interval of the dividing faults, and the average layer thickness were determined. The results are shown in Table 10 and Table 11.
つぎに、各種の被覆工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆工具11〜16、比較被覆工具11〜16について、以下に示す、浸炭焼入れ合金鋼の乾式高速断続切削加工試験を実施し、切刃の逃げ面摩耗幅を測定した。 Next, carburization shown below about this invention coated tools 11-16 and comparative coated tools 11-16 in the state where all the various coated tools were screwed to the tip of the tool steel tool with a fixing jig. A dry high-speed intermittent cutting test was performed on the quenched alloy steel, and the flank wear width of the cutting edge was measured.
工具基体:立方晶窒化ホウ素基超高圧焼結体、
切削試験:浸炭焼入れ合金鋼の乾式高速断続切削加工、
被削材:JIS・SCr420(硬さ:HRC60)の長さ方向等間隔4本縦溝入り丸棒、
切削速度:210 m/min、
切り込み:0.10mm、
送り:0.10mm/rev、
切削時間:4分、
表12に、前記切削試験の結果を示す。
Tool substrate: Cubic boron nitride-based ultra-high pressure sintered body,
Cutting test: Dry high-speed intermittent cutting of carburized and quenched alloy steel,
Work material: JIS · SCr420 (Hardness: HRC60) lengthwise equidistant four round grooved round bars,
Cutting speed: 210 m / min,
Cutting depth: 0.10 mm,
Feed: 0.10 mm / rev,
Cutting time: 4 minutes
Table 12 shows the results of the cutting test.
表12に示される結果から、本発明の被覆工具11〜16は、硬質被覆層が、化学蒸着法により成膜された平均層厚1〜20μmのTiとAlの複合炭窒化物層からなり該複合炭窒化物層は、組成式:(Ti1−xAlx)(CyN1−y)で表した場合、TiとAlの合量に占めるAlの含有割合xおよびCとNの合量に占めるCの含有割合y(但し、x、yはいずれも原子比)が、それぞれ、0.80≦x≦0.95、0.005≦y≦0.05を満足するとともに、層内に層厚方向を分断する複数の薄い分断層を有し該分断層は、平均層厚が1〜10nmであり、複合炭窒化物層の層厚方向1μmあたり10〜50層存在し、かつ、組成式:(Ti1−xAlx)(CyN1−y)で表した場合、TiとAlの合量に占めるAlの含有割合xおよびCとNの合量に占めるCの含有割合y(但し、x、yはいずれも原子比)が、それぞれ、0.50≦x≦0.70、0.005≦y<0.05を満足していることにより、硬質被覆層を構成する立方晶構造を有する複合炭窒化物の粗粒化を分断層によって抑制することができ、その結果、すぐれた耐摩耗性および耐チッピング性を発揮し、長期に亘ってすぐれた切削性能を維持することが出来る
ことが明らかである。
From the results shown in Table 12, the coated tools 11 to 16 of the present invention have a hard coating layer composed of a composite carbonitride layer of Ti and Al having an average layer thickness of 1 to 20 μm formed by chemical vapor deposition. When the composite carbonitride layer is expressed by the composition formula: (Ti 1-x Al x ) (C y N 1-y ), the Al content ratio x and the total content of C and N in the total amount of Ti and Al The content ratio y of C in the amount (where x and y are atomic ratios) satisfy 0.80 ≦ x ≦ 0.95 and 0.005 ≦ y ≦ 0.05, respectively, And having a plurality of thin dividing lines that divide the layer thickness direction, the dividing layer has an average layer thickness of 1 to 10 nm, 10 to 50 layers per 1 μm in the layer thickness direction of the composite carbonitride layer, and formula: (Ti 1-x Al x ) when expressed (C y N 1-y), the occupied total amount of Ti and Al The content ratio x of l and the content ratio y of C in the total amount of C and N (where x and y are atomic ratios) are 0.50 ≦ x ≦ 0.70 and 0.005 ≦ y, respectively. By satisfying <0.05, coarsening of the composite carbonitride having a cubic structure constituting the hard coating layer can be suppressed by a dividing layer, and as a result, excellent wear resistance and It is clear that chipping resistance can be exhibited and excellent cutting performance can be maintained over a long period of time.
これに対して、硬質被覆層を構成するTiとAlの複合炭窒化物層が分断層を有していないか、あるいは、有していても所定の条件を満たしていない比較被覆工具11〜16については、高熱発生を伴い、しかも、切れ刃に断続的・衝撃的高負荷が作用する高速断続切削加工に用いた場合、チッピング、欠損等の発生により短時間で寿命にいたることが明らかである。 On the other hand, the comparative coating tools 11 to 16 in which the composite carbonitride layer of Ti and Al constituting the hard coating layer does not have a dividing line or does not satisfy the predetermined condition even if it has it. With regard to, it is clear that when it is used for high-speed intermittent cutting with high heat generation and intermittent / impact high loads on the cutting edge, it will reach the end of its life in a short time due to the occurrence of chipping, chipping, etc. .
