JP2016049573A - Surface-coated cutting tool allowing hard coating layer to exhibit superior chipping resistance - Google Patents

Surface-coated cutting tool allowing hard coating layer to exhibit superior chipping resistance Download PDF

Info

Publication number
JP2016049573A
JP2016049573A JP2014174286A JP2014174286A JP2016049573A JP 2016049573 A JP2016049573 A JP 2016049573A JP 2014174286 A JP2014174286 A JP 2014174286A JP 2014174286 A JP2014174286 A JP 2014174286A JP 2016049573 A JP2016049573 A JP 2016049573A
Authority
JP
Japan
Prior art keywords
layer
crystal grains
average
composite
cubic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014174286A
Other languages
Japanese (ja)
Other versions
JP6296298B2 (en
Inventor
翔 龍岡
Sho Tatsuoka
翔 龍岡
佐藤 賢一
Kenichi Sato
佐藤  賢一
健志 山口
Kenji Yamaguchi
健志 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2014174286A priority Critical patent/JP6296298B2/en
Publication of JP2016049573A publication Critical patent/JP2016049573A/en
Application granted granted Critical
Publication of JP6296298B2 publication Critical patent/JP6296298B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a surface-coated cutting tool which exhibits superior chipping resistance and wear resistance according to high-speed intermittent cutting processing.SOLUTION: A hard coating layer contains at least a composite nitride or composite carbonitride layer of Ti and Al, when expressing the layer as (TiAl)(CN), a content proportion of Al Xand a content proportion of C Y(either of x, y is atomic ratio) satisfy 0.60≤X≤0.95, 0≤Y≤0.005, the layer contains chlorine of average content 0.1 to 0.5 atom %, the layer has a columnar structure made of crystal grains having a cubic crystal structure of which an average particle width W is 0.1 to 2 μm and an average aspect ratio A is 2 to 10, on a grain boundary part of the columnar structure, fine particle crystal grains having a hexagonal structure of an average particle size R of 0.01 to 0.3 μm exist, and regarding the peak intensity ratio of chlorine with respect to Al, the ratio Ih/Ic of peak intensity ratio Ih of the fine particle crystal grain having the hexagonal structure to peak intensity ratio Ic of the crystal grain having the cubic crystal structure is larger than 5.SELECTED DRAWING: Figure 1

Description

本発明は、高熱発生を伴うとともに、切刃に対して衝撃的な負荷が作用する合金鋼、鋳鉄等の高速断続切削加工等で、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   The present invention is a surface-coated cutting that exhibits high chipping resistance with a hard coating layer in high-speed interrupted cutting of alloy steel, cast iron, etc., which is accompanied by high heat generation and exerts an impact load on the cutting edge. The present invention relates to a tool (hereinafter referred to as a coated tool).

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金、炭窒化チタン(以下、TiCNで示す)基サーメットあるいは立方晶窒化ホウ素(以下、cBNで示す)基超高圧焼結体で構成された基体(以下、これらを総称して基体という)の表面に、硬質被覆層として、Ti−Al系の複合窒化物層を物理蒸着法により被覆形成した被覆工具が知られている。このような被覆工具は、すぐれた耐摩耗性を発揮することが知られており、マシニングセンタや複合加工機など、さまざまな用途への利用が進んでいる。
しかしながら、従来のTi−Al系の複合窒化物層を被覆形成した被覆工具は、比較的耐摩耗性にすぐれるものの、高速断続切削条件で用いた場合にチッピング等の異常損耗を発生しやすいことから、硬質被覆層の改善についての種々の提案がなされている。
Conventionally, generally composed of tungsten carbide (hereinafter referred to as WC) based cemented carbide, titanium carbonitride (hereinafter referred to as TiCN) based cermet or cubic boron nitride (hereinafter referred to as cBN) based ultra high pressure sintered body 2. Description of the Related Art A coated tool is known in which a Ti—Al-based composite nitride layer is formed as a hard coating layer on a surface of a substrate (hereinafter collectively referred to as a substrate) by physical vapor deposition. Such a coated tool is known to exhibit excellent wear resistance, and is being used for various purposes such as a machining center and a multi-task machine.
However, the conventional coated tool formed by coating a Ti-Al based composite nitride layer has relatively high wear resistance, but it tends to cause abnormal wear such as chipping when used under high-speed interrupted cutting conditions. Therefore, various proposals for improving the hard coating layer have been made.

例えば、特許文献1には、TiCl、AlCl、NHの混合反応ガス中で、650〜900℃の温度範囲において化学蒸着を行うことにより、Alの含有割合Xの値が0.65〜0.95である(Ti1−XAl)N層を成膜できることが記載されているが、この文献では、この(Ti1−XAl)N層の上にさらにAl層を被覆し、これによって断熱効果を高めることを目的とするものであって、Xの値を0.65〜0.95まで高めた(Ti1−XAl)N層の形成によって、切削性能へ如何なる影響があるかという点については解明されていない。 For example, Patent Document 1 discloses that the value of the Al content ratio X is 0.65 by performing chemical vapor deposition in a temperature range of 650 to 900 ° C. in a mixed reaction gas of TiCl 4 , AlCl 3 , and NH 3. Although it is described that a (Ti 1-X Al X ) N layer having a thickness of 0.95 can be formed, this document further describes an Al 2 O 3 layer on the (Ti 1-X Al X ) N layer. In order to increase the heat insulation effect, the cutting performance is improved by forming a (Ti 1-X Al X ) N layer in which the value of X is increased from 0.65 to 0.95. It has not been elucidated what kind of influence it has.

また、特許文献2には、上部層がTi1−xAlN、Ti1−xAlC、および/またはTi1−xAlCNで形成されており、0.65≦x≦0.9、好ましくは0.7≦x≦0.9であり該上部層は100〜1100MPaの間、好ましくは400〜800MPaの間の圧縮応力を有し、前記上部層の下には、TiCN層またはAl層が設けられた硬質被覆層が化学蒸着法で形成された被覆工具が、すぐれた耐熱性およびサイクル疲労強度を有することが開示されている。 In Patent Document 2, the upper layer is formed of Ti 1-x Al x N, Ti 1-x Al x C, and / or Ti 1-x Al x CN, and 0.65 ≦ x ≦ 0. 0.9, preferably 0.7 ≦ x ≦ 0.9 and the upper layer has a compressive stress of between 100 and 1100 MPa, preferably between 400 and 800 MPa, and underneath the upper layer is a TiCN layer Alternatively, it is disclosed that a coated tool in which a hard coating layer provided with an Al 2 O 3 layer is formed by a chemical vapor deposition method has excellent heat resistance and cycle fatigue strength.

さらに、特許文献3には、工具基体と、その基体上に形成された硬質被覆層とを備える表面被覆切削工具であって、硬質被覆層は、AlまたはCrのいずれか一方または両方の元素と、周期律表4a,5a,6a族元素およびSiからなる群から選ばれる少なくとも1種の元素と、炭素、窒素、酸素およびホウ素からなる群から選ばれる少なくとも1種の元素とにより構成される化合物と、塩素とを含むことにより、硬質被覆層の耐摩耗性と耐酸化性とを飛躍的に向上することが開示されている。   Further, Patent Document 3 discloses a surface-coated cutting tool including a tool base and a hard coating layer formed on the base, and the hard coating layer includes one or both of Al and Cr elements. A compound composed of at least one element selected from the group consisting of Group 4a, 5a, 6a group elements and Si, and at least one element selected from the group consisting of carbon, nitrogen, oxygen and boron And chlorine are disclosed to dramatically improve the wear resistance and oxidation resistance of the hard coating layer.

特表2011−516722号公報Special table 2011-516722 gazette 特表2011−513594号公報Special table 2011-513594 gazette 特開2006−82207号公報JP 2006-82207 A

近年の切削加工における省力化および省エネ化の要求は強く、これに伴い、切削加工は一段と高速化、高効率化の傾向にあり、被覆工具には、より一層、耐チッピング性、耐欠損性、耐剥離性等の耐異常損傷性が求められるとともに、長期の使用に亘ってすぐれた耐摩耗性が求められている。
しかし、前述した特許文献1,2に記載される化学蒸着法で被覆形成した(Ti1−XAl)N層については、Al含有量Xを高めることができ、また、立方晶構造を形成させることができることから、所定の硬さを有し耐摩耗性にはすぐれた硬質被覆層が得られるものの、基体との密着強度は十分でなく、また、靭性に劣ることから、合金鋼、鋳鉄等の高速断続切削加工用被覆工具として用いた場合には、チッピング、欠損、剥離等の異常損傷が発生しやすく、満足できる切削性能を発揮するとはいえない。
In recent years, there has been a strong demand for energy saving and energy saving in cutting, and along with this, cutting tends to be faster and more efficient, and the coated tool has even more chipping resistance, chipping resistance, Abnormal damage resistance such as peeling resistance is required, and excellent wear resistance is required over a long period of use.
However, for the which was formed by coating in a chemical vapor deposition (Ti 1-X Al X) N layer described in Patent Documents 1 and 2 described above, it is possible to increase the Al content X, also form a cubic structure Therefore, although a hard coating layer having a predetermined hardness and excellent wear resistance can be obtained, the adhesion strength with the substrate is not sufficient, and since the toughness is inferior, alloy steel, cast iron When it is used as a coated tool for high-speed intermittent cutting, such as chipping, chipping and peeling, it tends to occur abnormally, and it cannot be said that satisfactory cutting performance is exhibited.

一方、前述した特許文献3に記載される被覆工具は、(Ti1−XAl)N層からなる硬質被覆層が物理蒸着法で成膜され、膜中のAl含有量Xを高めることができないため、例えば、合金鋼、鋳鉄等の高速断続切削に供した場合には、耐チッピング性が十分でないという課題があった。 On the other hand, in the coated tool described in Patent Document 3 described above, a hard coating layer composed of a (Ti 1-X Al X ) N layer is formed by a physical vapor deposition method to increase the Al content X in the film. For example, when subjected to high-speed intermittent cutting of alloy steel, cast iron, etc., there is a problem that the chipping resistance is not sufficient.

そこで、本発明は、高速断続切削加工等に供した場合であっても、硬質被覆層がすぐれた耐チッピング性を発揮するとともに、長期の使用に亘ってすぐれた耐摩耗性を発揮する被覆工具を提供することを目的とする。   Accordingly, the present invention provides a coated tool that exhibits excellent chipping resistance and excellent wear resistance over a long period of use, even when subjected to high-speed intermittent cutting and the like. The purpose is to provide.

本発明者らは、前述の観点から、TiとAlの複合炭窒化物(以下、「(Ti1−xAl)(C1−y)」あるいは「TiAlCN」で示すことがある)からなる硬質被覆層を化学蒸着で被覆形成した被覆工具の耐チッピング性、耐摩耗性の改善をはかるべく、鋭意研究を重ねた結果、次のような知見を得た。 From the above-mentioned viewpoint, the present inventors have combined Ti and Al carbonitrides (hereinafter sometimes referred to as “(Ti 1-x Al x ) (C y N 1-y )” or “TiAlCN”). As a result of earnest research to improve the chipping resistance and wear resistance of the coated tool formed by chemical vapor deposition of the hard coating layer made of the following, the following knowledge was obtained.