前述のように、本発明の被覆工具は、例えば、鋼や鋳鉄等の高熱発生を伴い、かつ、切れ刃に断続的・衝撃的高負荷が作用する高速断続切削加工において、すぐれた耐チッピング性、耐欠損性を発揮し、使用寿命の延命化を可能とするものであるが、高速断続切削加工条件ばかりでなく、高速切削加工条件、高切込み、高送りの高速重切削加工条件等で使用することも勿論可能である。 As described above, the coated tool of the present invention has excellent chipping resistance in high-speed intermittent cutting with high heat generation such as steel and cast iron and intermittent and impact high load acting on the cutting edge. Demonstrate fracture resistance and extend the service life, but not only for high-speed interrupted cutting conditions, but also for high-speed cutting conditions, high cutting depth, high-feed, high-speed heavy cutting conditions, etc. Of course, it is also possible.
Claims (5)
(a)前記硬質被覆層は、化学蒸着法により成膜された平均層厚1〜20μmのTiとAlの複合炭窒化物層を少なくとも含み、
(b)前記複合炭窒化物層は、組成式:(Ti1−xAlx)(CyN1−y)で表した場合、TiとAlの合量に占めるAlの含有割合xおよびCとNの合量に占めるCの含有割合y(但し、x、yはいずれも原子比)が、それぞれ、0.80≦x≦0.95、0.005≦y≦0.05を満足するとともに、層内に層厚方向を分断する複数の薄い分断層を有し、
(c)前記分断層は、平均層厚が1〜10nmであり、前記複合炭窒化物層の層厚方向1μmあたり10〜50層存在し、かつ、組成式:(Ti1−xAlx)(CyN1−y)で表した場合、TiとAlの合量に占めるAlの含有割合xおよびCとNの合量に占めるCの含有割合y(但し、x、yはいずれも原子比)が、それぞれ、0.50≦x≦0.70、0.005≦y<0.05を満足する、
ことを特徴とする表面被覆切削工具。 In a surface-coated cutting tool in which a hard coating layer is coated on the surface of a tool base composed of tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, or cubic boron nitride-based ultrahigh-pressure sintered body,
(A) The hard coating layer includes at least a composite carbonitride layer of Ti and Al having an average layer thickness of 1 to 20 μm formed by a chemical vapor deposition method,
(B) When the composite carbonitride layer is expressed by a composition formula: (Ti 1-x Al x ) (C y N 1-y ), the Al content ratio x and C in the total amount of Ti and Al The proportion of C in the total amount of N and N (where x and y are atomic ratios) satisfies 0.80 ≦ x ≦ 0.95 and 0.005 ≦ y ≦ 0.05, respectively. And having a plurality of thin dividing faults dividing the layer thickness direction in the layer,
(C) The dividing layer has an average layer thickness of 1 to 10 nm, 10 to 50 layers per 1 μm in the layer thickness direction of the composite carbonitride layer, and a composition formula: (Ti 1-x Al x ) When expressed by (C y N 1-y ), the Al content ratio x in the total amount of Ti and Al and the C content ratio y in the total amount of C and N (where x and y are atoms) Ratio) satisfies 0.50 ≦ x ≦ 0.70 and 0.005 ≦ y <0.05, respectively.
A surface-coated cutting tool characterized by that.
The surface-coated cutting tool according to claim 1 or 2, wherein the composite carbonitride layer is formed by chemical vapor deposition containing at least trimethylaluminum as a reaction gas component.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012286381A JP6044336B2 (en) | 2012-12-27 | 2012-12-27 | Surface coated cutting tool with excellent chipping resistance due to hard coating layer |
CN201310730911.5A CN103894636B (en) | 2012-12-27 | 2013-12-26 | Hard coating layer plays the excellent resistance to surface-coated cutting tool for collapsing knife |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012286381A JP6044336B2 (en) | 2012-12-27 | 2012-12-27 | Surface coated cutting tool with excellent chipping resistance due to hard coating layer |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014128837A true JP2014128837A (en) | 2014-07-10 |
JP6044336B2 JP6044336B2 (en) | 2016-12-14 |
Family
ID=50986384
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012286381A Active JP6044336B2 (en) | 2012-12-27 | 2012-12-27 | Surface coated cutting tool with excellent chipping resistance due to hard coating layer |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6044336B2 (en) |
CN (1) | CN103894636B (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3000913A1 (en) * | 2014-09-26 | 2016-03-30 | Walter Ag | Coated cutting tool insert with MT-CVD TiCN on TiAI(C,N) |
JP2016049573A (en) * | 2014-08-28 | 2016-04-11 | 三菱マテリアル株式会社 | Surface-coated cutting tool allowing hard coating layer to exhibit superior chipping resistance |
WO2016148056A1 (en) * | 2015-03-13 | 2016-09-22 | 三菱マテリアル株式会社 | Surface-coated cutting tool with rigid coating layers exhibiting excellent chipping resistance |
JP2016168669A (en) * | 2015-03-13 | 2016-09-23 | 三菱マテリアル株式会社 | Surface coated cutting tool with hard-coated layer exhibiting superior chipping resistance |
JP2017056497A (en) * | 2015-09-14 | 2017-03-23 | 三菱マテリアル株式会社 | Surface coat cutting tool allowing hard coat layer to exhibit superior chipping resistance |
JP2017508632A (en) * | 2014-03-11 | 2017-03-30 | バルター アクチェンゲゼルシャフト | TiAlCN layer with layered structure |
WO2017167980A1 (en) | 2016-03-31 | 2017-10-05 | Walter Ag | Coated cutting tool with h-aln and ti1-xalxcynz layers |
JP2018504515A (en) * | 2015-01-15 | 2018-02-15 | ベーレリト ゲーエムベーハー ウント コー. カーゲー. | Method for coating an object and the coating produced thereby |
WO2019065682A1 (en) * | 2017-09-29 | 2019-04-04 | 三菱マテリアル株式会社 | Surface-coated cutting tool in which hard coating layer exhibits exceptional chipping resistance |
JP2019063982A (en) * | 2017-09-29 | 2019-04-25 | 三菱マテリアル株式会社 | Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5924507B2 (en) * | 2014-09-25 | 2016-05-25 | 三菱マテリアル株式会社 | Surface coated cutting tool with excellent chipping resistance due to hard coating layer |
JP6376466B2 (en) * | 2014-11-13 | 2018-08-22 | 三菱マテリアル株式会社 | Surface coated cutting tool |
US20210016361A1 (en) * | 2018-03-27 | 2021-01-21 | Mitsubishi Materials Corporation | Surface-coated cutting tool |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0797679A (en) * | 1993-09-30 | 1995-04-11 | Sumitomo Electric Ind Ltd | Ultra-thin film laminate |
JP2000017423A (en) * | 1998-07-06 | 2000-01-18 | Osg Corp | Tool coated with high toughness hard laminated coating |
JP2011516722A (en) * | 2008-03-12 | 2011-05-26 | ケンナメタル インコーポレイテッド | Objects covered with hard materials |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008013966A1 (en) * | 2008-03-12 | 2009-09-17 | Kennametal Inc. | Hard material coated body |
JP5594575B2 (en) * | 2010-04-20 | 2014-09-24 | 三菱マテリアル株式会社 | Surface coated cutting tool with excellent wear resistance due to hard coating layer |
JP5483110B2 (en) * | 2010-09-30 | 2014-05-07 | 三菱マテリアル株式会社 | Surface coated cutting tool with excellent chipping resistance due to hard coating layer |
CN102463358B (en) * | 2010-11-12 | 2016-01-06 | 三菱综合材料株式会社 | Hard coating layer plays the excellent resistance to surface-coated cutting tool collapsing cutter |
-
2012
- 2012-12-27 JP JP2012286381A patent/JP6044336B2/en active Active
-
2013
- 2013-12-26 CN CN201310730911.5A patent/CN103894636B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0797679A (en) * | 1993-09-30 | 1995-04-11 | Sumitomo Electric Ind Ltd | Ultra-thin film laminate |
JP2000017423A (en) * | 1998-07-06 | 2000-01-18 | Osg Corp | Tool coated with high toughness hard laminated coating |
JP2011516722A (en) * | 2008-03-12 | 2011-05-26 | ケンナメタル インコーポレイテッド | Objects covered with hard materials |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017508632A (en) * | 2014-03-11 | 2017-03-30 | バルター アクチェンゲゼルシャフト | TiAlCN layer with layered structure |
JP2016049573A (en) * | 2014-08-28 | 2016-04-11 | 三菱マテリアル株式会社 | Surface-coated cutting tool allowing hard coating layer to exhibit superior chipping resistance |