WC基超硬合金、TiCN基サーメットまたはcBN基超高圧焼結体のいずれかで構成された基体の表面に、熱CVD法等の化学蒸着法により成膜されたTiとAlの複合窒化物または複合炭窒化物層を少なくとも含む表面被覆切削工具であって、該TiとAlの複合窒化物または複合炭窒化物層は、組成式:(Ti1−xAl)(C1−y)で表した場合、AlのTiとAlの合量に占める平均含有割合XaveおよびCのCとNの合量に占める平均含有割合Yave(但し、Xave、Yaveはいずれも原子比)が、それぞれ、0.60≦Xave≦0.95、0≦Yave≦0.005を満足し、前記複合窒化物または複合炭窒化物層の層中に含有される塩素の平均塩素含有量は、0.1〜0.5原子%であり、前記複合窒化物または複合炭窒化物層について、該層の縦断面方向から観察した場合、立方晶構造の結晶粒からなる柱状組織を有し、個々の立方晶構造の結晶粒の平均粒子幅Wが0.1〜2μm、平均アスペクト比Aが2〜10であり、前記複合窒化物または複合炭窒化物層の立方晶構造の結晶粒からなる柱状組織の粒界部に六方晶構造を有する微粒結晶粒が存在し、該微粒結晶粒の平均粒径Rは0.01〜0.3μmであり、立方晶構造の結晶粒および立方晶構造の結晶粒からなる柱状組織の粒界部に六方晶構造を有する微粒結晶粒に対して透過型電子顕微鏡(TEM,Transmission− Electron−Microscope)を用いて、エネルギー分散型X線分光法(EDS)による組成分析を行い、各々のAlに対する塩素のピーク強度比に関して、六方晶構造を有する微粒結晶粒の該ピーク強度比Ihの立方晶構造の結晶粒の該ピーク強度比Icに対する比Ih/Icが5より大きく、好ましくは、前記複合窒化物または複合炭窒化物層において、立方晶構造の結晶粒および立方晶構造の結晶粒からなる柱状組織の粒界部に六方晶構造を有する微粒結晶粒に対して透過型電子顕微鏡を用いて、エネルギー分散型X線分光法(EDS)による組成分析を行い、微粒六方晶結晶粒における含有塩素量Clhaveが1.0〜3.0原子%である場合に、硬質被覆層がすぐれた靭性、潤滑性を備え、高速断続切削加工等に供した場合に、硬質被覆層がすぐれた耐チッピング性、耐摩耗性を発揮することを見出した。 Ti and Al composite nitride formed by chemical vapor deposition such as thermal CVD on the surface of a substrate composed of either a WC-based cemented carbide, TiCN-based cermet, or cBN-based ultra-high pressure sintered body, or A surface-coated cutting tool including at least a composite carbonitride layer, wherein the Ti and Al composite nitride or composite carbonitride layer has a composition formula: (Ti 1-x Al x ) (C y N 1-y ), The average content ratio X ave in the total amount of Ti and Al in Al and the average content ratio Y ave in the total amount of C and N in C (where X ave and Y ave are both atomic ratios) ) Satisfy 0.60 ≦ X ave ≦ 0.95 and 0 ≦ Y ave ≦ 0.005, respectively, and the average chlorine content of chlorine contained in the layer of the composite nitride or composite carbonitride layer The amount is 0.1 to 0.5 atomic%, and the composite nitride or composite When the nitride layer is observed from the longitudinal sectional direction of the layer, the nitride layer has a columnar structure composed of crystal grains having a cubic structure, and the average grain width W of the individual crystal grains is 0.1 to 2 μm. The average aspect ratio A is 2 to 10, and there are fine crystal grains having a hexagonal crystal structure at the grain boundary part of the columnar structure consisting of crystal grains of the cubic structure of the composite nitride or composite carbonitride layer, The average grain size R of the fine crystal grains is 0.01 to 0.3 μm, and the fine grain grains having a hexagonal structure at the grain boundary portion of the columnar structure composed of cubic crystal grains and cubic crystal grains are used. On the other hand, composition analysis by energy dispersive X-ray spectroscopy (EDS) was performed using a transmission electron microscope (TEM, Transmission-Electron-Microscope), and the peak intensity ratio of chlorine to each Al The ratio Ih / Ic of the fine crystal grains having a hexagonal crystal structure to the peak intensity ratio Ic of the crystal grains having a cubic crystal structure is larger than 5, preferably the composite nitride or the composite carbonitride Energy dispersive X-ray spectroscopy using a transmission electron microscope for cubic crystal grains and hexagonal crystal grains at the grain boundary of a columnar structure composed of cubic crystal grains. law performs composition analysis by (EDS), when the content amount of chlorine CLH ave in fine hexagonal crystal grains is 1.0 to 3.0 atomic%, with toughness hard layer has excellent properties, lubricity, fast It has been found that the hard coating layer exhibits excellent chipping resistance and wear resistance when subjected to intermittent cutting and the like.

したがって、前述のような硬質被覆層を備えた被覆工具を、例えば、合金鋼、鋳鉄等の高速断続切削等に用いた場合には、チッピング、欠損、剥離等の発生が抑えられるとともに、長期の使用に亘ってすぐれた耐摩耗性を発揮することができる。   Therefore, when a coated tool having a hard coating layer as described above is used for, for example, high-speed intermittent cutting of alloy steel, cast iron, etc., occurrence of chipping, chipping, peeling, etc. can be suppressed, and long-term Excellent wear resistance can be exhibited over use.

本発明は、前記知見に基づいてなされたものであって、
「(1) 炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体の表面に、硬質被覆層を設けた表面被覆切削工具において、
(a)前記硬質被覆層は、化学蒸着法により成膜された平均層厚1〜20μmのTiとAlの複合窒化物または複合炭窒化物層を少なくとも含み、組成式:(Ti1−xAl)(C1−y)で表した場合、AlのTiとAlの合量に占める含有割合XaveおよびCのCとNの合量に占める含有割合Yave(但し、Xave、Yaveはいずれも原子比)が、それぞれ、0.60≦Xave≦0.95、0≦Yave≦0.005を満足し、
(b)前記複合窒化物または複合炭窒化物層の層中に含有される平均塩素含有量は、0.1〜0.5原子%であり、
(c)前記複合窒化物または複合炭窒化物層について該層断面側から観察した場合、複合窒化物または複合炭窒化物層は、立方晶構造の結晶粒からなる柱状組織を有し、個々の立方晶構造の結晶粒の平均粒子幅Wが0.1〜2μm、平均アスペクト比Aが2〜10であり、
(d)前記複合窒化物または複合炭窒化物層には、立方晶構造の結晶粒からなる柱状組織の粒界部に六方晶構造を有する微粒結晶粒が存在し、該微粒結晶粒の平均粒径Rは0.01〜0.3μmであり、
(e)前記複合窒化物または複合炭窒化物層中の立方晶構造の結晶粒および立方晶構造の結晶粒からなる柱状組織の粒界部に六方晶構造を有する微粒結晶粒に対して透過型電子顕微鏡を用いて、エネルギー分散型X線分光法(EDS)による組成分析を行い、各々のAlに対する塩素のピーク強度比に関して、六方晶構造を有する微粒結晶粒の該ピーク強度比Ihが立方晶構造の結晶粒の該ピーク強度比Icに対する比Ih/Icが5より大きいことを特徴とする表面被覆切削工具。
(2) 前記複合窒化物または複合炭窒化物層において、前記複合窒化物または複合炭窒化物層中の立方晶構造の結晶粒および立方晶構造の結晶粒からなる柱状組織の粒界部に六方晶構造を有する微粒結晶粒に対して透過型電子顕微鏡を用いて、エネルギー分散型X線分光法(EDS)による組成分析を行い、微粒六方晶結晶粒における含有塩素量Clhavgが1.0〜3.0原子%であることを特徴とする前記(1)に記載の表面被覆切削工具。
(3) 前記複合窒化物または複合炭窒化物層に存在する六方晶構造を有する微粒結晶粒が硬質被膜層に占める割合が30面積%以下であることを特徴とする前記(1)または(2)に記載の表面被覆切削工具。
(4) 前記炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体と、前記TiとAlの複合窒化物または複合炭窒化物層の間に、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、かつ、0.1〜20μmの合計平均層厚を有するTi化合物層を含む下部層が存在することを特徴とする前記(1)乃至(3)のいずれかに記載の表面被覆切削工具。
(5) 前記複合窒化物または複合炭窒化物層の上部に、少なくとも1〜25μmの平均層厚を有する酸化アルミニウム層を含む上部層が存在することを特徴とする前記(1)乃至(4)のいずれかに記載の表面被覆切削工具。
(6) 前記複合窒化物または複合炭窒化物層は、少なくとも、トリメチルアルミニウムを反応ガス成分として含有する化学蒸着法により成膜されたものであることを特徴とする前記(1)乃至(5)のいずれかに記載の表面被覆切削工具。」
に特徴を有するものである。
The present invention has been made based on the above findings,
“(1) Surface-coated cutting tool in which a hard coating layer is provided on the surface of a tool base made of tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, or cubic boron nitride-based ultra-high pressure sintered body In
(A) The hard coating layer includes at least a composite nitride or composite carbonitride layer of Ti and Al having an average layer thickness of 1 to 20 μm formed by a chemical vapor deposition method, and has a composition formula: (Ti 1-x Al x ) When expressed by (C y N 1-y ), the content ratio X ave in the total amount of Ti and Al in Al and the content ratio Y ave in the total amount of C and N in C (where X ave , Y ave is atomic ratio) satisfying 0.60 ≦ X ave ≦ 0.95 and 0 ≦ Y ave ≦ 0.005,
(B) The average chlorine content contained in the layer of the composite nitride or composite carbonitride layer is 0.1 to 0.5 atomic%,
(C) When the composite nitride or the composite carbonitride layer is observed from the cross-sectional side, the composite nitride or the composite carbonitride layer has a columnar structure composed of cubic crystal grains, The average grain width W of the cubic structure crystal grains is 0.1 to 2 μm, the average aspect ratio A is 2 to 10,
(D) In the composite nitride or composite carbonitride layer, there are fine crystal grains having a hexagonal crystal structure at a grain boundary portion of a columnar structure made of cubic crystal grains, and an average grain of the fine crystal grains The diameter R is 0.01 to 0.3 μm,
(E) Transmission type with respect to fine crystal grains having a hexagonal crystal structure at a grain boundary portion of a columnar structure composed of cubic structure crystal grains and cubic structure crystal grains in the composite nitride or composite carbonitride layer Using an electron microscope, composition analysis is performed by energy dispersive X-ray spectroscopy (EDS), and regarding the peak intensity ratio of chlorine to each Al, the peak intensity ratio Ih of the fine crystal grains having a hexagonal crystal structure is cubic. A surface-coated cutting tool, wherein the ratio Ih / Ic of the crystal grains of the structure to the peak intensity ratio Ic is greater than 5.
(2) In the composite nitride or composite carbonitride layer, hexagonal crystal grains in the composite nitride or composite carbonitride layer and a grain boundary portion of a columnar structure made of cubic crystal grains are hexagonal. A composition analysis by energy dispersive X-ray spectroscopy (EDS) is performed on fine crystal grains having a crystal structure using a transmission electron microscope, and a chlorine content Clh avg in the fine hexagonal crystal grains is 1.0 to The surface-coated cutting tool according to (1) above, which is 3.0 atomic%.
(3) The ratio of the fine crystal grains having a hexagonal crystal structure present in the composite nitride or composite carbonitride layer to the hard coating layer is 30 area% or less, (1) or (2) ) Surface-coated cutting tool.
(4) A tool base composed of any one of the tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, or cubic boron nitride-based ultrahigh-pressure sintered body, and a composite nitride or composite carbonitride of Ti and Al. It is composed of one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride oxide layer between the material layers, and a total of 0.1 to 20 μm The surface-coated cutting tool according to any one of (1) to (3), wherein a lower layer including a Ti compound layer having an average layer thickness exists.
(5) The upper layer including an aluminum oxide layer having an average layer thickness of at least 1 to 25 μm is present above the composite nitride or composite carbonitride layer. The surface-coated cutting tool according to any one of the above.
(6) The composite nitride or composite carbonitride layer is formed by a chemical vapor deposition method containing at least trimethylaluminum as a reaction gas component. (1) to (5) The surface-coated cutting tool according to any one of the above. "
It has the characteristics.

つぎに、本発明の被覆工具の硬質被覆層について、より具体的に説明する。   Next, the hard coating layer of the coated tool of the present invention will be described more specifically.

硬質被覆層の平均層厚:
本発明における硬質被覆層は、その平均層厚が1μm未満では、長期の使用に亘っての耐摩耗性を十分確保することができず、一方、その平均層厚が20μmを越えると、高熱発生を伴う高速断続切削で熱塑性変形を起し易くなり、これが偏摩耗の原因となる。したがって、その平均層厚は1〜20μmとすることが好ましく、より好ましくは1〜10μmとする。
また、炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体とTiとAlの複合窒化物または複合炭窒化物層の間に形成するTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層の平均合計層厚に関しては、0.1μm未満では層厚が薄いため、長期の使用に亘って耐摩耗性が確保されず、一方、平均層厚が20μmより大きくなると、工具基体およびTiとAlの複合窒化物または複合炭窒化物層との付着強度が低下し、耐剥離性が低下するため、その平均層厚は0.1〜20μmとするのが望ましい。
上部層として、酸化アルミニウム層を含む場合、酸化アルミニウム層の合計平均層厚が1μm未満であると、層厚が薄いため長期の使用に亘って耐摩耗性が確保されず、25μmを超えると結晶粒が粗大化し易くなり、チッピングを発生しやすくなることから、酸化アルミニウム層を含む上部層の層厚は、1〜25μmとすることが望ましい。
Average thickness of hard coating layer:
If the average thickness of the hard coating layer in the present invention is less than 1 μm, sufficient wear resistance over a long period of time cannot be ensured. On the other hand, if the average thickness exceeds 20 μm, high heat generation occurs. It becomes easy to cause a thermoplastic deformation by high-speed intermittent cutting with the above, which causes uneven wear. Therefore, the average layer thickness is preferably 1 to 20 μm, more preferably 1 to 10 μm.
In addition, between a tool base made of tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, or cubic boron nitride-based ultra-high pressure sintered body and Ti and Al composite nitride or composite carbonitride layer The average total layer thickness of the Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride layer formed on the thin layer is less than 0.1 μm, so that it can be used over a long period of time. On the other hand, if the average layer thickness is larger than 20 μm, the adhesion strength between the tool base and the composite nitride or composite carbonitride layer of Ti and Al is lowered, and the peel resistance is lowered. Therefore, the average layer thickness is desirably 0.1 to 20 μm.
When an aluminum oxide layer is included as the upper layer, if the total average layer thickness of the aluminum oxide layer is less than 1 μm, the layer thickness is thin, so that wear resistance is not ensured over a long period of use. Since the grains are easily coarsened and chipping is likely to occur, the thickness of the upper layer including the aluminum oxide layer is preferably 1 to 25 μm.

TiとAlの複合窒化物または複合炭窒化物層((Ti1−xAl)(C1−y)層)の組成:
本発明の硬質被覆層の主たる層を構成する(Ti1−xAl)(C1−y)層は、Alの含有割合Xave(原子比)の値が0.60未満になると、高温硬さが不足し耐摩耗性が低下するようになり、一方、Xave(原子比)の値が0.95を超えると、相対的なTi含有割合の減少により、(Ti1−xAl)(C1−y)層自体の高温強度が低下し、チッピング、欠損を発生しやすくなる。したがって、Alの含有割合Xave(原子比)の値は、0.60以上0.95以下とすることが必要である。
また、前記(Ti1−xAl)(C1−y)層において、C成分には硬さを向上させ、一方、N成分には高温強度を向上させる作用があるが、C成分の含有割合Yave(原子比)が0.005を超えると、高温強度が低下する。したがって、C成分の含有割合Yave(原子比)は、0≦Yave≦0.005と定めた。
Composition of Ti and Al composite nitride or composite carbonitride layer ((Ti 1-x Al x ) (C y N 1-y ) layer):
Constituting the main layer of the hard coating layer of the present invention (Ti 1-x Al x) (C y N 1-y) layer, the value of the proportion X ave (atomic ratio) of Al is less than 0.60 On the other hand, if the value of X ave (atomic ratio) exceeds 0.95 due to insufficient high temperature hardness and wear resistance, (Ti 1-x The high temperature strength of the Al x ) (C y N 1-y ) layer itself is lowered, and chipping and defects are likely to occur. Therefore, the value of the Al content ratio X ave (atomic ratio) needs to be 0.60 or more and 0.95 or less.
Further, in the (Ti 1-x Al x ) (C y N 1-y ) layer, the C component improves the hardness, while the N component has the effect of improving the high temperature strength. When the content ratio Y ave (atomic ratio) of exceeds 0.005, the high-temperature strength decreases. Therefore, the content ratio Y ave (atomic ratio) of the C component was determined as 0 ≦ Y ave ≦ 0.005.

なお、通常、物理蒸着法によって前記組成、即ち、Alの含有割合Xave(原子比)が0.60以上0.95以下の(Ti1−xAl)(C1−y)層を成膜した場合は、結晶構造は六方晶構造となる。
しかし、本発明では、後述する化学蒸着法によって成膜していることから、立方晶構造を維持し、かつ、柱状組織を有する前述したような組成の(Ti1−xAl)(C1−y)層を得ることができ、これにより、硬質被覆層の高い耐摩耗性を確保することができる。
Normally, the composition by physical vapor deposition, i.e., the content ratio X ave (atomic ratio) of 0.60 to 0.95 (Ti 1-x Al x) of Al (C y N 1-y ) layer When the film is formed, the crystal structure becomes a hexagonal crystal structure.
However, in the present invention, since the film is formed by the chemical vapor deposition method to be described later, (Ti 1-x Al x ) (C y ) having the above-described composition that maintains the cubic structure and has a columnar structure. N 1-y ) layer can be obtained, whereby high wear resistance of the hard coating layer can be ensured.

TiとAlの複合窒化物または複合炭窒化物層((Ti1−xAl)(C1−y)層)に含有される塩素の平均含有量:
本発明のTiとAlの複合窒化物または複合炭窒化物層((Ti1−xAl)(C1−y)層)は、層中に、平均塩素含有量0.1〜0.5原子%の塩素を含有するが、含有する塩素量が微量である場合に限り、層の靭性を低下させずに潤滑性を高めることができる。しかし、平均塩素含有量が0.1原子%未満であると潤滑性向上効果は少なく、一方、平均塩素含有量が0.5原子%を超えると、耐チッピング性が低下することから、平均塩素含有量は0.1〜0.5原子%とする。
なお、図1に本発明の硬質被覆層の縦断面の概略模式図を示すが、本発明の硬質被覆層は、立方晶構造の柱状組織結晶粒と、該柱状組織結晶粒の粒界部に存在する六方晶構造の微粒結晶を有するが、該立方晶構造の結晶粒および立方晶構造の結晶粒からなる柱状組織の粒界部に六方晶構造を有する微粒結晶粒に対して透過型電子顕微鏡を用いて、エネルギー分散型X線分光法(EDS)による組成分析を行い、各々のAlに対する塩素のピーク強度比に関して、六方晶構造を有する微粒結晶粒の該ピーク強度比Ihの立方晶構造の結晶粒の該ピーク強度比Icに対する比Ih/Icが5より大きい場合には、柱状立方晶結晶粒の硬さを損なうことなく、柱状立方晶の粒界に存在する微粒六方晶結晶粒の靱性が高くなるため、硬質被覆層の耐チッピング性を向上させることができる。
さらに、好ましくは立方晶構造の柱状組織結晶粒と立方晶構造の結晶粒からなる柱状組織の粒界部に六方晶構造を有する微粒結晶粒に対して透過型電子顕微鏡を用いて、エネルギー分散型X線分光法(EDS)による組成分析を行ったとき、微粒六方晶結晶粒における含有塩素量Clhaveが1.0〜3.0原子%である場合、柱状組織立方晶結晶粒界面に存在する微粒六方晶結晶粒が耐チッピング性が低下することなく、潤滑性を向上させることができる。
Composite nitride of Ti and Al or composite carbonitride layer ((Ti 1-x Al x ) (C y N 1-y) layer) average content of chlorine contained in:
The composite nitride or composite carbonitride layer ((Ti 1-x Al x ) (C y N 1-y ) layer) of Ti and Al of the present invention has an average chlorine content of 0.1 to 0 in the layer. Although containing 5 atomic% of chlorine, lubricity can be improved without reducing the toughness of the layer only when the amount of chlorine contained is very small. However, if the average chlorine content is less than 0.1 atomic%, the effect of improving the lubricity is small. On the other hand, if the average chlorine content exceeds 0.5 atomic%, the chipping resistance is lowered. The content is 0.1 to 0.5 atomic%.
FIG. 1 shows a schematic diagram of a longitudinal section of the hard coating layer of the present invention. The hard coating layer of the present invention has cubic structure crystal grains and grain boundary portions of the columnar structure crystal grains. Transmission electron microscope with respect to fine crystal grains having hexagonal crystal structure at the grain boundary portion of the columnar structure having the hexagonal crystal grains and the cubic crystal grains. The composition analysis by energy dispersive X-ray spectroscopy (EDS) is performed, and with respect to the peak intensity ratio of chlorine to each Al, the cubic structure of the peak intensity ratio Ih of the fine crystal grains having a hexagonal structure is obtained. When the ratio Ih / Ic to the peak intensity ratio Ic of the crystal grains is larger than 5, the toughness of the fine hexagonal crystal grains existing at the grain boundaries of the columnar cubic crystals without impairing the hardness of the columnar cubic crystal grains. The resistance of the hard coating layer Thereby improving the ping properties.
Furthermore, an energy dispersive type is preferably used by using a transmission electron microscope for a fine grain having a hexagonal structure at a grain boundary part of a columnar structure composed of a columnar structure crystal grain having a cubic structure and a crystal grain having a cubic structure. When composition analysis by X-ray spectroscopy (EDS) is performed, when the amount of chlorine Clh ave in the fine hexagonal crystal grains is 1.0 to 3.0 atomic%, it exists at the columnar structure cubic crystal grain interface. The fine hexagonal crystal grains can improve the lubricity without reducing the chipping resistance.

TiとAlの複合窒化物または複合炭窒化物層((Ti1−xAl)(C1−y)層)内の柱状組織を有する立方晶構造の結晶粒の平均粒子幅W、平均アスペクト比A:
本発明の硬質被覆層は、TiとAlの複合窒化物または複合炭窒化物層((Ti1−xAl)(C1−y)層)内の柱状組織を有する立方晶構造の結晶粒の平均粒子幅Wが0.1〜2μm、平均アスペクト比Aが2〜10となる柱状組織となるように構成する。
すなわち、柱状組織を有する立方晶構造の結晶粒の平均粒子幅Wを0.1〜2μmとしたのは、0.1μm未満では、被覆層表面に露出した原子におけるTiAlCN結晶粒界に属する原子の占める割合が相対的に大きくなることにより、被削材との反応性が増し、その結果、耐摩耗性を十分に発揮することができず、また、2μmを超えると被覆層全体におけるTiAlCN結晶粒界に属する原子の占める割合が相対的に小さくなることにより、靭性が低下し、耐チッピング性を十分に発揮することができなくなる。
したがって、柱状組織を有する立方晶構造の結晶粒の平均粒子幅Wは0.1〜2μmとする。
なお、本発明でいう平均粒子幅Wとは、走査型電子顕微鏡を用い被覆層の縦断面観察を行った際に硬質被覆層の層厚の半分の箇所において基体表面と平行な線を少なくとも100μm描き、その平行線の線分長を該平行線と交差する結晶粒界の数で除した数として定義される。
また、柱状組織を有する立方晶構造の結晶粒の平均アスペクト比Aが2未満の場合、十分な柱状組織となっていないため、アスペクト比の小さな等軸結晶の脱落を招き、その結果、十分な耐摩耗性を発揮することができない。一方、平均アスペクト比Wが10を超えると結晶粒そのものの強度を保つ事が出来ず、かえって、耐チッピング性が低下するため好ましくない。
したがって、柱状組織を有する立方晶構造の結晶粒の平均アスペクト比Aは2〜10とする。
なお、本発明では、平均アスペクト比Aとは、走査型電子顕微鏡を用い、幅100μm、高さが硬質被覆層全体を含む範囲で硬質被覆層の縦断面観察を行った際に、各結晶粒について粒子径の最も長い長さを長軸とし該長軸の長さおよび前記長軸と直交する方向の最大長さを求め、長軸の長さを長軸と直交する方向の最大長さで除することにより、各結晶粒のアスペクト比を算出し、更に各結晶粒の面積を重みとしアスペクト比の加重平均として算出した値として定義される。
Average grain width W of crystal grains of a cubic structure having a columnar structure in a composite nitride or composite carbonitride layer of Ti and Al ((Ti 1-x Al x ) (C y N 1-y ) layer), Average aspect ratio A:
The hard coating layer of the present invention has a cubic structure having a columnar structure in a composite nitride or composite carbonitride layer of Ti and Al ((Ti 1-x Al x ) (C y N 1-y ) layer). A columnar structure is formed in which the average grain width W of the crystal grains is 0.1 to 2 μm and the average aspect ratio A is 2 to 10.
That is, the average grain width W of the cubic structure crystal grains having a columnar structure is set to 0.1 to 2 μm. If the average grain width W is less than 0.1 μm, the atoms belonging to the TiAlCN grain boundaries in the atoms exposed on the surface of the coating layer The relatively large proportion increases the reactivity with the work material, and as a result, the wear resistance cannot be sufficiently exhibited. When the proportion exceeds 2 μm, the TiAlCN crystal grains in the entire coating layer When the proportion of atoms belonging to the boundary is relatively small, the toughness is lowered, and the chipping resistance cannot be sufficiently exhibited.
Therefore, the average grain width W of the cubic structure crystal grains having a columnar structure is 0.1 to 2 μm.
The average particle width W as used in the present invention means that a line parallel to the substrate surface is at least 100 μm at a half of the thickness of the hard coating layer when the longitudinal cross section of the coating layer is observed using a scanning electron microscope. It is defined as the number obtained by dividing the line segment length of the parallel line by the number of grain boundaries intersecting the parallel line.
In addition, when the average aspect ratio A of the cubic structure crystal grains having a columnar structure is less than 2, since the columnar structure is not sufficient, the equiaxed crystal having a small aspect ratio is dropped, and as a result, sufficient Abrasion resistance cannot be demonstrated. On the other hand, if the average aspect ratio W exceeds 10, the strength of the crystal grains themselves cannot be maintained, and the chipping resistance is lowered.
Therefore, the average aspect ratio A of the cubic structure crystal grains having a columnar structure is 2-10.
In the present invention, the average aspect ratio A means that each crystal grain is observed when a longitudinal section of a hard coating layer is observed in a range including a width of 100 μm and a height including the entire hard coating layer using a scanning electron microscope. The longest particle diameter is taken as the long axis, the long axis length and the maximum length in the direction perpendicular to the long axis are determined, and the long axis length is the maximum length in the direction perpendicular to the long axis. By dividing, the aspect ratio of each crystal grain is calculated, and further, the area of each crystal grain is used as a weight and defined as a value calculated as a weighted average of the aspect ratio.

TiとAlの複合窒化物または複合炭窒化物層((Ti1−xAl)(C1−y)層)内の立方晶構造の結晶粒からなる柱状組織の粒界部に存在する六方晶構造を有する微粒結晶粒の平均粒径R:
本発明の硬質被膜層(Ti1−xAl)(C1−y)層について、電子線後方散乱回折装置を用いて個々の結晶粒の結晶方位を、硬質被覆層の縦断面方向から解析した場合、立方晶結晶格子の電子後方散乱回折像が観測される立方晶結晶相と六方晶結晶格子の電子後方散乱回折像が観測される。
そして、六方晶結晶相は、立方晶構造の結晶粒からなる柱状組織の粒界部に、六方晶構造を有する微粒結晶粒として形成されるが、柱状組織の粒界部に存在する六方晶構造を有する微粒結晶粒は、粒界滑りを抑制し、靭性を向上させる。
ただし、六方晶構造を有する微粒結晶粒の平均粒径Rが0.01μm未満であると靱性向上の効果が少なく、一方、平均粒径Rが0.3μmを超えると、硬さが低下し、耐摩耗性が損なわれるため、立方晶構造の結晶粒からなる柱状組織の粒界部に存在する六方晶構造を有する微粒結晶粒の平均粒径Rは0.01〜0.3μmとする。
また、立方晶構造の結晶粒からなる柱状組織の粒界部に形成される、六方晶構造を有する微粒結晶粒が硬質被膜層に占める割合に関して、30面積%を超えると相対的にNaCl型の面心立方構造の結晶相の割合が減少するため硬さが低下し好ましくない。
なお、電子線後方散乱回折装置を用いて、TiとAlの複合窒化物または複合炭窒化物層からなる硬質被覆層の工具基体に垂直な方向の断面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記断面研磨面の測定範囲内に存在する結晶粒個々に照射し、工具基体と水平方向に長さ100μm、工具基体表面と垂直な方向の断面に沿って膜厚以下の距離の測定範囲内に亘り硬質被覆層について0.01μm/stepの間隔で、電子線後方散乱回折像を測定し、個々の結晶粒の結晶構造を解析することでNaCl型の面心立方構造を有する結晶粒からなる柱状組織の粒界部に存在する微粒結晶粒が六方晶構造であることを同定し、その微粒結晶粒の占める面積割合を求めることができる。さらに微粒結晶粒の平均粒径Rは、微結晶粒が見出される柱状組織の粒界のうち、0.5μm以上の粒界長さを有する部位を複数の観察視野から3ヶ所見出し、おのおの0.5μmの線分上に存在する粒界数を数え上げて、1.5μmを3か所での合計粒界数で割ることにより得る事が出来る。
Present in the grain boundaries of the columnar structure consisting of Ti and composite nitride or composite carbonitride layer of Al ((Ti 1-x Al x) (C y N 1-y) layer) of the cubic structure of the grain Average grain size R of the fine crystal grains having a hexagonal crystal structure:
For the hard coating layer (Ti 1-x Al x ) (C y N 1-y ) layer of the present invention, the crystal orientation of each crystal grain is determined using an electron beam backscattering diffraction apparatus, and the longitudinal section direction of the hard coating layer From the above analysis, an electron backscatter diffraction image of a cubic crystal phase and a hexagonal crystal lattice in which an electron backscatter diffraction image of the cubic crystal lattice is observed is observed.
The hexagonal crystal phase is formed as a fine crystal grain having a hexagonal crystal structure at a grain boundary part of a columnar structure composed of cubic crystal grains, but a hexagonal crystal structure existing at the grain boundary part of the columnar structure. The fine crystal grains having sigma suppress grain boundary slip and improve toughness.
However, if the average particle size R of the fine crystal grains having a hexagonal crystal structure is less than 0.01 μm, the effect of improving toughness is small, whereas if the average particle size R exceeds 0.3 μm, the hardness decreases, Since the wear resistance is impaired, the average grain size R of the fine crystal grains having a hexagonal crystal structure present in the grain boundary portion of the columnar structure made of cubic crystal grains is set to 0.01 to 0.3 μm.
Further, when the proportion of fine crystal grains having a hexagonal structure formed in the grain boundary portion of the columnar structure composed of cubic crystal grains in the hard coating layer exceeds 30 area%, it is relatively NaCl type. Since the ratio of the crystal phase having the face-centered cubic structure is decreased, the hardness is not preferable.
In addition, using an electron beam backscatter diffractometer, a field-emission type with a cross section in a direction perpendicular to the tool base of a hard coating layer composed of a composite nitride or composite carbonitride layer of Ti and Al as a polished surface Set in a scanning electron microscope column and apply an electron beam with an acceleration voltage of 15 kV to the polished surface at an incident angle of 70 degrees with an irradiation current of 1 nA for each crystal grain existing in the measurement range of the cross-sectional polished surface. Irradiation is performed at an interval of 0.01 μm / step with respect to the hard coating layer over a measurement range of a distance of 100 μm or less in the horizontal direction with the tool base and a thickness equal to or less than the film thickness along a cross section perpendicular to the tool base surface. By measuring the line backscatter diffraction image and analyzing the crystal structure of each crystal grain, the fine grain existing in the grain boundary part of the columnar structure consisting of grains having a NaCl type face centered cubic structure is a hexagonal crystal structure. And identify that The area ratio occupied by the fine crystal grains can be obtained. Further, the average grain size R of the fine crystal grains is found from three observation fields, each having a grain boundary length of 0.5 μm or more, among the grain boundaries of the columnar structure in which the fine crystal grains are found. It can be obtained by counting the number of grain boundaries present on a 5 μm line segment and dividing 1.5 μm by the total number of grain boundaries at three locations.

下部層および上部層:
本発明は、工具基体と前記TiとAlの複合窒化物または複合炭窒化物層((Ti1−xAl)(C1−y)層)の間に、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなり、かつ、0.1〜20μmの合計平均層厚を有する下部層を設けた場合、あるいは、前記TiとAlの複合窒化物または複合炭窒化物層((Ti1−xAl)(C1−y)層)の上部に、1〜25μmの平均層厚を有する酸化アルミニウム層を含む上部層を設けた場合には、これらの層が奏する効果と相俟って、一層すぐれた特性を創出することができる。
Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなる下部層を設ける場合、下部層の合計平均層厚が0.1μm未満では、下部層の効果が十分に奏されず、一方、20μmを超えると結晶粒が粗大化し易くなり、チッピングを発生しやすくなることから、下部層の合計平均層厚は、0.1〜20μmとすることが望ましい。
また、酸化アルミニウム層を含む上部層の平均層厚が1μm未満では、上部層の効果が十分に奏されず、一方、25μmを超えると結晶粒が粗大化し易くなり、チッピングを発生しやすくなることから、上部層の平均層厚は1〜25μmとすることが望ましい。
Lower layer and upper layer:
The present invention provides a Ti carbide layer, nitrided between a tool base and the Ti and Al composite nitride or composite carbonitride layer ((Ti 1-x Al x ) (C y N 1-y ) layer). A lower layer having a total average layer thickness of 0.1 to 20 μm, comprising one or two or more Ti compound layers of a physical layer, a carbonitride layer, a carbonate layer and a carbonitride layer. Or an average layer thickness of 1 to 25 μm on the Ti or Al composite nitride or composite carbonitride layer ((Ti 1-x Al x ) (C y N 1-y ) layer). In the case where the upper layer including the aluminum oxide layer having the above is provided, it is possible to create more excellent characteristics in combination with the effect exhibited by these layers.
When providing a lower layer made of one or two or more Ti compound layers of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride oxide layer, the total average layer of the lower layer If the thickness is less than 0.1 μm, the effect of the lower layer is not sufficiently achieved. On the other hand, if it exceeds 20 μm, the crystal grains are likely to be coarsened and chipping is likely to occur. 0.1 to 20 μm is desirable.
Further, if the average layer thickness of the upper layer including the aluminum oxide layer is less than 1 μm, the effect of the upper layer is not sufficiently achieved. On the other hand, if it exceeds 25 μm, the crystal grains are likely to be coarsened and chipping is likely to occur. Therefore, the average layer thickness of the upper layer is desirably 1 to 25 μm.

硬質被覆層の成膜:
本発明のTiとAlの複合窒化物または複合炭窒化物層((Ti1−xAl)(C1−y)層)は、例えば、工具基体表面上に、もしくは、通常の化学蒸着法によって成膜したTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上を含む下部層表面上に、以下のような、AlおよびTi原料ガス量を多くし、または、N量を多くした反応ガス中で化学蒸着することによって成膜することができる。また、Al(CHを添加することによってCを膜中に含有させることができるとともにClを含まないAlの供給源ともなり、膜中の含有塩素量を制御しながら、Alを増加させることができる。
反応ガス組成(容量%):
TiCl 1.0〜2.5%、 Al(CH0〜1%、 AlCl 2〜6%、 NH 2〜6%、N 13〜20%、 Ar 0〜3%、 残り:H
反応雰囲気温度: 700〜800℃、
反応雰囲気圧力: 2〜5kPa、
Formation of hard coating layer:
The composite nitride or composite carbonitride layer ((Ti 1-x Al x ) (C y N 1-y ) layer) of Ti and Al of the present invention is formed on, for example, the surface of a tool substrate or by a conventional chemistry. On the surface of the lower layer including one or more of the Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride layer formed by vapor deposition, the following A film can be formed by chemical vapor deposition in a reactive gas with a large amount of Al and Ti source gas or with a large amount of N 2 . In addition, by adding Al (CH 3 ) 3 , C can be contained in the film and also serves as a supply source of Al that does not contain Cl, increasing Al while controlling the amount of chlorine contained in the film. be able to.
Reaction gas composition (volume%):
TiCl 4 1.0~2.5%, Al (CH 3) 3 0~1%, AlCl 3 2~6%, NH 3 2~6%, N 2 13~20%, Ar 0~3%, the remainder : H 2 ,
Reaction atmosphere temperature: 700-800 ° C.
Reaction atmosphere pressure: 2 to 5 kPa,

本発明の被覆工具は、熱CVD法等の化学蒸着法により、組成式:(Ti1−xAl)(C1−y)で表した場合、AlのTiとAlの合量に占める含有割合XaveおよびCのCとNの合量に占める含有割合Yave(但し、Xave、Yaveはいずれも原子比)が、それぞれ、0.60≦Xave≦0.95、0≦Yave≦0.005を満足するTiとAlの複合窒化物または複合炭窒化物層を含む硬質被覆層が成膜され、該層の層中に含有される平均塩素含有量は、0.1〜0.5原子%であり、該層は、立方晶構造の結晶粒からなる柱状組織を有し、個々の立方晶構造の結晶粒の平均粒子幅Wが0.1〜2μm、平均アスペクト比Aが2〜10であり、該層の立方晶構造の結晶粒からなる柱状組織の粒界部に六方晶構造を有する微粒結晶粒が存在し、該微粒結晶粒の平均粒径Rは0.01〜0.3μmであり、該立方晶構造の結晶粒および立方晶構造の結晶粒からなる柱状組織の粒界部に六方晶構造を有する微粒結晶粒に対して透過型電子顕微鏡を用いて、エネルギー分散型X線分光法(EDS)による組成分析を行い、各々のAlに対する塩素のピーク強度比に関して、六方晶構造を有する微粒結晶粒の該ピーク強度比Ihの立方晶構造の結晶粒の該ピーク強度比Icに対する比Ih/Icが5より大きいことによって、高速断続切削加工等に供した場合であっても、硬質被覆層がすぐれた耐チッピング性を発揮するとともに、長期の使用に亘ってすぐれた耐摩耗性を発揮するという効果を奏するのである。
さらに、好ましくは、前記TiとAlの複合窒化物または複合炭窒化物層において、前記複合窒化物または複合炭窒化物層中の立方晶構造の結晶粒および立方晶構造の結晶粒からなる柱状組織の粒界部に六方晶構造を有する微粒結晶粒に対して透過型電子顕微鏡を用いて、エネルギー分散型X線分光法(EDS)による組成分析を行い、微粒六方晶結晶粒における含有塩素量Clhaveが1.0〜3.0原子%である場合、あるいは、工具基体と、前記複合窒化物または複合炭窒化物層の間に、0.1〜20μmの合計平均層厚のTi化合物層を含む下部層が存在する場合、また、前記複合窒化物または複合炭窒化物層の上部に、少なくとも1〜25μmの平均層厚を有する酸化アルミニウム層を含む上部層が存在する場合には、より一段とすぐれた耐チッピング性、耐摩耗性を発揮するのである。
When the coated tool of the present invention is represented by a composition formula: (Ti 1-x Al x ) (C y N 1-y ) by a chemical vapor deposition method such as a thermal CVD method, the total amount of Ti of Ti and Al The content ratio X ave and the content ratio Y ave in the total amount of C and N in C (where X ave and Y ave are atomic ratios) are 0.60 ≦ X ave ≦ 0.95, 0, respectively. A hard coating layer including a composite nitride or composite carbonitride layer of Ti and Al satisfying ≦ Y ave ≦ 0.005 is formed, and the average chlorine content contained in the layer is 0.00. 1 to 0.5 atomic%, the layer has a columnar structure composed of cubic crystal grains, the average grain width W of the individual cubic crystal grains is 0.1 to 2 μm, the average aspect ratio The ratio A is 2 to 10, and a fine grain structure having a hexagonal crystal structure at a grain boundary portion of a columnar structure composed of cubic crystal grains of the layer. And the average grain size R of the fine crystal grains is 0.01 to 0.3 μm, and hexagonal crystals are formed at the grain boundaries of the columnar structure composed of the cubic crystal grains and the cubic crystal grains. Composition analysis by energy dispersive X-ray spectroscopy (EDS) is performed on the fine crystal grains having a structure using a transmission electron microscope, and the fine grains having a hexagonal crystal structure with respect to the peak intensity ratio of chlorine to each Al Since the ratio Ih / Ic of the crystal grains having the peak intensity ratio Ih of the crystal grains to the peak intensity ratio Ic of the cubic structure is larger than 5, the hard coating layer can be used even when subjected to high-speed intermittent cutting or the like. In addition to exhibiting excellent chipping resistance, it has the effect of exhibiting excellent wear resistance over a long period of use.
Further preferably, in the composite nitride or composite carbonitride layer of Ti and Al, a columnar structure comprising cubic crystal grains and cubic crystal grains in the composite nitride or composite carbonitride layer The compositional analysis by energy dispersive X-ray spectroscopy (EDS) is performed on the fine crystal grains having a hexagonal crystal structure at the grain boundary portion of the particles, and the chlorine content in the fine hexagonal crystal grains Clh When ave is 1.0 to 3.0 atomic%, or a Ti compound layer having a total average layer thickness of 0.1 to 20 μm between the tool base and the composite nitride or composite carbonitride layer. If there is a lower layer including, and if there is an upper layer including an aluminum oxide layer having an average layer thickness of at least 1 to 25 μm above the composite nitride or composite carbonitride layer, further You The chipping resistance is to exert wear resistance.

本発明の硬質被覆層の縦断面の概略模式図を示す。The schematic schematic diagram of the longitudinal cross-section of the hard coating layer of this invention is shown.

以下に、本発明の被覆工具を、実施例に基づき具体的に説明する。   Below, the coated tool of this invention is demonstrated concretely based on an Example.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、TaC粉末、NbC粉末、Cr32粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、ISO規格SEEN1203AFSNのインサート形状をもったWC基超硬合金製の基体A〜Dをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, ZrC powder, TaC powder, NbC powder, Cr 3 C 2 powder, and Co powder all having an average particle diameter of 1 to 3 μm were prepared. Then, after adding wax, ball mill mixing in acetone for 24 hours, drying under reduced pressure, press-molding into a green compact of a predetermined shape at a pressure of 98 MPa. Substrates A to D made of WC-base cemented carbide having an ISO standard SEEN1203AFSN insert shape after vacuum sintering under vacuum at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour. Were manufactured respectively.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、ISO規格SEEN1203AFSNのインサート形状をもったTiCN基サーメット製の基体a〜bを作製した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after sintering, a substrate made of TiCN-based cermet having an insert shape of ISO standard SEEN1203AFSN b was produced.



つぎに、これらの工具基体A〜Dおよび工具基体a〜bの表面に、通常の化学蒸着装置を用い、まず、表4に示される条件で、所定の組成を有する(Ti1−xAl)(C1−y)層を目標層厚になるまで蒸着形成することにより、表7に示される本発明被覆工具1〜15を製造した。
なお、本発明被覆工具6〜13については、表3に示される形成条件で、表6に示される下部層、上部層の少なくともいずれかを形成した。
Next, a normal chemical vapor deposition apparatus is used on the surfaces of the tool bases A to D and the tool bases a and b, and first, under the conditions shown in Table 4, the composition has a predetermined composition (Ti 1-x Al x ) (C y N 1-y ) The present coated tools 1 to 15 shown in Table 7 were manufactured by vapor-depositing the layer until the target layer thickness was reached.
In addition, about this invention coated tools 6-13, at least any one of the lower layer and upper layer which are shown in Table 6 on the formation conditions shown in Table 3 was formed.

また、比較の目的で、同じく工具基体A〜Dおよび工具基体a〜bの表面に通常の化学蒸着装置を用い、表5に示される条件で、比較例の(Ti1−xAl)(C1−y)層を目標層厚で蒸着形成することにより、表8に示される比較例被覆工具1〜13を製造した。 Further, for the purpose of comparison, an ordinary chemical vapor deposition apparatus was similarly used on the surfaces of the tool bases A to D and the tool bases a and b, and under the conditions shown in Table 5, (Ti 1-x Al x ) ( Comparative example-coated tools 1 to 13 shown in Table 8 were manufactured by vapor-depositing the C y N 1-y ) layer with a target layer thickness.

参考のため、工具基体Aおよび工具基体aの表面に、従来の物理蒸着装置を用いて、アークイオンプレーティングにより、参考例の(Ti1−xAl)(C1−y)層を目標層厚で蒸着形成することにより、表8に示される参考例被覆工具14,15を製造した。
なお、アークイオンプレーティングの条件は、次のとおりである。
(a)前記工具基体Aおよびaを、アセトン中で超音波洗浄し、乾燥した状態で、アークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、また、カソード電極(蒸発源)として、所定組成のAl−Ti合金を配置し、
(b)まず、装置内を排気して10−2Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する工具基体に−1000Vの直流バイアス電圧を印加し、かつAl−Ti合金からなるカソード電極とアノード電極との間に200Aの電流を流してアーク放電を発生させ、装置内にAlおよびTiイオンを発生させ、もって工具基体表面をボンバード洗浄し、
(c)次に、装置内に反応ガスとして窒素ガスを導入して4Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−50Vの直流バイアス電圧を印加し、かつ、前記Al−Ti合金からなるカソード電極(蒸発源)とアノード電極との間に120Aの電流を流してアーク放電を発生させ、前記工具基体の表面に、表8に示される目標平均組成、目標平均層厚の(Ti1−xAl)(C1−y)層を蒸着形成し、
参考例被覆工具14,15を製造した。
For reference, the (Ti 1-x Al x ) (C y N 1-y ) layer of the reference example is formed on the surfaces of the tool base A and the tool base a by arc ion plating using a conventional physical vapor deposition apparatus. Were formed by vapor deposition with a target layer thickness to produce reference example coated tools 14 and 15 shown in Table 8.
The conditions for arc ion plating are as follows.
(A) The tool bases A and a are ultrasonically cleaned in acetone and dried, and at the outer peripheral portion at a predetermined distance in the radial direction from the central axis on the rotary table in the arc ion plating apparatus. Along with this, an Al-Ti alloy having a predetermined composition is arranged as a cathode electrode (evaporation source),
(B) First, the inside of the apparatus is evacuated and kept at a vacuum of 10 −2 Pa or less, the inside of the apparatus is heated to 500 ° C. with a heater, and then the tool base that rotates while rotating on the rotary table is −1000 V. A DC bias voltage is applied, and a current of 200 A is passed between a cathode electrode and an anode electrode made of an Al—Ti alloy to generate an arc discharge, thereby generating Al and Ti ions in the apparatus, thereby providing a tool base. Clean the surface with bombard,
(C) Next, nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 4 Pa, a DC bias voltage of −50 V is applied to the tool base that rotates while rotating on the rotary table, and A current of 120 A is passed between the cathode electrode (evaporation source) made of the Al—Ti alloy and the anode electrode to generate an arc discharge, and the target average composition and target shown in Table 8 are formed on the surface of the tool base. the average layer thickness of the (Ti 1-x Al x) (C y N 1-y) layer is deposited formed,
Reference Example Coated tools 14 and 15 were produced.

また、本発明被覆工具1〜15、比較例被覆工具1〜13および参考例被覆工具14,15の各構成層の縦断面を、走査電子顕微鏡を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めたところ、いずれも表7および表8に示される目標平均層厚と実質的に同じ平均層厚を示した。   Moreover, the longitudinal cross-section of each component layer of this invention coated tool 1-15, comparative example coated tool 1-13, and reference example coated tool 14,15 was measured using a scanning electron microscope, and five points within the observation visual field were measured. When the layer thickness was measured and averaged to determine the average layer thickness, both showed the average layer thickness substantially the same as the target average layer thickness shown in Tables 7 and 8.

なお、硬質被覆層の平均Al含有割合Xave、平均C含有割合Yaveについて、二次イオン質量分析(Secondary‐Ion‐Mass‐Spectroscopy:SIMS)により求めた。イオンビームを試料表面側から70μm×70μmの範囲に照射し、スパッタリング作用によって放出された成分について深さ方向の濃度測定を行った。平均Al含有割合Xave、平均C含有割合Yaveは深さ方向の平均値を示す。 The average Al content ratio X ave and average C content ratio Y ave of the hard coating layer were determined by secondary ion mass spectrometry (Secondary-Ion-Mass-Spectroscopy: SIMS). The ion beam was irradiated in the range of 70 μm × 70 μm from the sample surface side, and the concentration in the depth direction was measured for the components emitted by the sputtering action. The average Al content ratio X ave and the average C content ratio Y ave are average values in the depth direction.

TiとAlの複合窒化物または複合炭窒化物層の層中に含有される塩素については、電子線マイクロアナライザ(EPMA,Electron−Probe−Micro−Analyser)を用い、試料断面を研磨し、加速電圧10kVの電子線を試料断面側から照射し、得られた特性X線の解析結果の10点平均から平均塩素含有量Claveを算出した。
また、柱状組織を有する立方晶結晶粒と微粒六方晶結晶粒に含有される塩素量の比較および微粒六方晶結晶粒の平均塩素含有量Clhaveについては、前記複合窒化物または複合炭窒化物層中の立方晶構造の結晶粒および立方晶構造の結晶粒からなる柱状組織の粒界部に六方晶構造を有する微粒結晶粒に対して透過型電子顕微鏡を用いて、加速電圧200kVで微小領域1μm×1μmに対して観察を行い、前記立方晶構造の結晶粒および立方晶構造の結晶粒からなる柱状組織の粒界部に六方晶構造を有する微粒結晶粒を同定した後に、各々の結晶粒に対してエネルギー分散型X線分光法(EDS)による組成分析を行い、前記立方晶結晶粒および六方晶結晶粒におけるAlに対する塩素のピーク強度比IcおよびIhの比較を行い、さらに柱状組織の粒界部に存在する六方晶構造の結晶粒に関して、塩素含有量を10点測定し、その平均値から微粒六方晶結晶粒中に含有される平均塩素含有量Clhaveを算出した。
For chlorine contained in the composite nitride or composite carbonitride layer of Ti and Al, an electron beam microanalyzer (EPMA, Electron-Probe-Micro-Analyzer) is used to polish the sample cross section and accelerate voltage. The electron beam of 10 kV was irradiated from the sample cross section side, and the average chlorine content Cl ave was calculated from the average of 10 points of the analysis result of the obtained characteristic X-ray.
In addition, the comparison of the amount of chlorine contained in the cubic crystal grains having a columnar structure and the fine hexagonal crystal grains, and the average chlorine content Clh ave of the fine hexagonal crystal grains, the composite nitride or the composite carbonitride layer Using a transmission electron microscope for a fine crystal grain having a hexagonal crystal structure at a grain boundary portion of a columnar structure composed of cubic crystal grains and cubic crystal grains, a micro-region of 1 μm at an acceleration voltage of 200 kV X1 μm was observed, and after identifying the crystal grains having the hexagonal structure at the grain boundary part of the columnar structure composed of the cubic crystal grains and the cubic crystal grains, The composition analysis is performed by energy dispersive X-ray spectroscopy (EDS), and the peak intensity ratios Ic and Ih of chlorine to Al in the cubic crystal grains and the hexagonal crystal grains are compared. With respect to the hexagonal crystal grains present in the grain boundaries of the structure, the chlorine content was measured at 10 points, and the average chlorine content Clh ave contained in the fine hexagonal crystal grains was calculated from the average value.

なお、硬質被覆層の結晶構造については、X線回折装置を用い、Cu−Kα線を線源としてX線回折を行った場合、JCPDS00−038−1420立方晶TiNとJCPDS00−046−1200立方晶AlN、各々に示される同一結晶面の回折角度の間(例えば、36.66〜38.53°、43.59〜44.77°、61.81〜65.18°)に回折ピークが現れることを確認することによって調査した。   As for the crystal structure of the hard coating layer, when X-ray diffraction is performed using an X-ray diffractometer and Cu—Kα ray as a radiation source, JCPDS00-038-1420 cubic TiN and JCPDS00-046-1200 cubic crystal A diffraction peak appears between the diffraction angles of the same crystal plane shown in each of AlN (for example, 36.66 to 38.53 °, 43.59 to 44.77 °, 61.81 to 65.18 °). Investigated by confirming.

柱状組織を有する立方晶構造の結晶粒について、その平均粒子幅W及び平均アスペクト比Aを測定した。
平均粒子幅Wについては、走査型電子顕微鏡を用い硬質被覆層の縦断面観察を行った際に、硬質被覆層の層厚の半分の箇所において基体表面と平行な線を少なくとも100μm描き、その平行線の線分長を該平行線と交差する結晶粒界の数で除した数として、柱状組織を有する立方晶構造の結晶粒について、その平均粒子幅Wを求めた。
また、平均アスペクト比については、走査型電子顕微鏡を用い、幅100μm、高さが硬質被覆層全体を含む範囲で硬質被覆層の縦断面観察を行った際に、各結晶粒について粒子径の最も長い長さを長軸とし該長軸の長さおよび該長軸と直交する方向の最大長さを求め、長軸の長さを長軸と直交する方向の最大長さで除することにより、各結晶粒のアスペクト比を算出し、更に各結晶粒の面積を重みとしアスペクト比の加重平均として平均アスペクト比Aを求めた。
さらに、六方晶構造を有する微粒結晶粒については、その平均粒径Rと硬質被膜層に占める面積割合を求めた。
表7に、その結果を示す。
The average grain width W and average aspect ratio A of the cubic structure crystal grains having a columnar structure were measured.
Regarding the average particle width W, when the longitudinal section of the hard coating layer was observed using a scanning electron microscope, a line parallel to the substrate surface was drawn at least 100 μm at the half of the layer thickness of the hard coating layer, and the parallel width was drawn. The average grain width W of the crystal grains having a columnar structure was determined as the number obtained by dividing the line segment length by the number of grain boundaries intersecting the parallel lines.
As for the average aspect ratio, when the longitudinal cross-sectional observation of the hard coating layer was performed using a scanning electron microscope in a range where the width was 100 μm and the height included the entire hard coating layer, the particle diameter of each crystal grain was the largest. By determining the length of the long axis as the long axis and the maximum length in the direction orthogonal to the long axis, and dividing the length of the long axis by the maximum length in the direction orthogonal to the long axis, The aspect ratio of each crystal grain was calculated, and the average aspect ratio A was determined as a weighted average of the aspect ratios with the area of each crystal grain as a weight.
Furthermore, about the fine grain which has a hexagonal crystal structure, the average particle diameter R and the area ratio which occupies for a hard film layer were calculated | required.
Table 7 shows the results.

ついで、比較例被覆工具1〜13および参考例被覆工具14,15のそれぞれについても、本発明被覆工具1〜15と同様にして、硬質被覆層の平均Al含有割合Xave、平均C含有割合Yave、平均塩素含有量と微粒六方晶結晶粒における平均塩素含有量Clhave柱状組織を有する立方晶構造の結晶粒の平均粒子幅W及び平均アスペクト比A、六方晶構造を有する微粒結晶粒の平均粒径Rおよび硬質被膜層に占める面積割合を、それぞれ求めた。
表8に、その結果を示す。
Then, the average Al content ratio X ave and the average C content ratio Y of the hard coating layer are also applied to each of the comparative example coated tools 1 to 13 and the reference example coated tools 14 and 15 in the same manner as the present coated tools 1 to 15. ave, the average chlorine content and fine hexagonal average particle width W crystal grains of the cubic structure having an average chlorine content CLH ave columnar structure in the crystal grains and an average aspect ratio a, the average fine crystal grains having a hexagonal crystal structure The particle size R and the area ratio in the hard coating layer were determined.
Table 8 shows the results.







つぎに、前記の各種の被覆工具をいずれもカッタ径125mmの工具鋼製カッタ先端部に固定治具にてクランプした状態で、本発明被覆工具1〜15、比較例被覆工具1〜13および参考例被覆工具14,15について、以下に示す、合金鋼の高速断続切削の一種である乾式高速正面フライス、センターカット切削加工試験(通常の回転速度、切削速度、切り込み、一刃送り量は、それぞれ、800min−1、200 m/min、1.0mm、0.08mm/刃)を実施し、切刃の逃げ面摩耗幅を測定した。
被削材: JIS・SCM440幅100mm、長さ400mmのブロック材
回転速度: 955min−1
切削速度: 375m/min、
切り込み: 1.0mm、
一刃送り量: 0.12mm/刃、
切削時間: 8分、
表9に、前記切削試験の結果を示す。
Next, in the state where each of the above various coated tools is clamped to a tool steel cutter tip portion having a cutter diameter of 125 mm by a fixing jig, the coated tools 1 to 15 of the present invention, the comparative coated tools 1 to 13 and the reference Example For coated tools 14 and 15, the following dry high-speed face milling, which is a kind of high-speed intermittent cutting of alloy steel, center-cut cutting test (normal rotation speed, cutting speed, cutting, single-blade feed amount are respectively 800 min −1 , 200 m / min, 1.0 mm, 0.08 mm / tooth), and the flank wear width of the cutting edge was measured.
Work material: Block material of JIS / SCM440 width 100mm, length 400mm
Rotational speed: 955 min −1
Cutting speed: 375 m / min,
Cutting depth: 1.0mm,
Single blade feed amount: 0.12 mm / tooth,
Cutting time: 8 minutes,
Table 9 shows the results of the cutting test.


原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末およびCo粉末を用意し、これら原料粉末を、表10に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO規格CNMG120412のインサート形状をもったWC基超硬合金製の工具基体α〜γをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, ZrC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder and Co powder all having an average particle diameter of 1 to 3 μm are prepared. Compounded in the formulation shown in Table 10, added with wax, ball mill mixed in acetone for 24 hours, dried under reduced pressure, press-molded into a green compact of a predetermined shape at a pressure of 98 MPa. In a 5 Pa vacuum, vacuum sintering is performed at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour, and after sintering, the cutting edge is subjected to honing processing with an R of 0.07 mm. Tool bases α to γ made of a WC-base cemented carbide having an insert shape of CNMG12041 were manufactured.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、NbC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表11に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.09mmのホーニング加工を施すことによりISO規格・CNMG120412のインサート形状をもったTiCN基サーメット製の工具基体δを形成した。   In addition, as raw material powder, TiCN (mass ratio TiC / TiN = 50/50) powder, NbC powder, WC powder, Co powder, and Ni powder all having an average particle diameter of 0.5 to 2 μm are prepared, These raw material powders were blended into the composition shown in Table 11, wet mixed with a ball mill for 24 hours, dried, and then pressed into a green compact at a pressure of 98 MPa. Sintered in an atmosphere at a temperature of 1500 ° C. for 1 hour, and after sintering, the cutting edge part is subjected to a honing process of R: 0.09 mm so that the TiCN base has an insert shape of ISO standard / CNMG120212 A cermet tool substrate δ was formed.

つぎに、これらの工具基体α〜γおよび工具基体δの表面に、通常の化学蒸着装置を用い、まず、表4に示される条件で、所定の組成を有する(Ti1−xAl)(C1−y)層を目標層厚になるまで蒸着形成することにより、表13に示される本発明被覆工具16〜30を製造した。
なお、本発明被覆工具19〜28については、表3に示される形成条件で、表12に示される下部層、上部層の少なくともいずれかを形成した。
Next, a normal chemical vapor deposition apparatus is used on the surfaces of these tool bases α to γ and the tool base δ. First, under the conditions shown in Table 4, (Ti 1-x Al x ) ( The present invention coated tools 16 to 30 shown in Table 13 were manufactured by vapor-depositing the C y N 1-y ) layer until the target layer thickness was reached.
In addition, about this invention coated tools 19-28, at least any one of the lower layer and upper layer which are shown in Table 12 on the formation conditions shown in Table 3 was formed.

また、比較の目的で、同じく工具基体α〜γおよび工具基体δの表面に、通常の化学蒸着装置を用い、表5に示される条件で、比較例の(Ti1−xAl)(C1−y)層を目標層厚で蒸着形成することにより、表14に示される比較例被覆工具16〜28を製造した。
なお、本発明被覆工具19〜28と同様に、比較被覆工具19〜28については、表3に示される形成条件で、表12に示される下部層、上部層の少なくともいずれかを形成した。
Further, for the purpose of comparison, on the surfaces of the tool bases α to γ and the tool base δ, a normal chemical vapor deposition apparatus was used, and under the conditions shown in Table 5, (Ti 1-x Al x ) (C by depositing form y N 1-y) layer with a target layer thickness, to prepare a comparative example coated tool 16-28 shown in Table 14.
As with the inventive coated tools 19 to 28, the comparative coated tools 19 to 28 were formed with at least one of the lower layer and the upper layer shown in Table 12 under the formation conditions shown in Table 3.

参考のため、工具基体βおよび工具基体γの表面に、従来の物理蒸着装置を用いて、アークイオンプレーティングにより、参考例の(Ti1−xAl)(C1−y)層を目標層厚で蒸着形成することにより、表14に示される参考被覆工具29,30を製造した。
なお、アークイオンプレーティングの条件は、実施例1に示される条件と同様の条件を用いた。
For reference, the (Ti 1-x Al x ) (C y N 1-y ) layer of the reference example is formed on the surfaces of the tool base β and the tool base γ by arc ion plating using a conventional physical vapor deposition apparatus. The reference coating tools 29 and 30 shown in Table 14 were manufactured by vapor-depositing with a target layer thickness.
In addition, the conditions similar to the conditions shown in Example 1 were used for the conditions of arc ion plating.

また、本発明被覆工具16〜30、比較例被覆工具16〜28および参考例被覆工具29、30の各構成層の断面を、走査電子顕微鏡を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めたところ、いずれも表13および表14に示される目標平均層厚と実質的に同じ平均層厚を示した。
ついで、前記の本発明被覆工具16〜30の硬質被覆層について、硬質被覆層の平均Al含有割合Xave、平均C含有割合Yave、立方晶結晶粒および六方晶結晶粒におけるAlに対する塩素のピーク強度比Ih/Ic、微粒六方晶結晶粒の平均塩素含有量Clhave、平均塩素含有量Clave、柱状組織を有する立方晶構造の結晶粒の平均粒子幅W及び平均アスペクト比A、六方晶構造を有する微粒結晶粒の平均粒径Rおよび硬質被膜層に占める面積割合を、実施例1に示される方法と同様の方法を用い測定した。
表13に、その結果を示す。
Moreover, the cross section of each component layer of this invention coated tool 16-30, comparative example coated tool 16-28, and reference example coated tool 29,30 is measured using a scanning electron microscope, and five layers in an observation visual field When the thickness was measured and averaged to determine the average layer thickness, both showed the same average layer thickness as the target average layer thickness shown in Table 13 and Table 14.
Next, with respect to the hard coating layers of the above-described coated tools 16 to 30 of the present invention, the average Al content ratio X ave , average C content ratio Y ave of the hard coating layer, and the peak of chlorine with respect to Al in the cubic crystal grains and hexagonal crystal grains Strength ratio Ih / Ic, average chlorine content Clh ave of fine hexagonal crystal grains, average chlorine content Cl ave , average grain width W and average aspect ratio A of cubic crystal grains having a columnar structure, hexagonal crystal structure The average grain size R of the fine crystal grains and the area ratio of the hard coating layer were measured using the same method as that shown in Example 1.
Table 13 shows the results.

ついで、比較例被覆工具16〜28および参考例被覆工具29、30のそれぞれについても、本発明被覆工具16〜30と同様にして、硬質被覆層の平均Al含有割合Xave、平均C含有割合Yave、微粒六方晶結晶粒の平均塩素含有量Clhaveと平均塩素含有量Clave、立方晶結晶粒および六方晶結晶粒におけるAlに対する塩素のピーク強度比Ih/Ic、柱状組織を有する立方晶構造の結晶粒の平均粒子幅W及び平均アスペクト比A、六方晶構造を有する微粒結晶粒の平均粒径Rおよび硬質被膜層に占める面積割合を、それぞれ求めた。
表14に、その結果を示す。
Next, the average Al content ratio X ave and the average C content ratio Y of the hard coating layer were also obtained for each of the comparative coated tools 16 to 28 and the reference coated tools 29 and 30 in the same manner as the coated tools 16 to 30 of the present invention. ave , average chlorine content Clh ave and average chlorine content Cl ave of fine-grained hexagonal crystal grains, peak intensity ratio Ih / Ic of chlorine to Al in cubic crystal grains and hexagonal crystal grains, cubic structure having columnar structure The average grain width W and average aspect ratio A of the crystal grains, the average grain diameter R of the fine crystal grains having a hexagonal crystal structure, and the area ratio of the hard coating layer were obtained.
Table 14 shows the results.






つぎに、前記各種の被覆工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆工具16〜30、比較被覆工具16〜28および参考被覆工具29、30について、以下に示す、合金鋼の乾式高速断続切削試験、鋳鉄の湿式高速断続切削試験を実施し、いずれも切刃の逃げ面摩耗幅を測定した。
≪切削条件1≫
被削材:JIS・SCM435の長さ方向等間隔4本縦溝入り丸棒、
切削速度:380m/min、
切り込み:1.2mm、
送り:0.2mm/rev、
切削時間:5分、
(通常の切削速度は、220m/min)、
≪切削条件2≫
被削材:JIS・FCD700の長さ方向等間隔4本縦溝入り丸棒、
切削速度:310m/min、
切り込み:1.2mm、
送り:0.15mm/rev、
切削時間:5分、
(通常の切削速度は、180m/min)、
表15に、前記切削試験の結果を示す。
Next, in the state where each of the various coated tools is screwed to the tip of the tool steel tool with a fixing jig, the present coated tools 16 to 30, the comparative coated tools 16 to 28, and the reference coated tool 29, For No. 30, the following dry high-speed intermittent cutting test of alloy steel and wet high-speed intermittent cutting test of cast iron were performed, and the flank wear width of the cutting edge was measured for both.
≪Cutting condition 1≫
Work material: JIS · SCM435 lengthwise equally spaced four round grooved round bars,
Cutting speed: 380 m / min,
Cutting depth: 1.2mm,
Feed: 0.2mm / rev,
Cutting time: 5 minutes
(Normal cutting speed is 220 m / min),
≪Cutting condition 2≫
Work material: JIS / FCD700 lengthwise equal length 4 round bar with round groove,
Cutting speed: 310 m / min,
Cutting depth: 1.2mm,
Feed: 0.15mm / rev,
Cutting time: 5 minutes
(Normal cutting speed is 180 m / min),
Table 15 shows the results of the cutting test.


原料粉末として、いずれも0.5〜4μmの範囲内の平均粒径を有するcBN粉末、TiN粉末、TiCN粉末、TiC粉末、Al粉末、Al粉末を用意し、これら原料粉末を表16に示される配合組成に配合し、ボールミルで80時間湿式混合し、乾燥した後、120MPaの圧力で直径:50mm×厚さ:1.5mmの寸法をもった圧粉体にプレス成形し、ついでこの圧粉体を、圧力:1Paの真空雰囲気中、900〜1300℃の範囲内の所定温度に60分間保持の条件で焼結して切刃片用予備焼結体とし、この予備焼結体を、別途用意した、Co:8質量%、WC:残りの組成、並びに直径:50mm×厚さ:2mmの寸法をもったWC基超硬合金製支持片と重ね合わせた状態で、通常の超高圧焼結装置に装入し、通常の条件である圧力:4GPa、温度:1200〜1400℃の範囲内の所定温度に保持時間:0.8時間の条件で超高圧焼結し、焼結後上下面をダイヤモンド砥石を用いて研磨し、ワイヤー放電加工装置にて所定の寸法に分割し、さらにCo:5質量%、TaC:5質量%、WC:残りの組成およびJIS規格CNGA120412の形状(厚さ:4.76mm×内接円直径:12.7mmの80°菱形)をもったWC基超硬合金製インサート本体のろう付け部(コーナー部)に、質量%で、Zr:37.5%、Cu:25%、Ti:残りからなる組成を有するTi−Zr−Cu合金のろう材を用いてろう付けし、所定寸法に外周加工した後、切刃部に幅:0.13mm、角度:25°のホーニング加工を施し、さらに仕上げ研摩を施すことによりISO規格CNGA120412のインサート形状をもった工具基体イ〜ニをそれぞれ製造した。 As the raw material powder, cBN powder, TiN powder, TiCN powder, TiC powder, Al powder, and Al 2 O 3 powder each having an average particle diameter in the range of 0.5 to 4 μm are prepared. The mixture is blended in the composition shown in FIG. 1, wet mixed with a ball mill for 80 hours, dried, and then pressed into a green compact having a diameter of 50 mm × thickness: 1.5 mm under a pressure of 120 MPa. The green compact is sintered in a vacuum atmosphere at a pressure of 1 Pa at a predetermined temperature within a range of 900 to 1300 ° C. for 60 minutes to obtain a presintered body for a cutting edge piece. In addition, Co: 8% by mass, WC: remaining composition, and diameter: 50 mm × thickness: 2 mm, superposed on a WC-based cemented carbide support piece with a normal super-high pressure Insert into the sintering machine, normal conditions A certain pressure: 4 GPa, temperature: 1200 ° C. to 1400 ° C. within a predetermined temperature, holding time: 0.8 hour sintering, and after sintering, the upper and lower surfaces are polished with a diamond grindstone, and wire discharge It is divided into predetermined dimensions by a processing apparatus, and further Co: 5 mass%, TaC: 5 mass%, WC: remaining composition and shape of JIS standard CNGA12041 (thickness: 4.76 mm × inscribed circle diameter: 12. The brazing part (corner part) of the WC-based cemented carbide insert body having a 7 mm 80 ° rhombus) has a composition consisting of Zr: 37.5%, Cu: 25%, Ti: the rest in mass%. After brazing using a brazing material of Ti-Zr-Cu alloy and having a predetermined dimension, the cutting edge is subjected to honing with a width of 0.13 mm and an angle of 25 °, followed by finishing polishing. ISO regulations The tool substrate (a) to (k) two having the insert shape of CNGA120412 were produced, respectively.


つぎに、これらの工具基体イ〜ニの表面に、通常の化学蒸着装置を用い、表3に示される条件で、本発明の(Ti1−xAl)(C1−y)層を目標層厚で蒸着形成することにより、表18に示される本発明被覆工具31〜40を製造した。なお、本発明被覆工具34〜38については、表3に示される形成条件で、表17に示される下部層、上部層の少なくともいずれかを形成した。 Then, these tool substrate i ~ the surface of the two, using a conventional chemical vapor deposition apparatus under the conditions shown in Table 3, (Ti 1-x Al x) of the present invention (C y N 1-y) layer The present invention coated tools 31 to 40 shown in Table 18 were manufactured by vapor deposition with a target layer thickness. In addition, about this invention coated tools 34-38, at least any one of the lower layer and upper layer which are shown in Table 17 on the formation conditions shown in Table 3 was formed.

また、比較の目的で、同じく工具基体イ〜ニの表面に、通常の化学蒸着装置を用い表4に示される条件で、比較例の(Ti1−xAl)(C1−y)層を目標層厚で蒸着形成することにより、表19に示される比較例被覆工具31〜39を製造した。 Further, for the purpose of comparison, (Ti 1-x Al x ) (C y N 1-y ) of the comparative example was similarly formed on the surfaces of the tool bases a to d under the conditions shown in Table 4 using a normal chemical vapor deposition apparatus. The comparative example coated tools 31-39 shown in Table 19 were manufactured by vapor-depositing layers with the target layer thickness.

参考のため、工具基体イの表面に、従来の物理蒸着装置を用いて、アークイオンプレーティングにより、参考例の(Ti1−xAl)(C1−y)層を目標層厚で蒸着形成することにより、表19に示される参考例被覆工具40を製造した。
なお、アークイオンプレーティングの条件は、実施例1に示される条件と同様の条件を用い、前記工具基体の表面に、表19に示される目標平均組成、目標平均層厚の(Ti1−xAl)(C1−y)層を蒸着形成し、参考例被覆工具40を製造した。
For reference, the (Ti 1-x Al x ) (C y N 1-y ) layer of the reference example is formed on the surface of the tool substrate (i) by arc ion plating using a conventional physical vapor deposition apparatus. The reference example-coated tool 40 shown in Table 19 was manufactured by vapor deposition.
The arc ion plating conditions are the same as the conditions shown in Example 1, and the target average composition and target average layer thickness (Ti 1-x shown in Table 19) are formed on the surface of the tool base. An Al x ) (C y N 1-y ) layer was formed by vapor deposition to produce a reference example coated tool 40.

また、本発明被覆工具31〜40、比較例被覆工具31〜39および参考例被覆工具40の各構成層の断面を、走査電子顕微鏡を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めたところ、いずれも表18および表19に示される目標平均層厚と実質的に同じ平均層厚を示した。
ついで、前記の本発明被覆工具31〜40の硬質被覆層について、本発明被覆工具1〜15と同様にして、硬質被覆層の平均Al含有割合Xave、平均C含有割合Yave、立方晶結晶粒および六方晶結晶粒におけるAlに対する塩素のピーク強度比Ih/Ic、微粒六方晶結晶粒の平均塩素含有量Clhave、平均塩素含有量Clave、柱状組織を有する立方晶構造の結晶粒の平均粒子幅W及び平均アスペクト比A、六方晶構造を有する微粒結晶粒の平均粒径Rおよび硬質被膜層に占める面積割合を、それぞれ求めた。
表18に、その結果を示す。
Moreover, the cross section of each component layer of this invention coated tool 31-40, comparative example coated tool 31-39, and reference example coated tool 40 is measured using a scanning electron microscope, and the layer thickness of five points in an observation visual field is measured. When measured and averaged to determine the average layer thickness, both showed the average layer thickness substantially the same as the target average layer thickness shown in Table 18 and Table 19.
Next, with respect to the hard coating layers of the inventive coated tools 31 to 40, the average Al content ratio X ave , average C content ratio Y ave , cubic crystal of the hard coating layer is the same as in the present coated tools 1 to 15. Peak intensity ratio Ih / Ic of chlorine to Al in grains and hexagonal crystal grains, average chlorine content Clh ave of fine hexagonal crystal grains, average chlorine content Cl ave , average of cubic structure crystal grains having a columnar structure The particle width W, the average aspect ratio A, the average particle size R of the fine crystal grains having a hexagonal crystal structure, and the area ratio of the hard coating layer were determined.
Table 18 shows the results.

ついで、比較例被覆工具31〜39および参考例被覆工具40のそれぞれについても、本発明被覆工具31〜40と同様にして、硬質被覆層の平均Al含有割合Xavg、平均C含有割合Yavg、立方晶結晶粒および六方晶結晶粒におけるAlに対する塩素のピーク強度比Ih/Ic、六方晶結晶粒の平均塩素含有量Clhavg、平均塩素含有量Clavg、柱状組織を有する立方晶構造の結晶粒の平均粒子幅W及び平均アスペクト比A、六方晶構造を有する微粒結晶粒の平均粒径Rおよび硬質被膜層に占める面積割合を、それぞれ求めた。
表19に、その結果を示す。
Next, for each of the comparative example coated tools 31 to 39 and the reference example coated tool 40, the average Al content ratio X avg , the average C content ratio Y avg of the hard coating layer is the same as in the present invention coated tools 31 to 40. Cubic crystal grains and hexagonal crystal grains having a peak intensity ratio Ih / Ic of chlorine with respect to Al, average chlorine content Clh avg of hexagonal crystal grains, average chlorine content Cl avg , and cubic structure crystal grains having a columnar structure The average grain width W, the average aspect ratio A, the average grain size R of fine crystal grains having a hexagonal crystal structure, and the area ratio of the hard coating layer were determined.
Table 19 shows the results.




つぎに、前記の各種の被覆工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆工具31〜40、比較例被覆工具31〜39および参考例被覆工具40について、以下に示す、浸炭焼入れ合金鋼の乾式高速断続切削加工試験を実施し、切刃の逃げ面摩耗幅を測定した。
被削材: JIS・SCr420(硬さ:HRC62)の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 235m/min、
切り込み: 0.12mm、
送り: 0.12mm/rev、
切削時間: 4分、
表20に、前記切削試験の結果を示す。
Next, in the state where each of the above various coated tools is screwed to the tip of the tool steel tool with a fixing jig, the present coated tools 31 to 40, the comparative coated tools 31 to 39, and the reference coated samples About the tool 40, the dry high-speed intermittent cutting test of the carburizing hardening alloy steel shown below was implemented, and the flank wear width of the cutting edge was measured.
Work material: JIS · SCr420 (Hardness: HRC62) lengthwise equidistant four round bars with vertical grooves,
Cutting speed: 235 m / min,
Cutting depth: 0.12mm,
Feed: 0.12mm / rev,
Cutting time: 4 minutes
Table 20 shows the results of the cutting test.


表7〜9、表13〜15および表18〜20に示される結果から、本発明被覆工具1〜40は、所定組成の(Ti1−xAl)(C1−y)層が成膜され、該層は微量の塩素を含有し、柱状組織を有する立方晶構造の結晶粒は、平均粒子幅Wが0.1〜2μmおよび平均アスペクト比Aが2〜10であって、該柱状組織の粒界部には、平均粒径Rが0.01〜0.3μmの六方晶構造の微粒結晶粒が形成されていることから、合金鋼、鋳鉄などの高速断続切削加工ですぐれた耐チッピング性、耐摩耗性を発揮する。
これに対して、比較例被覆工具1〜13,16〜28、31〜39、参考例被覆工具9,10,14、15、40については、いずれも、硬質被覆層にチッピング、欠損、剥離等の異常損傷が発生するばかりか、比較的短時間で使用寿命に至ることが明らかである。
From the results shown in Tables 7 to 9, Tables 13 to 15, and Tables 18 to 20, the coated tools 1 to 40 of the present invention have a (Ti 1-x Al x ) (C y N 1-y ) layer having a predetermined composition. The cubic structure crystal grains containing a small amount of chlorine and having a columnar structure have an average particle width W of 0.1 to 2 μm and an average aspect ratio A of 2 to 10, At the grain boundary part of the columnar structure, fine crystal grains having a hexagonal structure with an average grain size R of 0.01 to 0.3 μm are formed, which is excellent in high-speed intermittent cutting of alloy steel, cast iron and the like. Demonstrates chipping resistance and wear resistance.
On the other hand, all of the comparative example coated tools 1 to 13, 16 to 28, 31 to 39 and the reference example coated tools 9, 10, 14, 15, and 40 are chipped, chipped, peeled, etc. on the hard coating layer. It is clear that not only abnormal damage occurs, but also the service life is reached in a relatively short time.

前述のように、本発明の被覆工具は、合金鋼、鋳鉄などの高速断続切削加工ばかりでなく、各種の被削材の被覆工具として用いることができ、しかも、長期の使用に亘ってすぐれた耐チッピング性、耐摩耗性を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention can be used as a coated tool for various work materials as well as high-speed intermittent cutting of alloy steel, cast iron and the like, and is excellent over a long period of use. Since it exhibits chipping resistance and wear resistance, it can satisfactorily cope with high-performance cutting equipment, labor saving and energy saving of cutting, and cost reduction.

Claims (6)

炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体の表面に、硬質被覆層を設けた表面被覆切削工具において、
(a)前記硬質被覆層は、化学蒸着法により成膜された平均層厚1〜20μmのTiとAlの複合窒化物または複合炭窒化物層を少なくとも含み、組成式:(Ti1−xAl)(C1−y)で表した場合、AlのTiとAlの合量に占める含有割合XaveおよびCのCとNの合量に占める含有割合Yave(但し、Xave、Yaveはいずれも原子比)が、それぞれ、0.60≦Xave≦0.95、0≦Yave≦0.005を満足し、
(b)前記複合窒化物または複合炭窒化物層の層中に含有される平均塩素含有量は、0.1〜0.5原子%であり、
(c)前記複合窒化物または複合炭窒化物層について該層断面側から観察した場合、複合窒化物または複合炭窒化物層は、立方晶構造の結晶粒からなる柱状組織を有し、個々の立方晶構造の結晶粒の平均粒子幅Wが0.1〜2μm、平均アスペクト比Aが2〜10であり、
(d)前記複合窒化物または複合炭窒化物層には、立方晶構造の結晶粒からなる柱状組織の粒界部に六方晶構造を有する微粒結晶粒が存在し、該微粒結晶粒の平均粒径Rは0.01〜0.3μmであり、
(e)前記複合窒化物または複合炭窒化物層中の立方晶構造の結晶粒および立方晶構造の結晶粒からなる柱状組織の粒界部に六方晶構造を有する微粒結晶粒に対して透過型電子顕微鏡を用いて、エネルギー分散型X線分光法(EDS)による組成分析を行い、各々のAlに対する塩素のピーク強度比に関して、六方晶構造を有する微粒結晶粒の該ピーク強度比Ihの立方晶構造の結晶粒の該ピーク強度比Icに対する比Ih/Icが5より大きいことを特徴とする表面被覆切削工具。
In a surface-coated cutting tool in which a hard coating layer is provided on the surface of a tool base composed of any of tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, or cubic boron nitride-based ultrahigh-pressure sintered body,
(A) The hard coating layer includes at least a composite nitride or composite carbonitride layer of Ti and Al having an average layer thickness of 1 to 20 μm formed by a chemical vapor deposition method, and has a composition formula: (Ti 1-x Al x ) When expressed by (C y N 1-y ), the content ratio X ave in the total amount of Ti and Al in Al and the content ratio Y ave in the total amount of C and N in C (where X ave , Y ave is atomic ratio) satisfying 0.60 ≦ X ave ≦ 0.95 and 0 ≦ Y ave ≦ 0.005,
(B) The average chlorine content contained in the layer of the composite nitride or composite carbonitride layer is 0.1 to 0.5 atomic%,
(C) When the composite nitride or the composite carbonitride layer is observed from the cross-sectional side, the composite nitride or the composite carbonitride layer has a columnar structure composed of cubic crystal grains, The average grain width W of the cubic structure crystal grains is 0.1 to 2 μm, the average aspect ratio A is 2 to 10,
(D) In the composite nitride or composite carbonitride layer, there are fine crystal grains having a hexagonal crystal structure at a grain boundary portion of a columnar structure made of cubic crystal grains, and an average grain of the fine crystal grains The diameter R is 0.01 to 0.3 μm,
(E) Transmission type with respect to fine crystal grains having a hexagonal crystal structure at a grain boundary portion of a columnar structure composed of cubic structure crystal grains and cubic structure crystal grains in the composite nitride or composite carbonitride layer Composition analysis by energy dispersive X-ray spectroscopy (EDS) is performed using an electron microscope, and with respect to the peak intensity ratio of chlorine to each Al, cubic crystals having a peak intensity ratio Ih of fine crystal grains having a hexagonal structure. A surface-coated cutting tool, wherein the ratio Ih / Ic of the crystal grains of the structure to the peak intensity ratio Ic is greater than 5.
前記複合窒化物または複合炭窒化物層において、前記複合窒化物または複合炭窒化物層中の立方晶構造の結晶粒および立方晶構造の結晶粒からなる柱状組織の粒界部に六方晶構造を有する微粒結晶粒に対して透過型電子顕微鏡を用いて、エネルギー分散型X線分光法(EDS)による組成分析を行い、微粒六方晶結晶粒における含有塩素量が1.0〜3.0原子%であることを特徴とする請求項1に記載の表面被覆切削工具。   In the composite nitride or composite carbonitride layer, a hexagonal crystal structure is formed at a grain boundary portion of a columnar structure made of cubic crystal grains and cubic crystal grains in the composite nitride or composite carbonitride layer. The compositional analysis by energy dispersive X-ray spectroscopy (EDS) is performed on the fine crystal grains having a transmission electron microscope, and the content of chlorine in the fine hexagonal crystal grains is 1.0 to 3.0 atomic%. The surface-coated cutting tool according to claim 1, wherein 前記複合窒化物または複合炭窒化物層に存在する六方晶構造を有する微粒結晶粒が硬質被膜層に占める割合が30面積%以下であることを特徴とする請求項1または2に記載の表面被覆切削工具。   The surface coating according to claim 1 or 2, wherein the proportion of fine crystal grains having a hexagonal crystal structure present in the composite nitride or composite carbonitride layer in the hard coating layer is 30 area% or less. Cutting tools. 前記炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体と、前記TiとAlの複合窒化物または複合炭窒化物層の間に、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、かつ、0.1〜20μmの合計平均層厚を有するTi化合物層を含む下部層が存在することを特徴とする請求項1乃至3のいずれか一項に記載の表面被覆切削工具。   A tool base composed of any one of the tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, or cubic boron nitride-based ultrahigh pressure sintered body, and a Ti / Al composite nitride or composite carbonitride layer. In between, it consists of one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride layer, and has a total average layer thickness of 0.1-20 μm The surface-coated cutting tool according to any one of claims 1 to 3, wherein there is a lower layer including a Ti compound layer including 前記複合窒化物または複合炭窒化物層の上部に、少なくとも1〜25μmの平均層厚を有する酸化アルミニウム層を含む上部層が存在することを特徴とする請求項1乃至4のいずれか一項に記載の表面被覆切削工具。   5. The upper layer including an aluminum oxide layer having an average layer thickness of at least 1 to 25 μm exists above the composite nitride or composite carbonitride layer. 6. The surface-coated cutting tool described. 前記複合窒化物または複合炭窒化物層は、少なくとも、トリメチルアルミニウムを反応ガス成分として含有する化学蒸着法により成膜されたものであることを特徴とする請求項1乃至5のいずれか一項に記載の表面被覆切削工具。   The composite nitride or composite carbonitride layer is formed by a chemical vapor deposition method containing at least trimethylaluminum as a reaction gas component, according to any one of claims 1 to 5. The surface-coated cutting tool described.
JP2014174286A 2014-08-28 2014-08-28 Surface coated cutting tool with excellent chipping resistance due to hard coating layer Active JP6296298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014174286A JP6296298B2 (en) 2014-08-28 2014-08-28 Surface coated cutting tool with excellent chipping resistance due to hard coating layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014174286A JP6296298B2 (en) 2014-08-28 2014-08-28 Surface coated cutting tool with excellent chipping resistance due to hard coating layer

Publications (2)

Publication Number Publication Date
JP2016049573A true JP2016049573A (en) 2016-04-11
JP6296298B2 JP6296298B2 (en) 2018-03-20

Family

ID=55657507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014174286A Active JP6296298B2 (en) 2014-08-28 2014-08-28 Surface coated cutting tool with excellent chipping resistance due to hard coating layer

Country Status (1)

Country Link
JP (1) JP6296298B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016130343A (en) * 2015-01-14 2016-07-21 住友電工ハードメタル株式会社 Hard coating, cutting tool and method of manufacturing hard coating
JP2019005867A (en) * 2017-06-26 2019-01-17 三菱マテリアル株式会社 Surface-coated cutting tool with hard coating layer exhibiting excellent anti-chipping properties
JP2019115957A (en) * 2017-12-27 2019-07-18 三菱マテリアル株式会社 Surface coated cutting tool having hard coating layer exhibiting excellent wear resistance
JP2020055097A (en) * 2018-09-28 2020-04-09 三菱マテリアル株式会社 Surface-coated cutting tool with hard coating layer exhibiting excellent chipping resistance
JP2020055041A (en) * 2018-09-28 2020-04-09 三菱マテリアル株式会社 Surface cutting tool with hard coating layer exhibiting excellent chipping resistance
JP2020104209A (en) * 2018-12-27 2020-07-09 三菱マテリアル株式会社 Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008545063A (en) * 2005-07-04 2008-12-11 フラウンホーファー−ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウ Hard film-coated object and method for manufacturing the same
JP2013212575A (en) * 2012-03-09 2013-10-17 Mitsubishi Materials Corp Surface-coated cutting tool having hard coating layer exhibiting superior chipping resistance during high-speed intermittent cutting
JP2013223894A (en) * 2012-04-20 2013-10-31 Mitsubishi Materials Corp Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high speed milling cutting and high speed intermittent cutting
JP2014024131A (en) * 2012-07-25 2014-02-06 Mitsubishi Materials Corp Surface coated cutting tool coated with hard coating layer providing excellent chipping resistance in high-speed intermittent cutting
JP2014097536A (en) * 2012-11-13 2014-05-29 Mitsubishi Materials Corp Surface coating cutting tool whose hard coating layer exerts excellent chipping resistance in high-speed intermittent cutting work
JP2014128837A (en) * 2012-12-27 2014-07-10 Mitsubishi Materials Corp Surface-coated cutting tool with hard coating layer exerting excellent anti-chipping properties
JP2014133267A (en) * 2013-01-08 2014-07-24 Mitsubishi Materials Corp Surface-coated cutting tool whose hard coating layer exhibits excellent oxidation resistance, chipping resistance and abrasion resistance

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008545063A (en) * 2005-07-04 2008-12-11 フラウンホーファー−ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウ Hard film-coated object and method for manufacturing the same
JP2013212575A (en) * 2012-03-09 2013-10-17 Mitsubishi Materials Corp Surface-coated cutting tool having hard coating layer exhibiting superior chipping resistance during high-speed intermittent cutting
JP2013223894A (en) * 2012-04-20 2013-10-31 Mitsubishi Materials Corp Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high speed milling cutting and high speed intermittent cutting
JP2014024131A (en) * 2012-07-25 2014-02-06 Mitsubishi Materials Corp Surface coated cutting tool coated with hard coating layer providing excellent chipping resistance in high-speed intermittent cutting
JP2014097536A (en) * 2012-11-13 2014-05-29 Mitsubishi Materials Corp Surface coating cutting tool whose hard coating layer exerts excellent chipping resistance in high-speed intermittent cutting work
JP2014128837A (en) * 2012-12-27 2014-07-10 Mitsubishi Materials Corp Surface-coated cutting tool with hard coating layer exerting excellent anti-chipping properties
JP2014133267A (en) * 2013-01-08 2014-07-24 Mitsubishi Materials Corp Surface-coated cutting tool whose hard coating layer exhibits excellent oxidation resistance, chipping resistance and abrasion resistance

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016130343A (en) * 2015-01-14 2016-07-21 住友電工ハードメタル株式会社 Hard coating, cutting tool and method of manufacturing hard coating
US10434580B2 (en) 2015-01-14 2019-10-08 Sumitomo Electric Hardmetal Corp. Hard coating, cutting tool, and method for producing hard coating
JP2019005867A (en) * 2017-06-26 2019-01-17 三菱マテリアル株式会社 Surface-coated cutting tool with hard coating layer exhibiting excellent anti-chipping properties
JP2019115957A (en) * 2017-12-27 2019-07-18 三菱マテリアル株式会社 Surface coated cutting tool having hard coating layer exhibiting excellent wear resistance
JP7015978B2 (en) 2017-12-27 2022-02-04 三菱マテリアル株式会社 Surface-coated cutting tools with excellent wear resistance with a hard coating layer
JP2020055097A (en) * 2018-09-28 2020-04-09 三菱マテリアル株式会社 Surface-coated cutting tool with hard coating layer exhibiting excellent chipping resistance
JP2020055041A (en) * 2018-09-28 2020-04-09 三菱マテリアル株式会社 Surface cutting tool with hard coating layer exhibiting excellent chipping resistance
JP7183519B2 (en) 2018-09-28 2022-12-06 三菱マテリアル株式会社 A surface cutting tool with a hard coating that exhibits excellent chipping resistance
JP2020104209A (en) * 2018-12-27 2020-07-09 三菱マテリアル株式会社 Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance
JP7198412B2 (en) 2018-12-27 2023-01-04 三菱マテリアル株式会社 A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance

Also Published As

Publication number Publication date
JP6296298B2 (en) 2018-03-20

Similar Documents

Publication Publication Date Title
JP6268530B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6620482B2 (en) Surface coated cutting tool with excellent chipping resistance
JP5924507B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6478100B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6024981B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6394898B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6090063B2 (en) Surface coated cutting tool
JP5939508B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6417959B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6391045B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6150109B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
WO2015163391A1 (en) Surface-coated cutting tool in which hard coating layer exhibits excellent chipping resistance
JP6296294B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP2015193071A (en) Surface coated cutting tool and manufacturing method of the same
JP6296298B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6344040B2 (en) Surface-coated cutting tool with excellent chipping resistance
JP2013248675A (en) Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting
JP2014128837A (en) Surface-coated cutting tool with hard coating layer exerting excellent anti-chipping properties
JP2016005863A (en) Surface-coated cutting tool with hard coating layer showing excellent chipping resistance
JP5946016B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP5935479B2 (en) Surface-coated cutting tool with excellent chipping resistance with a hard coating layer in high-speed milling and high-speed intermittent cutting
JP6171800B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP2015016512A (en) Surface-coated cutting tool with hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting
JP6726403B2 (en) Surface-coated cutting tool with excellent hard coating layer and chipping resistance
WO2017038840A1 (en) Surface-coated cutting tool having rigid coating layer exhibiting excellent chipping resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180207

R150 Certificate of patent or registration of utility model

Ref document number: 6296298

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150