WO2016045937A1 (en) * | 2014-09-26 | 2016-03-31 | Walter Ag | COATED CUTTING TOOL INSERT WITH MT-CVD TiCN ON TiAl(C,N) |
EP3000913A1 (en) * | 2014-09-26 | 2016-03-30 | Walter Ag | Coated cutting tool insert with MT-CVD TiCN on TiAI(C,N) |
US10407777B2 (en) | 2014-09-26 | 2019-09-10 | Walter Ag | Coated cutting tool insert with MT-CVD TiCN on TiAI(C,N) |
JP2018504515A (en) * | 2015-01-15 | 2018-02-15 | ベーレリト ゲーエムベーハー ウント コー. カーゲー. | Method for coating an object and the coating produced thereby |
WO2016148056A1 (en) * | 2015-03-13 | 2016-09-22 | 三菱マテリアル株式会社 | Surface-coated cutting tool with rigid coating layers exhibiting excellent chipping resistance |
JP2016168669A (en) * | 2015-03-13 | 2016-09-23 | 三菱マテリアル株式会社 | Surface coated cutting tool with hard-coated layer exhibiting superior chipping resistance |
US10456841B2 (en) | 2015-03-13 | 2019-10-29 | Mitsubishi Materials Corporation | Surface-coated cutting tool in which hard coating layers exhibits excellent chipping resistance |
JP2017056497A (en) * | 2015-09-14 | 2017-03-23 | 三菱マテリアル株式会社 | Surface coat cutting tool allowing hard coat layer to exhibit superior chipping resistance |
WO2017167980A1 (en) | 2016-03-31 | 2017-10-05 | Walter Ag | Coated cutting tool with h-aln and ti1-xalxcynz layers |
WO2019065682A1 (en) * | 2017-09-29 | 2019-04-04 | 三菱マテリアル株式会社 | Surface-coated cutting tool in which hard coating layer exhibits exceptional chipping resistance |
JP2019063982A (en) * | 2017-09-29 | 2019-04-25 | 三菱マテリアル株式会社 | Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance |
JP7063206B2 (en) | 2017-09-29 | 2022-05-17 | 三菱マテリアル株式会社 | Surface coating cutting tool with excellent chipping resistance due to the hard coating layer |
Also Published As
Publication number | Publication date |
---|---|
CN103894636B (en) | 2017-09-01 |
CN103894636A (en) | 2014-07-02 |
JP6044336B2 (en) | 2016-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6044336B2 (en) | Surface coated cutting tool with excellent chipping resistance due to hard coating layer | |
JP6268530B2 (en) | Surface coated cutting tool with excellent chipping resistance due to hard coating layer | |
JP6478100B2 (en) | Surface coated cutting tool with excellent chipping resistance due to hard coating layer | |
JP6024981B2 (en) | A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting | |
JP6620482B2 (en) | Surface coated cutting tool with excellent chipping resistance | |
JP6284034B2 (en) | Surface coated cutting tool with excellent chipping resistance due to hard coating layer | |
JP6417959B2 (en) | Surface coated cutting tool with excellent chipping resistance due to hard coating layer | |
JP6590255B2 (en) | Surface coated cutting tool with excellent chipping resistance due to hard coating layer | |
JP6296298B2 (en) | Surface coated cutting tool with excellent chipping resistance due to hard coating layer | |
JP5935479B2 (en) | Surface-coated cutting tool with excellent chipping resistance with a hard coating layer in high-speed milling and high-speed intermittent cutting | |
JP2016030319A (en) | Surface coated cutting tool having hard coating layer exhibiting superior chipping resistance | |
WO2016052479A1 (en) | Surface-coated cutting tool having excellent chip resistance | |
WO2016148056A1 (en) | Surface-coated cutting tool with rigid coating layers exhibiting excellent chipping resistance | |
JP6709526B2 (en) | Surface coated cutting tool | |
JP6617917B2 (en) | Surface coated cutting tool | |
JP6709536B2 (en) | Surface coated cutting tool with excellent hard coating layer and chipping resistance | |
JP6650108B2 (en) | Surface coated cutting tool with excellent chipping and wear resistance | |
JP6171800B2 (en) | Surface coated cutting tool with excellent chipping resistance due to hard coating layer | |
JP2009006427A (en) | Surface coated cutting tool | |
WO2016190332A1 (en) | Surface-coated cutting tool with rigid coating layer exhibiting excellent chipping resistance | |
JP6270131B2 (en) | Surface coated cutting tool with excellent chipping resistance due to hard coating layer | |
JP6651130B2 (en) | Surface coated cutting tool with excellent chipping and wear resistance | |
JP2018149668A (en) | Surface coated cutting tool with hard coating layer exhibiting superior chipping resistance and abrasion resistance | |
JP6213066B2 (en) | A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting | |
JP2022030401A (en) | Surface-coated cutting tool |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150930 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160728 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160729 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160923 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20161018 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20161031 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6044336 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |