JP2020104209A - Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance - Google Patents

Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance Download PDF

Info

Publication number
JP2020104209A
JP2020104209A JP2018245065A JP2018245065A JP2020104209A JP 2020104209 A JP2020104209 A JP 2020104209A JP 2018245065 A JP2018245065 A JP 2018245065A JP 2018245065 A JP2018245065 A JP 2018245065A JP 2020104209 A JP2020104209 A JP 2020104209A
Authority
JP
Japan
Prior art keywords
layer
avg
average
composite
crystal grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018245065A
Other languages
Japanese (ja)
Other versions
JP7198412B2 (en
Inventor
大樹 中村
Daiki Nakamura
大樹 中村
卓也 石垣
Takuya Ishigaki
卓也 石垣
光亮 柳澤
Mitsuaki Yanagisawa
光亮 柳澤
尚志 本間
Hisashi Honma
尚志 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2018245065A priority Critical patent/JP7198412B2/en
Publication of JP2020104209A publication Critical patent/JP2020104209A/en
Application granted granted Critical
Publication of JP7198412B2 publication Critical patent/JP7198412B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drilling Tools (AREA)

Abstract

To provide a cutting tool exerting excellent chipping resistance over a long period even when the tool is applied to high-speed intermittent cutting of alloy steels or high-carbon steels.SOLUTION: A cutting tool in this invention has a hard coating layer (Ti1-XAlX)(CYN1-Y) of NaCl type face-centered cubic structure having an average layer thickness of 1.0 to 20.0 μm and 80 area% or more. The coating layer has an average grain width W of 0.10 to 2.00 μm and an average aspect ratio A of 2.0 to 10.0; Xavg of each section divided at 0.5 μm interval satisfies 0.60≤Xavg≤0.95; Yavg of the whole layer satisfies 0.000≤Yavg≤0.005; and Xavg increases in a tool surface direction. The cutting tool satisfies Xαavg≤0.90:Xαavg+0.10≤Xβavg≤1.00, and 0.90<Xαavg:Xαavg+0.05≤Xβavg≤1.00 on the lines L1 and L3 penetrating a crystal in an area α surrounded by the curve m entered by 10 nm in the grain from an adjacent crystal grain boundary, and an area β surrounded by m and the grain boundary.SELECTED DRAWING: Figure 1

Description

本発明は、合金鋼や高炭素鋼等の高速断続切削加工であっても、硬質被覆層が優れた耐チッピング性を備えることにより、長期の使用にわたって優れた切削性能を発揮する表面被覆切削工具(以下、被覆工具ということがある)に関するものである。 The present invention provides a surface-coated cutting tool that exhibits excellent cutting performance over a long period of use by providing a hard coating layer with excellent chipping resistance even in high-speed interrupted cutting of alloy steel, high-carbon steel, etc. (Hereinafter, sometimes referred to as a coated tool).

従来、炭化タングステン(以下、WCで示す)基超硬合金等の工具基体(以下、工具基体という)の表面に、硬質被覆層として、Ti−Al系の複合炭窒化物層を蒸着法により被覆形成した被覆工具があり、これらは、優れた耐摩耗性を発揮することが知られている。
ただ、前記従来のTi−Al系の複合炭窒化物層を被覆形成した被覆工具は、比較的耐摩耗性に優れるものの、高速断続切削条件で用いた場合にチッピング等の異常損耗を発生しやすいことから、硬質被覆層の改善についての種々の提案がなされている。
Conventionally, a Ti-Al-based composite carbonitride layer is coated as a hard coating layer on the surface of a tool substrate (hereinafter, referred to as a tool substrate) such as a tungsten carbide (hereinafter referred to as WC)-based cemented carbide by a vapor deposition method. There are coated tools formed which are known to exhibit excellent wear resistance.
However, the above-mentioned conventional tool coated with the Ti-Al-based composite carbonitride layer is relatively excellent in wear resistance, but is prone to abnormal wear such as chipping when used under high-speed intermittent cutting conditions. Therefore, various proposals have been made for improving the hard coating layer.

例えば、特許文献1には、基体上にCVD法により成膜された、厚さが1〜16μmで85体積%以上のfccのTi1−xAl層(0.40≦x≦0.95、0≦y≦0.10、0.85≦z≦1.15)を有し、該層の結晶粒界にはTi1−oAl(0.95≦o≦1.00、0≦p≦0.10、0.85≦q≦1.15、o−x≧0.05)が析出している被覆工具が記載されている。 For example, in Patent Document 1, a Ti 1-x Al x C y N z layer (0.40≦x) having a thickness of 1 to 16 μm and an fcc of 85 vol% or more, which is formed on a substrate by a CVD method, is disclosed. ≦ 0.95,0 ≦ y ≦ 0.10,0.85 ≦ z ≦ 1.15) has, on the layer of the grain boundaries Ti 1-o Al o C p N q (0.95 ≦ o≦1.00, 0≦p≦0.10, 0.85≦q≦1.15, ox≧0.05) are described.

また、例えば、特許文献2には、単層又は多層の層系で被覆された被覆工具であって、該層系が、少なくとも1つの硬質材料複合層を有しており、該複合層が、主相としてNaCl型の面心立方構造を有するTiAlCN及び六方晶AlNを含有している被覆工具において、該NaCl型の面心立方構造を有するTiAlCNが、≧0.1μmの結晶子サイズを有する微晶質fcc−Ti1-xAlxyz(ここで、x>0.75、y=0〜0.25で、かつz=0.75〜1である)であり、かつ、該複合層がさらに粒界領域内に非晶質炭素を0.01%〜20%の質量割合で含有している被覆工具が記載されている。 Further, for example, Patent Document 2 discloses a coated tool coated with a single-layer or multi-layered layer system, the layer system having at least one hard material composite layer, and the composite layer comprising: In a coated tool containing TiAlCN having a NaCl-type face-centered cubic structure and hexagonal AlN as a main phase, the TiAlCN having a NaCl-type face-centered cubic structure has a crystallite size of ≧0.1 μm. crystalline fcc-Ti 1-x Al x C y N z ( wherein, x> 0.75, with y = 0-0.25, and a z = 0.75 to) a, and the A coated tool is described in which the composite layer further contains amorphous carbon in the grain boundary region in a mass proportion of 0.01% to 20%.

国際特許公開2017/016826号International Patent Publication No. 2017/016826 特開2013−510946号公報JP, 2013-510946, A

前記特許文献1に記載されているCVD法で蒸着形成したTi1−xAl層は、Alの含有割合xを高め、また、NaCl型の面心立方構造の結晶粒を形成させることができることから、所定の硬さを有し耐摩耗性に優れた硬質被覆層が得られるものの、高速断続切削加工に供したとき靭性に劣ることがあった。
また、前記特許文献2に記載されている被覆工具は、切削時において微細な結晶粒を有することから耐酸化性に劣るため、満足できる切削性能を発揮するとは言えないことがあった。
Wherein the Ti 1-x Al x C y N z layer formed deposited by the CVD method disclosed in Patent Document 1, increasing the proportion x of Al, also forming a crystal grain of the face-centered cubic structure of NaCl type Therefore, although a hard coating layer having a predetermined hardness and excellent in wear resistance can be obtained, when subjected to high speed intermittent cutting, the toughness may be poor.
Further, the coated tool described in Patent Document 2 is inferior in oxidation resistance because it has fine crystal grains at the time of cutting, and therefore, it may not be said that it exhibits satisfactory cutting performance.

そこで、本発明は前記課題を解決し、硬質被覆層の耐摩耗性、靭性を改善して、合金鋼および高炭素鋼等の高速断続切削等に供した場合であっても、長期の使用にわたって優れた耐チッピング性を発揮する被覆工具を提供することを目的とする。 Therefore, the present invention solves the above problems, improves the wear resistance of the hard coating layer, toughness, even when subjected to high-speed intermittent cutting of alloy steel and high carbon steel, etc., over a long period of use It is an object to provide a coated tool that exhibits excellent chipping resistance.

本発明者は、TiとAlとの複合窒化物層または複合炭窒化物層(以下、これらを「TiAlCN層」と表すことがある)を少なくとも含む硬質被覆層を工具基体に設けた被覆工具の耐チッピング性の改善を図るべく、特に、Alの含有割合について、硬質被覆層の層厚方向の変化、NaCl型の面心立方構造を有する結晶粒の粒界近傍領域とそれ以外の領域における関係が、耐チッピング性の向上にどのような影響を与えるかについて鋭意検討した。 The inventor of the present invention provides a coated tool in which a hard coating layer including at least a composite nitride layer of Ti and Al or a composite carbonitride layer (hereinafter, these may be referred to as “TiAlCN layer”) is provided on a tool base. In order to improve the chipping resistance, in particular, with respect to the content ratio of Al, the change in the layer thickness direction of the hard coating layer, the relation between the grain boundary vicinity region of the crystal grain having the NaCl type face-centered cubic structure and the other region However, the present inventors have diligently studied how it affects the improvement of chipping resistance.

その結果、TiAlCN層におけるAlの含有割合に関し、
(1)被覆層の層厚方向において、工具表面に向かって増加し、かつ、
(2)工具基体表面に平行な方向(被覆層の層厚方向に垂直な方向)において、NaCl型の面心立方構造を有する結晶粒の粒界近傍領域と該領域でない領域の間に所定の関係が成立するとき、
TiAlCN層の耐摩耗性、靭性が改善されて、合金鋼および炭素鋼等の高速断続切削等に供した場合であっても、長期の使用にわたって優れた耐チッピング性を発揮するという新規な知見を得た。
なお、TiAlCN層は、微量のOやCl等の不可避的に含まれる元素を有していても後述する発明の効果は損なわれない。
As a result, regarding the Al content in the TiAlCN layer,
(1) Increasing toward the tool surface in the layer thickness direction of the coating layer, and
(2) In a direction parallel to the tool substrate surface (direction perpendicular to the layer thickness direction of the coating layer), a predetermined distance is provided between a grain boundary vicinity region of crystal grains having a NaCl-type face-centered cubic structure and a region other than the grain boundary. When the relationship is established,
A new finding that the TiAlCN layer has improved wear resistance and toughness and exhibits excellent chipping resistance over long-term use even when subjected to high-speed intermittent cutting of alloy steel and carbon steel. Obtained.
It should be noted that the TiAlCN layer does not impair the effects of the invention described later even if it has a trace amount of elements such as O and Cl that are inevitably contained.

本発明は、前記知見に基づいてなされたものであって、
「(1)工具基体の表面に、硬質被覆層が設けられた表面被覆切削工具において、
(a)前記硬質被覆層は、平均層厚1.0〜20.0μmのTiとAlの複合窒化物層または複合炭窒化物層を少なくとも含み、
(b)前記複合窒化物層または複合炭窒化物層は、NaCl型の面心立方構造を有する複合窒化物または複合炭窒化物の結晶粒の占める割合が80面積%以上であり、
(c)前記複合窒化物層または複合炭窒化物層について該層の縦断面を観察した場合に、前記複合窒化物層または複合炭窒化物層内の前記NaCl型の面心立方構造を有する結晶粒は、平均粒子幅Wが0.10〜2.00μm、平均アスペクト比Aが2.0〜10.0であり、
(d)前記複合窒化物層または複合炭窒化物層は、
組成式:(Ti1−XAl)(C1−Y
で表した場合、0.5μmの間隔で該層を層厚方向に複数の区間に分割したとき、各区間におけるAlのTiとAlの合量に占める平均含有割合Xavgが0.60≦Xavg≦0.95を満足し、また、該層全体におけるCのCとNの合量に占める平均含有割合Yavgが0.000≦Yavg≦0.005を満足し、(但し、Xavg、Yavgはいずれも原子比)
(e)前記複合窒化物層または複合炭窒化物層において、前記Alの平均含有割合Xavgが該層の層厚方向において工具表面に向かって増加し、
(f)前記複合窒化物層または複合炭窒化物層において、前記NaCl型の面心立方構造を有する隣り合う2つの結晶粒の粒界から粒内に10nm入り込んだ曲線mに囲まれた範囲を領域α、該曲線mと粒界に囲まれた範囲を領域βとし、前記工具基体表面に平行に複数の前記隣り合う結晶粒の粒界を貫通する線分を、前記層の厚さを6等分する間隔で5本引いたとき、層厚方向で最も工具基体側端面に近い線分L1および中央に位置する線分L3上のいずれにおいても、
関係式:Xαavg≦0.90のときXαavg+0.10≦Xβavg≦1.00、0.90<XαavgのときXαavg+0.05≦Xβavg≦1.00(ただし、Xαavg及びXβavgはそれぞれ前記領域αおよび前記領域βにおけるAlのTiとAlの合量に占める含有割合の平均値)
を満足する、
ことを特徴とする表面被覆切削工具。
(2)前記複合窒化物層または複合炭窒化物層について、該層の縦断面を観察した場合に、前記複合窒化物層または複合炭窒化物層内の前記NaCl型の面心立方構造を有する個々の結晶粒の粒界に存在する、ウルツ鉱型構造を有する結晶粒の面積割合は5.0面積%以下であり、該結晶粒の平均粒径Rは0.50μm以下であることを特徴とする前記(1)に記載の表面被覆切削工具。」
である。
The present invention was made based on the above findings,
"(1) In a surface-coated cutting tool in which a hard coating layer is provided on the surface of a tool base,
(A) The hard coating layer includes at least a composite nitride layer or a composite carbonitride layer of Ti and Al having an average layer thickness of 1.0 to 20.0 μm,
(B) In the composite nitride layer or the composite carbonitride layer, the ratio of the crystal grains of the composite nitride or the composite carbonitride having the NaCl-type face-centered cubic structure is 80 area% or more,
(C) A crystal having the NaCl-type face-centered cubic structure in the composite nitride layer or the composite carbonitride layer, when the longitudinal section of the composite nitride layer or the composite carbonitride layer is observed. The particles have an average particle width W of 0.10 to 2.00 μm and an average aspect ratio A of 2.0 to 10.0,
(D) The composite nitride layer or the composite carbonitride layer is
Compositional formula: (Ti 1-X Al X )(C Y N 1-Y )
When the layer is divided into a plurality of sections in the layer thickness direction at intervals of 0.5 μm, the average content ratio X avg of Al in Ti and Al in each section is 0.60≦X. avg ≤ 0.95, and the average content Y avg of C in the total amount of C and N in the entire layer satisfies 0.000 ≤ Y avg ≤ 0.005 (provided that X avg , Y avg are all atomic ratios)
(E) In the composite nitride layer or the composite carbonitride layer, the average content ratio X avg of Al increases toward the tool surface in the layer thickness direction of the layer,
(F) In the composite nitride layer or the composite carbonitride layer, a range surrounded by a curve m in which 10 nm is inserted into the grain from the grain boundary of two adjacent crystal grains having the NaCl-type face-centered cubic structure A region α, a region surrounded by the curve m and the grain boundary is defined as a region β, and a line segment penetrating the grain boundaries of the plurality of adjacent crystal grains in parallel to the tool base surface has a layer thickness of 6 When five lines are drawn at equal intervals, both on the line segment L1 closest to the tool base side end face and the line segment L3 located at the center in the layer thickness direction,
Relationship: Xα avg avg + 0.10 ≦ when ≦ 0.90 Xβ avg ≦ 1.00,0.90 <When Xα avg Xα avg + 0.05 ≦ Xβ avg ≦ 1.00 ( provided that, X [alpha avg and Xβ avg is the average value of the content ratio of Al in the total amount of Ti and Al in the regions α and β, respectively.
Satisfy,
A surface-coated cutting tool characterized in that
(2) The composite nitride layer or the composite carbonitride layer has the NaCl-type face-centered cubic structure in the composite nitride layer or the composite carbonitride layer when the longitudinal section of the layer is observed. The area ratio of the crystal grains having a wurtzite structure present at the grain boundaries of the individual crystal grains is 5.0 area% or less, and the average grain size R of the crystal grains is 0.50 μm or less. The surface-coated cutting tool according to (1) above. "
Is.

本発明の被覆工具は、硬質被膜層が優れた耐チッピング性を備え、合金鋼および高炭素鋼等の高速断続切削等に供した場合であっても、長期の使用にわたって優れた切削性能を発揮する。 The coated tool of the present invention has excellent chipping resistance in the hard coating layer, and exhibits excellent cutting performance over long-term use even when subjected to high-speed intermittent cutting of alloy steel and high-carbon steel, etc. To do.

は、本発明におけるNaCl型の面心立方構造を有する結晶粒の粒界近傍領域と該領域以外のAlの含有量の測定点を示す模式図である。FIG. 3 is a schematic diagram showing a region near a grain boundary of a crystal grain having a NaCl-type face-centered cubic structure and measurement points of Al content other than the region in the present invention.

本発明について、以下に詳細に説明する。なお、明細書および特許請求の範囲において数値範囲を「〜」で表現するときは、その上限値及び下限値を含んでいる。 The present invention will be described in detail below. In addition, when a numerical range is expressed by "to" in the specification and claims, the upper limit and the lower limit are included.

TiAlCN層の平均層厚:
本発明のTiAlCN層は、硬さが高く、優れた耐摩耗性を有するが、特に平均層厚が1.0〜20.0μmのとき、その効果が際立って発揮される。これは、平均層厚が1.0μm未満では、層厚が薄いため長期の使用にわたっての耐摩耗性を十分確保することができず、一方、その平均層厚が20.0μmを超えると、TiAlCN層の結晶粒が粗大化しやすくなり、チッピングを発生しやすくなる。
したがって、その平均層厚を1.0〜20.0μmと定めた。より好ましくは3.0〜15.0μmである。
Average layer thickness of TiAlCN layer:
The TiAlCN layer of the present invention has high hardness and excellent wear resistance, but when the average layer thickness is 1.0 to 20.0 μm, the effect is remarkably exhibited. This is because if the average layer thickness is less than 1.0 μm, it is not possible to ensure sufficient wear resistance over long-term use because the layer thickness is thin, while if the average layer thickness exceeds 20.0 μm, TiAlCN The crystal grains of the layer are likely to become coarse and chipping is likely to occur.
Therefore, the average layer thickness is set to 1.0 to 20.0 μm. More preferably, it is 3.0 to 15.0 μm.

TiAlCN層内のNaCl型の面心立方構造を有する結晶粒の面積割合:
本発明のTiAlCN層におけるNaCl型の面心立方構造を有する結晶粒の面積割合が80面積%以上であることが好ましい。これにより、高硬度であるNaCl型の面心立方構造を有する結晶粒の面積比率がウルツ鉱型構造の結晶粒(六方晶結晶粒ということがある)に比べて相対的に高くなり、TiAlCN層の硬さが向上し、耐摩耗性が向上する。この面積率は、より好ましくは90面積%以上である。
ここで、面積割合は、工具基体表面に垂直な方向の断面、すなわち、縦断面に対して求める。
Area ratio of crystal grains having a NaCl-type face-centered cubic structure in the TiAlCN layer:
The area ratio of the crystal grains having the NaCl-type face-centered cubic structure in the TiAlCN layer of the present invention is preferably 80 area% or more. As a result, the area ratio of the crystal grains having a NaCl-type face-centered cubic structure with high hardness is relatively higher than that of the wurtzite-type crystal grains (sometimes referred to as hexagonal crystal grains), and the TiAlCN layer Hardness is improved and wear resistance is improved. This area ratio is more preferably 90 area% or more.
Here, the area ratio is obtained for a cross section in a direction perpendicular to the tool base surface, that is, a vertical cross section.

NaCl型の面心立方構造を有する結晶粒の平均粒子幅とアスペクト比:
本発明のTiAlCN層の縦断面を観察した際に、NaCl型の面心立方構造を有する結晶粒は、平均粒子幅Wが0.10〜2.00μm、平均アスペクト比Aが2.0〜10.0である場合に、結晶粒の硬さおよび靭性が向上する。
すなわち、平均粒子幅Wが0.10μm未満であると耐摩耗性が低下し、平均粒子幅Wが2.00μmを超えると靱性が低下する。
また、平均アスペクト比Aが2.0未満であると、アスペクト比が小さな等軸結晶の脱落が生じ、十分な耐摩耗性を発揮することができなくなり、一方、平均アスペクト比Aが10.0を超えると結晶粒そのものの強度を保つことができず、かえって、耐チッピング性が低下するため好ましくない。より好ましい平均アスペクト比Aは、3.0〜8.0である。
ここで、平均粒子幅および平均アスペクト比は、ともに、結晶粒の面積を測定し面積平均として求める。すなわち、観察視野内の少なくとも20以上の結晶粒の粒子幅W〜W(n≧20)および面積S〜Sを求めて、数1(数式1)により面積加重平均し、前記結晶粒の平均粒子幅Wとする。また、同様にして前記結晶粒のアスペクト比A〜A(n≧20)を求め、数2(数式2)により面積加重平均して、前記結晶粒の平均アスペクト比Aとする。平均粒子幅W、平均アスペクト比Aはそれぞれ以下のような式に基づき算出できる。

Figure 2020104209

Figure 2020104209
Average grain width and aspect ratio of NaCl-type crystal grains having a face-centered cubic structure:
When observing the longitudinal section of the TiAlCN layer of the present invention, the crystal grains having a NaCl-type face-centered cubic structure have an average grain width W of 0.10 to 2.00 μm and an average aspect ratio A of 2.0 to 10. When it is 0.0, hardness and toughness of crystal grains are improved.
That is, if the average particle width W is less than 0.10 μm, the wear resistance decreases, and if the average particle width W exceeds 2.00 μm, the toughness decreases.
Further, when the average aspect ratio A is less than 2.0, equiaxed crystals having a small aspect ratio fall off and sufficient abrasion resistance cannot be exhibited, while the average aspect ratio A is 10.0. If it exceeds, the strength of the crystal grains themselves cannot be maintained and, on the contrary, the chipping resistance decreases, which is not preferable. A more preferable average aspect ratio A is 3.0 to 8.0.
Here, both the average particle width and the average aspect ratio are obtained as the average area by measuring the area of crystal grains. That is, the particle widths W 1 to W n (n≧20) and the areas S 1 to S n of at least 20 or more crystal grains in the observation visual field are obtained, and the area weighted average is calculated by the mathematical formula 1 (Formula 1) to obtain the crystal. The average particle width W of the particles is set. In addition, similarly, the aspect ratios A 1 to A n (n≧20) of the crystal grains are obtained, and area weighted averaging is performed according to Formula 2 (Mathematical Formula 2) to obtain the average aspect ratio A of the crystal grains. The average particle width W and the average aspect ratio A can be calculated based on the following equations.
Figure 2020104209

Figure 2020104209

TiAlCN層の組成:
本発明のTiAlCN層の組成は、
組成式:(Ti1−XAl)(C1−Y)で表したとき、
工具基体側端面から測定間隔が0.5μmとなるように層厚方向にn個に分割した区間ごとにAlのTiとAlの合量に占める平均含有割合(以下、「Alの平均含有割合」という)Xavgを求めた場合、各区間のXavgが0.60≦Xavg≦0.95(ただし、Xavgは原子比)を満足するように組成を制御する。
また、本発明のTiAlCN層全体におけるCのCとNの合量に占める平均含有割合(以下、「Cの平均含有割合」という)Yavgが0.000≦Yavg≦0.005(ただし、Yavgは原子比)を満足するように組成を制御する。
その理由は、以下のとおりである。
Alの平均含有割合Xavgが0.60未満であると、TiAlCN層は硬さが劣るため、合金鋼や高炭素鋼等の高速断続切削に供した場合には、耐摩耗性が十分でなく、一方、Alの平均含有割合Xavgが0.95を超えると六方晶のTiAlCN結晶粒が析出し、耐摩耗性が低下する。したがって、0.60≦Xavg≦0.95としたが、より好ましくは0.70≦Xavg≦0.95である。
また、Cの平均含有割合Yavgを0.000≦Yavg≦0.005と定めた理由は、前記範囲において靱性や耐チッピング性を保ちつつ硬さを向上させることができるためである。
Composition of TiAlCN layer:
The composition of the TiAlCN layer of the present invention is
Compositional formula: (Ti 1-X Al X )(C Y N 1-Y )
The average content ratio in the total amount of Ti and Al of Al in each of n sections divided in the layer thickness direction so that the measurement interval is 0.5 μm from the tool base side end surface (hereinafter, “average content ratio of Al”). When X avg is obtained, the composition is controlled so that X avg of each section satisfies 0.60≦X avg ≦0.95 (where X avg is an atomic ratio).
Further, the average content ratio of C in the total amount of C and N in the entire TiAlCN layer of the present invention (hereinafter referred to as “average content ratio of C”) Y avg is 0.000≦Y avg ≦0.005 (however, Y avg controls the composition so as to satisfy the atomic ratio.
The reason is as follows.
If the average content ratio X avg of Al is less than 0.60, the TiAlCN layer has poor hardness, and therefore, when subjected to high-speed intermittent cutting of alloy steel, high carbon steel, etc., wear resistance is insufficient. On the other hand, when the average content ratio Xavg of Al exceeds 0.95, hexagonal TiAlCN crystal grains are precipitated and wear resistance is reduced. Therefore, although 0.60≦X avg ≦0.95 is set, 0.70≦X avg ≦0.95 is more preferable.
Further, the reason why the average content ratio Y avg of C is set to 0.000≦Y avg ≦0.005 is that hardness can be improved while maintaining toughness and chipping resistance in the above range.

TiAlCN層の層厚方向のAlの平均含有割合:
層厚方向において工具基体側端面から工具表面側に向かって、TiAlCN層の前記区間ごとのAlの平均含有割合が増加すると、TiAlCN層の耐チッピング性が向上する。
ここで、Alの平均含有割合が増加しているとは、工具基体側端面に比して工具表面側のAlの含有割合が増加していることをいう。
Average Al content in the thickness direction of the TiAlCN layer:
When the average content ratio of Al in each of the sections of the TiAlCN layer increases from the end surface on the tool substrate side in the layer thickness direction toward the tool surface side, the chipping resistance of the TiAlCN layer improves.
Here, the increase in the average content ratio of Al means that the content ratio of Al on the tool surface side is increased as compared with the end surface on the tool base side.

TiAlCN層のNaCl型の面心立方構造を有する結晶粒における粒界近傍領域と該領域でない領域の間におけるAlの平均含有割合の関係:
図1に示すように、NaCl型の面心立方構造を有する結晶粒の粒界から粒内に10nm入り込んだ曲線mに囲まれた範囲を領域α、mと粒界に囲まれた範囲を領域βとし、工具基体表面に平行に、5個以上の隣り合うNaCl型の面心立方構造を有する結晶粒の粒界を貫通する線分を、TiAlCN層の厚さを6等分する間隔で5本引いたとき、層厚方向で最も工具基体側端面に近い線分(L1)および中央に位置する線分(L3:L1から工具表面側に数えて3本目)上のいずれにおいても、
関係式:Xαavg≦0.90のとき、Xαavg+0.10≦Xβavg≦1.00、0.90<Xαavgのとき、Xαavg+0.05≦Xβavg≦1.00
を満足すると、靭性が向上し、優れた耐チッピング性を発揮する。
ここで、線分L1およびL3上において、Xαavgは領域α、Xβavgは領域βにおけるAlの平均含有割合をいい、L1およびL3が引かれる結晶粒は、完全に同じ、一部が同じ(図1を参照)、同じものがないのいずれでもよい。
前記関係式を満足すると、靭性が向上し、優れた耐チッピング性を発揮する。
The relation of the average content ratio of Al between the region near the grain boundary and the region other than the region in the crystal grain having the NaCl-type face-centered cubic structure of the TiAlCN layer:
As shown in FIG. 1, a region surrounded by a curve m in which the grain boundary of a crystal grain having a NaCl-type face-centered cubic structure is inserted 10 nm into the grain is a region α, and a region surrounded by m and the grain boundary is a region. Let β be parallel to the surface of the tool base, and line segments penetrating the grain boundaries of five or more adjacent crystal grains of the NaCl-type face-centered cubic structure at intervals of dividing the thickness of the TiAlCN layer into 6 equal parts. When the main line is drawn, both on the line segment (L1) closest to the tool base side end face in the layer thickness direction and on the line segment located at the center (L3: the third line counting from the L1 to the tool surface side),
Relational expression: when Xα avg ≦0.90, Xα avg +0.10≦Xβ avg ≦1.00, and when 0.90<Xα avg , Xα avg +0.05≦Xβ avg ≦1.00
When satisfying, the toughness is improved and excellent chipping resistance is exhibited.
Here, on the line segments L1 and L3, Xα avg is the average content ratio of Al in the region α and Xβ avg is the region β, and the crystal grains from which L1 and L3 are drawn are completely the same, and partly the same ( (See FIG. 1), or they may not be the same.
When the above relational expression is satisfied, toughness is improved and excellent chipping resistance is exhibited.

Xαavg及びXβavgの値は、工具基体表面に平行な線分である前記L1およびL3において、透過型電子顕微鏡(Transmission Electron Microscope:TEM)を用いたエネルギー分散型X線分光法(Energy Dispersive X−ray Spectrometry:EDS)によるスポット分析をα領域では1ヵ所以上(図1では●の箇所。2箇所以上のときは粒子間で等間隔が好ましい)、β領域では1ヵ所(図1では×の箇所:隣接するNaCl型の面心立方構造の結晶粒の粒界同士が接する箇所)で行い平均値として求める。
なお、前記線分L1およびL3を引いたとき、隣接するNaCl型の面心立方構造の結晶粒の間に六方晶結晶粒が存在する場合は、この六方晶結晶粒に隣接するいずれかのNaCl型の面心立方構造の結晶粒の前記領域βに含め、また、前記×の箇所はこの六方晶結晶粒を前記β領域に含めないNaCl型の面心立方構造の結晶粒の粒界と、この結晶粒界に前記六方晶結晶粒が接する箇所とする。
The values of Xα avg and Xβ avg are the energy-dispersive X-ray spectroscopy (Energy Dispersive X) using a transmission electron microscope (TEM) at L1 and L3, which are line segments parallel to the tool substrate surface. Spot analysis by -ray Spectrometry (EDS) was performed at 1 place or more in the α region (indicated by ● in Fig. 1. At two or more places, it is preferable that the particles be equidistant), and in 1 region in the β region (indicated by × in Fig. 1). Location: location where adjacent grain boundaries of the crystal grains of the NaCl-type face-centered cubic structure contact each other) to obtain an average value.
When the line segments L1 and L3 are drawn, if hexagonal crystal grains are present between adjacent crystal grains of the NaCl-type face-centered cubic structure, any of the NaCl adjacent to the hexagonal crystal grains Included in the region β of the crystal grains of the face-centered cubic structure of the type, and the × portion is the grain boundary of the crystal grains of the NaCl-type face-centered cubic structure not including the hexagonal crystal grains in the β region, The position where the hexagonal crystal grains are in contact with this crystal grain boundary is set.

NaCl型の面心立方構造を有する結晶粒の粒界間に存在する六方晶結晶粒:
本発明のTiAlCN層の縦断面を観察した場合に、該層内のNaCl型の面心立方構造を有する個々の結晶粒の粒界部に六方晶結晶粒が存在するとき(存在することは必須ではない)、該結晶粒の面積割合は5.0面積%以下であり、該結晶粒の平均粒径Rは0.50μm以下であることが望ましい。
すなわち、NaCl型の面心立方構造を有する結晶粒の粒界に所定の六方晶結晶粒が所定量存在すれば、合金鋼や高炭素鋼の高速断続切削加工であっても、TiAlCN層が優れた耐チッピング性を備えることができる。このとき、六方晶結晶粒の面積割合が5面積%を超えると硬さが低下して好ましくない場合があり、また、平均粒径Rが0.50μmを超えると硬さが低下し、耐摩耗性が十分でないときがある。
Hexagonal crystal grains existing between the grain boundaries of crystal grains having a NaCl-type face-centered cubic structure:
When observing the longitudinal section of the TiAlCN layer of the present invention, when hexagonal crystal grains are present in the grain boundary portion of the individual crystal grains having the NaCl-type face-centered cubic structure in the layer (the existence is essential. However, the area ratio of the crystal grains is 5.0 area% or less, and the average grain size R of the crystal grains is preferably 0.50 μm or less.
That is, if a predetermined amount of hexagonal crystal grains are present at the grain boundaries of the crystal grains having a NaCl-type face-centered cubic structure, the TiAlCN layer is excellent even in high-speed intermittent cutting of alloy steel or high carbon steel. It can be provided with chipping resistance. At this time, if the area ratio of the hexagonal crystal grains exceeds 5 area %, the hardness may be decreased, which is not preferable, and if the average grain size R exceeds 0.50 μm, the hardness may be decreased and the wear resistance may be reduced. There are times when the sex is not sufficient.

工具基体:
工具基体は、この種の工具基体として従来公知の基材であれば、本発明の目的を達成することを阻害するものでない限り、いずれのものも使用可能である。一例を挙げるならば、超硬合金(WC基超硬合金、WCの他、Coを含み、あるいはTi、Ta、Nb等の炭窒化物を添加したものも含むもの等)、サーメット(TiC、TiN、TiCN等を主成分とするもの等)、セラミックス(炭化チタン、炭化珪素、窒化珪素、窒化アルミニウム、酸化アルミニウムなど)、cBN焼結体、またはダイヤモンド焼結体のいずれかであることが好ましい。
Tool base:
As the tool base, any base can be used as long as it is a base conventionally known as a tool base of this type, as long as it does not impair the achievement of the object of the present invention. To give an example, cemented carbide (WC-based cemented carbide, WC, or the like that contains Co or the addition of carbonitrides such as Ti, Ta, Nb, etc.), cermet (TiC, TiN , TiCN, etc.), ceramics (titanium carbide, silicon carbide, silicon nitride, aluminum nitride, aluminum oxide, etc.), cBN sintered body, or diamond sintered body.

製造方法:
本発明のTiAlCN層の成膜方法は、例えば、以下のとおりである。後述するガス群Aとガス群Bを用い、第1回から第n回までの成膜を行う。第n回の成膜で目標とするTiAlCN層の層厚を得る。各回の成膜は、成膜回数の増加に応じてガス群BのAlCl/TiCl(容量%の比)の値を増加させながら成膜を行う過程1と、粒界にAlの平均含有割合の高いTiAlCNを偏析させる過程2とからなる。各回の成膜は、過程1を一定時間行い、続いてこれの半分の時間で過程2を行う。なお、過程2では、過程1で成膜された層の表面に新たな層の堆積はほとんどなされず、層厚の変化は無視できる。
ガス群Aとガス群Bの組成を以下に示す(過程の記載がないものは、過程1および2で共通である)。
ガス群A: NH:2.0〜5.0%(過程1)、0.1〜0.3%(過程2)、
:65〜75%
ガス群B: AlCl:0.50〜0.90%、
TiCl:0.05〜0.30%(過程1)、
0.03〜0.05%(過程2)、
:0.0〜12.0%、C:0.0〜0.5%、H:残
反応ガス組成の%は、ガス群Aおよびガス群Bをあわせた全体に対する容量%である。
反応雰囲気圧力: 4.0〜5.0kPa
反応雰囲気温度: 700〜900℃
供給周期: 1.0〜5.0秒
1周期当たりのガス供給時間: 0.15〜0.25秒
ガス群Aとガス群Bの供給の位相差: 0.10〜0.20秒
ここで、過程1においてガス群BのAlCl/TiCl(容量%の比)の値を増加させながら成膜するとは、第1回目の成膜から第n回目の成膜に至る各回の成膜において、回数の増加に応じてAlCl/TiCl(容量%の比)の値を増加すればよく、成膜回数毎の当該増加の量が同じであっても、異なっていてもかまわない。また、各回の過程1の成膜時間中にAlCl/TiCl(容量%の比)の値が線形に増加してもよいし、過程1の成膜時間中に前回の過程1のAlCl/TiCl(容量%の比)の値よりも増加した一定値に保ってもよい。本明細書では、線形に増加すること、一定値に保つことを、それぞれ、線形増加、ステップ状増加という。線形増加、ステップ状増加の具体的例は、実施例で説明する。
Production method:
The method for forming the TiAlCN layer of the present invention is as follows, for example. Using a gas group A and a gas group B described later, film formation is performed from the first time to the n-th time. The target thickness of the TiAlCN layer is obtained by the n-th film formation. Each time the film formation is performed, the film formation process is performed while increasing the value of AlCl 3 /TiCl 4 (volume ratio) of the gas group B according to the increase in the number of film formation, and the average content of Al in the grain boundaries. Step 2 of segregating a high proportion of TiAlCN. In each film formation, step 1 is performed for a certain period of time, and then step 2 is performed for half the time. In step 2, a new layer is hardly deposited on the surface of the layer formed in step 1, and the change in layer thickness can be ignored.
The compositions of the gas group A and the gas group B are shown below (those with no description of steps are common to steps 1 and 2).
Gas Group A: NH 3: 2.0~5.0% (step 1), 0.1% to 0.3% (step 2),
H 2: 65~75%
Gas group B: AlCl 3 : 0.50 to 0.90%,
TiCl 4: 0.05~0.30% (process 1),
0.03 to 0.05% (process 2),
N 2: 0.0~12.0%, C 2 H 4: 0.0~0.5%, H 2:% residual reaction gas composition, capacity for total combined gas group A and Gas group B %.
Reaction atmosphere pressure: 4.0 to 5.0 kPa
Reaction atmosphere temperature: 700 to 900°C
Supply cycle: 1.0 to 5.0 seconds Gas supply time per cycle: 0.15 to 0.25 seconds Phase difference between supply of gas group A and gas group B: 0.10 to 0.20 seconds where In the process 1, the film formation is performed while increasing the value of AlCl 3 /TiCl 4 (volume% ratio) of the gas group B means that in each film formation from the first film formation to the nth film formation. The value of AlCl 3 /TiCl 4 (ratio of volume%) may be increased according to the increase in the number of times, and the amount of increase may be the same or different for each number of film formations. Furthermore, AlCl 3 / TiCl 4 to a value of (volume% ratio) may be increased linearly, AlCl 3 of the previous process 1 during the film formation process 1 time during the deposition time of each round of the process 1 /TiCl 4 (ratio of% by volume) may be maintained at a constant value increased. In the present specification, increasing linearly and maintaining a constant value are called linear increase and stepwise increase, respectively. Specific examples of the linear increase and the stepwise increase will be described in Examples.

本発明の被覆工具を実施例により具体的に説明する。
なお、以下の実施例では、工具基体として、WC基超硬合金を用いた場合について説明するが、TiCN基サーメット、cBN基超高圧焼結体等の前記した他の材を工具基体として用いた場合も同様である。また、ドリルやエンドミルに適用した場合も同様である。
The coated tool of the present invention will be specifically described with reference to examples.
In the following examples, the case where a WC-based cemented carbide is used as the tool substrate will be described. However, the above-mentioned other materials such as TiCN-based cermet and cBN-based ultra-high pressure sintered body were used as the tool substrate. The same applies to the case. The same applies when applied to a drill or end mill.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、TaC粉末、NbC粉末、Cr粉末、TiN粉末およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、このプレス成形体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、ISO規格SEEN1203AFSNのインサート形状をもったWC基超硬合金製の工具基体A〜C、および、ISO規格CNMG120412のインサート形状をもったWC基超硬合金製の工具基体D〜Fをそれぞれ製造した。 As raw material powders, WC powders, TiC powders, ZrC powders, TaC powders, NbC powders, Cr 3 C 2 powders, TiN powders, and Co powders each having an average particle diameter of 1 to 3 μm are prepared, and these raw material powders are prepared. Compounded to the compounding composition shown in Table 1, wax was added, ball milled in acetone for 24 hours, dried under reduced pressure, and then press-molded at a pressure of 98 MPa into a green compact having a predetermined shape. A tool base made of WC-based cemented carbide having an insert shape of ISO standard SEEN1203AFSN after being vacuum-sintered under a condition of holding at a predetermined temperature within a range of 1370 to 1470° C. for 1 hour in a vacuum of 5 Pa. A to C and tool bases D to F made of WC-based cemented carbide having insert shapes of ISO standard CNMG120412 were manufactured, respectively.

次に、これらの工具基体A〜Fの表面に、CVD装置を用いて、表2、4に示される形成条件A〜Hにより、TiAlCN層を形成した。
A1〜H1、A2〜H2は、それぞれ、前述の過程1、過程2にそれぞれ相当する。また、区間1とは第1回目の成膜をいい、区間nとは目標層厚となる最終の成膜、すなわち、第n回目の成膜である。nの値は表4に示されている。ガス群BにおけるAlCl/TiCl(容量%の比)の値を第1回目の成膜から第n回目の成膜まで、表2に示す態様で増加させた。態様の詳細は後述する。
前記の過程1では、表2、表4に示される形成条件を示す形成記号A〜H、A1〜H1、すなわち、ガス群AとしてNH:2.0〜5.0%、H:65〜75%、ガス群BとしてAlCl:0.50〜0.90%、TiCl:0.05〜0.30%、N:0.0〜12.0%、C:0.0〜0.5%、H:残(%は、ガス群Aおよびガス群Bを合わせた全体に対する容量%)、反応雰囲気圧力:4.0〜5.0kPa、反応雰囲気温度:700〜900℃、供給周期1.0〜5.0秒、1周期当たりのガス供給時間0.15〜0.25秒、ガス群Aとガス群Bの供給の位相差0.10〜0.20秒とし、所定時間、CVD法により、成膜を行った。前記の過程2では、表2、表4に示される形成条件を示す形成記号A〜H、A2〜H2、すなわち、ガス群AとしてNH:0.1〜0.3%、H:65〜75%、ガス群BとしてAlCl:0.50〜0.90%、TiCl:0.03〜0.05%、N:0.0〜12.0%、C:0.0〜0.5%、H:残(%は、ガス群Aおよびガス群Bを合わせた全体に対する容量%)、反応雰囲気圧力:4.0〜5.0kPa、反応雰囲気温度:700〜900℃、供給周期1.0〜5.0秒、1周期当たりのガス供給時間0.15〜0.25秒、ガス群Aとガス群Bの供給の位相差0.10〜0.20秒とし、所定時間、CVD法により、TiAlCNの粒界偏析を行った。
前記の条件でTiAlCN層を形成することにより、表5に示す本発明被覆工具1〜16を製造した。
Next, a TiAlCN layer was formed on the surfaces of these tool substrates A to F using a CVD apparatus under the formation conditions A to H shown in Tables 2 and 4.
A1 to H1 and A2 to H2 correspond to the above-described step 1 and step 2, respectively. Further, the section 1 is the first film formation, and the section n is the final film formation with the target layer thickness, that is, the nth film formation. The values of n are shown in Table 4. The value of AlCl 3 /TiCl 4 (volume% ratio) in the gas group B was increased in the manner shown in Table 2 from the first film formation to the nth film formation. Details of the embodiment will be described later.
In the above process 1, formation symbols A to H and A1 to H1 showing the formation conditions shown in Tables 2 and 4, that is, NH 3 as the gas group A: 2.0 to 5.0%, H 2 : 65. ˜75%, as gas group B AlCl 3 : 0.50 to 0.90%, TiCl 4 : 0.05 to 0.30%, N 2 : 0.0 to 12.0%, C 2 H 4 :0. 0.0 to 0.5%, H 2 : balance (% is the volume% with respect to the total of the gas group A and the gas group B), reaction atmosphere pressure: 4.0 to 5.0 kPa, reaction atmosphere temperature: 700 to 900° C., supply cycle 1.0 to 5.0 seconds, gas supply time per cycle 0.15 to 0.25 seconds, phase difference between supply of gas group A and gas group B 0.10 to 0.20 seconds Then, the film formation was performed by the CVD method for a predetermined time. Wherein the step 2 of Table 2, forming symbols A~H showing the formation conditions shown in Table 4, A2~H2, i.e., NH 3 as a gas group A: 0.1~0.3%, H 2: 65 ˜75%, AlCl 3 as gas group B: 0.50 to 0.90%, TiCl 4 : 0.03 to 0.05%, N 2 : 0.0 to 12.0%, C 2 H 4 :0. 0.0 to 0.5%, H 2 : balance (% is the volume% with respect to the total of the gas group A and the gas group B), reaction atmosphere pressure: 4.0 to 5.0 kPa, reaction atmosphere temperature: 700 to 900° C., supply cycle 1.0 to 5.0 seconds, gas supply time per cycle 0.15 to 0.25 seconds, phase difference between supply of gas group A and gas group B 0.10 to 0.20 seconds Then, the grain boundary segregation of TiAlCN was performed by the CVD method for a predetermined time.
The coated tools 1 to 16 of the present invention shown in Table 5 were manufactured by forming the TiAlCN layer under the above conditions.

ここで、表2、3に示されている、AlCl/TiClの比の増加の態様について、線形増加、ステップ状増加とは次のとおりである。線形増加とは、第i回目の成膜時のAlCl/TiClの比の値が、第i−1回目の成膜時のAlCl/TiClの比の値からこのAlCl/TiClの比の値に増加量を加えた値まで成膜期間中に線形に増加することをいう。また、ステップ状増加とは、第i回目の成膜時のAlCl/TiClの比の値が第i−1回目の成膜時のAlCl/TiClの比の値に増加量を加えた値の一定値とすることをいう。
なお、増加量とは、増加量=(第n回目の成膜におけるAlCl/TiClの比の値−第1回目の成膜におけるAlCl/TiClの比の値)/(n−1)で求める値をいう。
Here, regarding the mode of increasing the ratio of AlCl 3 /TiCl 4 shown in Tables 2 and 3 , the linear increase and the stepwise increase are as follows. The linear increase, the value of the ratio of the i-th AlCl 3 / TiCl 4 during film formation, the AlCl 3 / TiCl 4 from the value of the ratio of AlCl 3 / TiCl 4 at the i-1 th deposition It means that the value increases linearly during the film-forming period up to a value obtained by adding the amount of increase to the value of the ratio. Further, the step increases, increasing amounts of added value of the ratio of the i-th AlCl 3 / TiCl 4 at the time of film formation is the value of the ratio of the (i-1) th AlCl 3 / TiCl 4 at the time of film formation It means a constant value.
Note that the amount of increase means the amount of increase=(value of ratio of AlCl 3 /TiCl 4 in n-th film formation−value of ratio of AlCl 3 /TiCl 4 in first film formation)/(n−1) ) Refers to the value obtained.

さらに、比較の目的で、工具基体A〜Fの表面に表3、表4に示される形成条件を示す形成記号a〜hでCVD法により成膜を行うことによって、表6に示される平均層厚を有するTiAlCN層を含む硬質被覆層を蒸着形成して比較被覆工具1〜16を製造した。
なお、b1〜f1、b2〜f2は、それぞれ、前述の過程1、過程2に相当し、区間1は第1回目の成膜、区間nは最終の成膜、すなわち、第n回目の成膜である。区間の表示のないものは成膜期間中のガス組成の変化がないものである。
Further, for the purpose of comparison, by forming a film on the surfaces of the tool bases A to F by the CVD method with the formation symbols a to h indicating the formation conditions shown in Tables 3 and 4, the average layer shown in Table 6 is obtained. Comparative coated tools 1-16 were prepared by depositing a hard coating layer including a TiAlCN layer having a thickness.
It should be noted that b1 to f1 and b2 to f2 correspond to the above-described steps 1 and 2, respectively, and the section 1 is the first film formation and the section n is the final film formation, that is, the nth film formation. Is. In the case where no section is displayed, the gas composition does not change during the film formation period.

本発明のTiAlCN層の平均層厚は、それぞれ、本発明被覆工具1〜16、比較被覆工具1〜16の構成層の工具基体表面に垂直な方向の断面(縦断面、層厚方向の断面)を、走査型電子顕微鏡を用いて適切な倍率(倍率5000倍)を選択して観察し、観察視野内の5点の層厚を測って平均して求めた。 The average layer thickness of the TiAlCN layer of the present invention is a cross section in the direction perpendicular to the tool substrate surface of the constituent layers of the present coated tools 1 to 16 and comparative coated tools 1 to 16 (longitudinal section, section in the layer thickness direction). Was observed by selecting an appropriate magnification (magnification: 5000 times) using a scanning electron microscope, and the layer thickness at 5 points in the observation visual field was measured and averaged.

また、本発明のTiAlCN層におけるNaCl型の面心立方構造を有する結晶粒の面積割合、粒子幅Wおよびアスペクト比Aは、研磨して作製した、前記TiAlCN層の工具基体表面に垂直な方向の断面(縦断面、層厚方向の断面)に対して測定範囲を、工具基体表面に平行な方向(層厚方向に垂直な方向)に100μm、工具基体表面と垂直な方向に層厚分の長さの範囲の四角形とし、電子線後方散乱回折(Electron Backscatter Diffraction:EBSD)装置を用いて、前記測定範囲に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、電子線を0.01μm間隔で照射して得られるEBSD像に基づいて、個々の結晶粒の結晶構造を解析することにより求めた。すなわち、隣接する測定点(ピクセル)間で5度以上の方位差がある場合、そこを粒界と定義し、さらに粒界で囲まれた領域を1つの結晶粒と定義する。ただし、隣接するピクセル全てと5度以上の方位差がある単独に存在するピクセルは結晶粒とせず、2ピクセル以上が連結しているものを結晶粒として取り扱う。次に、ある結晶粒の層厚方向の最大長さをl、該結晶粒の面積をSとして求めて、該結晶粒の粒子幅wはw=S/lとして、さらに、アスペクト比aはl/wとして算出する。このようにして算出した任意の20個の結晶粒の粒子幅およびアスペクト比を面積平均し、平均粒子幅Wおよび平均アスペクト比Aを求めた。 Further, the area ratio, the grain width W and the aspect ratio A of the crystal grains having the NaCl-type face-centered cubic structure in the TiAlCN layer of the present invention are measured in a direction perpendicular to the tool base surface of the TiAlCN layer, which is produced by polishing. The measurement range is 100 μm in the direction parallel to the tool base surface (direction perpendicular to the layer thickness direction) and the length of the layer thickness in the direction perpendicular to the tool base surface, with respect to the cross section (vertical cross section, cross section in the layer thickness direction). In the measurement range, an electron beam with an acceleration voltage of 15 kV and an accelerating voltage of 15 kV is applied to the measurement range using an electron backscatter diffraction (EBSD) device with an irradiation current of 1 nA. Was determined by analyzing the crystal structure of each crystal grain based on the EBSD image obtained by irradiating the crystal at 0.01 μm intervals. That is, when there is an orientation difference of 5 degrees or more between adjacent measurement points (pixels), that is defined as a grain boundary, and a region surrounded by the grain boundaries is defined as one crystal grain. However, a single pixel having an orientation difference of 5 degrees or more with all adjacent pixels is not a crystal grain, and a pixel in which two or more pixels are connected is treated as a crystal grain. Next, the maximum length of a certain crystal grain in the layer thickness direction is 1, the area of the crystal grain is S, the grain width w of the crystal grain is w=S/l, and the aspect ratio a is l. Calculate as /w. The average particle width W and average aspect ratio A were obtained by averaging the particle widths and aspect ratios of the 20 crystal grains thus calculated.

本発明のTiAlCN層の層厚方向の区間ごとのAlの平均含有割合(Xavg)について、該層を測定間隔が0.5μmとなるように層厚方向、すなわち、工具基体側端面から工具表面に向かって、順にm個の区間(区間1、区間2、・・・区間m)に分割し、それぞれの区間に対して、EDS(スポット径0.2μm)を用いて測定した。すなわち、工具基体表面に垂直な方向の断面(縦断面、層厚方向の断面)を研磨した試料において、電子線を試料縦断面側から照射し、該層を測定間隔が0.5μmとなるように層厚方向に分割したときの各区間におけるAlの含有割合を、工具基体表面に平行な方向に5点測定し、得られた特性X線の解析結果の平均から求めた。
ここで、区間iに対するAlの平均含有割合(Xavg)をXiとするとき、Alの平均含有割合がTiAlCN層の層厚方向において工具表面に向かって単調増加するとは、すべての区間(区間1、区間2、・・・区間m)においてXi<Xi+1となることをいう。
Regarding the average content ratio (X avg ) of Al for each section of the TiAlCN layer of the present invention in the layer thickness direction, the layer is measured in the layer thickness direction, that is, from the tool substrate side end surface to the tool surface so that the measurement interval is 0.5 μm. Toward m., it was divided into m sections (section 1, section 2,... Section m) in sequence, and each section was measured using EDS (spot diameter 0.2 μm). That is, in a sample in which a cross section perpendicular to the tool base surface (longitudinal cross section, cross section in the layer thickness direction) is polished, an electron beam is irradiated from the sample vertical cross section side so that the measurement interval of the layer becomes 0.5 μm. The content ratio of Al in each section when divided in the layer thickness direction was measured at 5 points in the direction parallel to the surface of the tool substrate, and was obtained from the average of the analysis results of the obtained characteristic X-rays.
Here, when the average content ratio (X avg ) of Al to the section i is Xi, it means that the average content rate of Al monotonically increases toward the tool surface in the layer thickness direction of the TiAlCN layer in all sections (section 1 , Section 2,... Section m), Xi<Xi+1.

Cの平均含有割合Yavgについては、二次イオン質量分析(Secondary Ion Mass Spectrometry:SIMS)により求めた。イオンビームを試料縦断面側から20μm×20μmの範囲に照射し、スパッタリング作用によって放出された成分について層厚方向の濃度測定を行った。Cの平均含有割合YavgはTiAlCN層の層厚方向の平均値を示す。 The average content ratio Y avg of C was determined by secondary ion mass spectrometry (Secondary Ion Mass Spectrometry: SIMS). The ion beam was irradiated to a range of 20 μm×20 μm from the side of the longitudinal section of the sample, and the concentration of the component released by the sputtering action was measured in the layer thickness direction. The average content ratio C avg of C represents the average value in the layer thickness direction of the TiAlCN layer.

また、領域αのAlの平均含有割合Xαavg、領域βのAlの平均含有割合Xβavgは、TEMを用いたEDS(スポット径0.01μm)により測定した。 The average Al content Xα avg in the region α and the average Al content Xβ avg in the region β were measured by EDS (spot diameter 0.01 μm) using a TEM.

六方晶結晶粒の占める面積割合については、測定範囲を、工具基体表面に平行な方向(層厚方向に垂直な方向)に100μm、工具基体表面と垂直な方向に層厚分の長さの範囲の四角形とし、前記TiAlCN層の工具基体表面に垂直な方向の断面(縦断面、層厚方向の断面)を研磨し、EBSDを用いて、前記測定範囲に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、電子線を0.01μm間隔で前記断面研磨面の測定範囲内に存在する結晶粒個々に照射して得られるEBSD像に基づいて、個々の結晶粒の結晶構造を解析することで隣り合うNaCl型の面心立方構造を有する結晶粒の粒界部に存在する結晶粒が六方晶であることを同定し、その結晶粒の占める面積割合を求めた。なお、前記測定範囲はL1、L3の線分を引いた箇所を含むものである。
さらに該結晶粒の平均粒径Rは、該結晶粒が見出されるNaCl型の面心立方構造を有する結晶粒の粒界のうち、複数の観察視野から任意の粒界3か所を選び、選んだ粒界に存在する個々の該結晶粒の面積を求め、その面積と等しい面積を持つ円の直径を算出し、平均粒径Rとした。
以上の結果を、表5、6に示す。
Regarding the area ratio of the hexagonal crystal grains, the measurement range is 100 μm in the direction parallel to the tool base surface (direction perpendicular to the layer thickness direction), and the range of the length of the layer thickness in the direction perpendicular to the tool base surface. And a cross section of the TiAlCN layer in the direction perpendicular to the tool substrate surface (longitudinal section, section in the layer thickness direction) is polished, and an acceleration voltage of 15 kV is applied to the measurement range at an incident angle of 70 degrees using EBSD. Of the individual crystal grains based on the EBSD image obtained by irradiating each of the crystal grains existing in the measurement range of the cross-section polished surface with the electron beam of 1 nA at an irradiation current of 1 nA. By analyzing the structure, it was identified that the crystal grains existing in the grain boundary part of the crystal grains having the NaCl-type face-centered cubic structure adjacent to each other were hexagonal crystals, and the area ratio occupied by the crystal grains was obtained. The measurement range includes a portion where line segments L1 and L3 are drawn.
Further, the average grain size R of the crystal grains is selected by selecting three arbitrary grain boundaries from a plurality of observation fields among grain boundaries of the crystal grains having a NaCl type face-centered cubic structure in which the crystal grains are found. The area of each of the crystal grains present at the ovary boundaries was determined, the diameter of a circle having an area equal to the area was calculated, and the average particle diameter R was obtained.
The above results are shown in Tables 5 and 6.

Figure 2020104209
Figure 2020104209

Figure 2020104209
Figure 2020104209

Figure 2020104209
Figure 2020104209

Figure 2020104209
Figure 2020104209

Figure 2020104209
Figure 2020104209

Figure 2020104209
Figure 2020104209

次に、前記各種の被覆工具A〜C(ISO規格SEEN1203AFSN形状)をいずれもカッタ径125mmの合金鋼製カッタ先端部に固定治具にてクランプした状態で、本発明被覆工具1〜8、比較被覆工具1〜8について、以下に示す、合金鋼の高速断続切削の一種である乾式高速正面フライス、センターカット切削加工試験を実施し、切刃の逃げ面摩耗幅を測定して、その結果を表7(切削試験1)に示す。
<切削試験1>
カッタ径: 125mm
被削材: JIS・SCM440 幅100mm、長さ400mmのブロック材
回転速度: 1019 min−1
切削速度: 400 m/min
切り込み: 2.0 mm
一刃送り量:0.3 mm/刃
切削時間: 18分
(通常の切削速度は、200m/min)
Next, all of the various coated tools A to C (ISO standard SEEN1203AFSN shape) were clamped by a fixing jig on the tip of the alloy steel cutter having a cutter diameter of 125 mm, and the coated tools 1 to 8 of the present invention were compared. For the coated tools 1 to 8, the following dry high-speed face milling, which is a type of high-speed intermittent cutting of alloy steel, and a center-cut cutting test were carried out, the flank wear width of the cutting edge was measured, and the result was obtained. It shows in Table 7 (cutting test 1).
<Cutting test 1>
Cutter diameter: 125mm
Work Material: JIS SCM440 Block Material with 100 mm Width and 400 mm Length Rotational Speed: 1019 min -1
Cutting speed: 400 m/min
Notch: 2.0 mm
Single blade feed: 0.3 mm/blade cutting time: 18 minutes (normal cutting speed is 200 m/min)

また、前記各種の被覆工具D〜F(ISO規格CNMG120412形状)をいずれも合金鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆工具9〜16、比較被覆工具9〜16について、以下に示す、高炭素鋼の乾式高速断続切削試験を実施し、切刃の逃げ面摩耗幅を測定して、その結果を表8(切削試験2)に示す。
<切削試験2>
被削材: JIS・S55Cの長さ方向等間隔4本縦溝入り丸棒
切削速度: 330 m/min
切り込み: 3.0 mm
一刃送り量:0.3 mm/刃
切削時間: 6分
(通常の切削速度は、200m/min)
Further, all of the various coated tools D to F (ISO standard CNMG120412 shape) are screwed to the tip end of the alloy steel bite with a fixing jig, and coated tools 9 to 16 of the present invention and comparative coated tool 9 The following items were subjected to the dry high speed intermittent cutting test of high carbon steel for Nos. 16 to 16 to measure the flank wear width of the cutting edge, and the results are shown in Table 8 (cutting test 2).
<Cutting test 2>
Work Material: JIS/S55C, 4 lengthwise equally spaced round bars with longitudinal grooves Cutting speed: 330 m/min
Notch: 3.0 mm
Single blade feed: 0.3 mm/Blade cutting time: 6 minutes (normal cutting speed is 200 m/min)

Figure 2020104209
Figure 2020104209

Figure 2020104209
Figure 2020104209

表7、表8に示される結果から、本発明の被覆工具は、TiAlCN層の層厚方向において工具基体側端面から工具表面側に向かって、Alの平均含有割合が増加すること、及び、前記線分L1およびL3上において、TiAlCN層のAlの平均含有割合がNaCl型の面心立方構造を有する結晶粒における粒界近傍領域と該領域でない領域との間では、前記関係式を満足することから靭性が高く、その結果、高熱発生を伴い、かつ、切れ刃に断続的・衝撃的高負荷が作用する合金鋼や高炭素鋼の高速断続切削加工に用いた場合でも、チッピングの発生もなく、長期の使用にわたって優れた耐摩耗性を発揮する。 From the results shown in Table 7 and Table 8, in the coated tool of the present invention, the average content ratio of Al increases from the tool substrate side end surface to the tool surface side in the layer thickness direction of the TiAlCN layer, and On the line segments L1 and L3, the above relational expression should be satisfied between the grain boundary vicinity region and the region other than the grain boundary region in the crystal grain having an average Al content in the TiAlCN layer of the NaCl type face centered cubic structure. High toughness, resulting in high heat generation, and no chipping even when used for high-speed intermittent cutting of alloy steel or high carbon steel where cutting edge is subjected to intermittent/impact high load Exhibits excellent wear resistance over long-term use.

これに対して、TiAlCN層において、上記本発明の特徴を一つでも有していない比較被覆工具は、合金鋼や高炭素鋼の高速断続切削加工において、チッピング等の異常損傷の発生、あるいは、摩耗進行により、短時間で寿命に至ることが明らかである。 On the other hand, in the TiAlCN layer, the comparative coated tool which does not have any one of the features of the present invention causes abnormal damage such as chipping in high speed interrupted cutting of alloy steel or high carbon steel, or It is clear that the progress of wear leads to a short life.

なお、前記実施例では設けていないが、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、0.1〜20.0μmの合計平均層厚を有するTi化合物層を含む下部層、および/または、少なくとも酸化アルミニウム層を含む1.0〜25.0μmの合計平均層厚を有する上部層を設けてもよい。 Although not provided in the above-mentioned embodiment, it is composed of one or more layers of a Ti carbide layer, a nitride layer, a carbonitride layer, a carbon oxide layer and a carbonitride oxide layer. A lower layer comprising a Ti compound layer having a total average layer thickness of 20.0 μm and/or an upper layer having a total average layer thickness of 1.0 to 25.0 μm including at least an aluminum oxide layer may be provided.

前述のように、本発明の被覆工具は、合金鋼や高炭素鋼の高速断続切削加工ばかりでなく、各種の被削材の被覆工具として用いることができ、しかも、長期の使用にわたって優れた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分に満足する対応が可能である。 As described above, the coated tool of the present invention can be used not only for high-speed intermittent cutting of alloy steel and high carbon steel, but also as a coated tool for various work materials, and is excellent in cutting over long-term use. Since it exerts its performance, it is possible to fully satisfy the requirements for high performance of cutting equipment, labor saving and energy saving of cutting, and cost reduction.

Claims (2)

工具基体の表面に、硬質被覆層が設けられた表面被覆切削工具において、
(a)前記硬質被覆層は、平均層厚1.0〜20.0μmのTiとAlの複合窒化物層または複合炭窒化物層を少なくとも含み、
(b)前記複合窒化物層または複合炭窒化物層は、NaCl型の面心立方構造を有する複合窒化物または複合炭窒化物の結晶粒の占める割合が80面積%以上であり、
(c)前記複合窒化物層または複合炭窒化物層について該層の縦断面を観察した場合に、前記複合窒化物層または複合炭窒化物層内の前記NaCl型の面心立方構造を有する結晶粒は、平均粒子幅Wが0.10〜2.00μm、平均アスペクト比Aが2.0〜10.0であり、
(d)前記複合窒化物層または複合炭窒化物層は、
組成式:(Ti1−XAl)(C1−Y
で表した場合、0.5μmの間隔で該層を層厚方向に複数の区間に分割したとき、各区間におけるAlのTiとAlの合量に占める平均含有割合Xavgが0.60≦Xavg≦0.95を満足し、また、該層全体におけるCのCとNの合量に占める平均含有割合Yavgが0.000≦Yavg≦0.005を満足し、(但し、Xavg、Yavgはいずれも原子比)
(e)前記複合窒化物層または複合炭窒化物層において、前記Alの平均含有割合Xavgが該層の層厚方向において工具表面に向かって増加し、
(f)前記複合窒化物層または複合炭窒化物層において、前記NaCl型の面心立方構造を有する隣り合う2つの結晶粒の粒界から粒内に10nm入り込んだ曲線mに囲まれた範囲を領域α、該曲線mと粒界に囲まれた範囲を領域βとし、前記工具基体表面に平行に複数の前記隣り合う結晶粒の粒界を貫通する線分を、前記層の厚さを6等分する間隔で5本引いたとき、層厚方向で最も工具基体側端面に近い線分L1および中央に位置する線分L3上のいずれにおいても、
関係式:Xαavg≦0.90のときXαavg+0.10≦Xβavg≦1.00、0.90<XαavgのときXαavg+0.05≦Xβavg≦1.00(ただし、Xαavg及びXβavgはそれぞれ前記領域αおよび前記領域βにおけるAlのTiとAlの合量に占める含有割合の平均値)
を満足する、
ことを特徴とする表面被覆切削工具。
On the surface of the tool base, in a surface-coated cutting tool provided with a hard coating layer,
(A) The hard coating layer includes at least a composite nitride layer or a composite carbonitride layer of Ti and Al having an average layer thickness of 1.0 to 20.0 μm,
(B) In the composite nitride layer or the composite carbonitride layer, the ratio of the crystal grains of the composite nitride or the composite carbonitride having the NaCl-type face-centered cubic structure is 80 area% or more,
(C) A crystal having the NaCl-type face-centered cubic structure in the composite nitride layer or the composite carbonitride layer, when the longitudinal section of the composite nitride layer or the composite carbonitride layer is observed. The particles have an average particle width W of 0.10 to 2.00 μm and an average aspect ratio A of 2.0 to 10.0,
(D) The composite nitride layer or the composite carbonitride layer is
Compositional formula: (Ti 1-X Al X )(C Y N 1-Y )
When the layer is divided into a plurality of sections in the layer thickness direction at intervals of 0.5 μm, the average content ratio X avg of Al in Ti and Al in each section is 0.60≦X. avg ≤ 0.95, and the average content Y avg of C in the total amount of C and N in the entire layer satisfies 0.000 ≤ Y avg ≤ 0.005 (provided that X avg , Y avg are all atomic ratios)
(E) In the composite nitride layer or the composite carbonitride layer, the average content ratio X avg of Al increases toward the tool surface in the layer thickness direction of the layer,
(F) In the composite nitride layer or the composite carbonitride layer, a range surrounded by a curve m in which 10 nm is inserted into the grain from the grain boundary of two adjacent crystal grains having the NaCl-type face-centered cubic structure A region α, a region surrounded by the curve m and the grain boundary is defined as a region β, and a line segment penetrating the grain boundaries of the plurality of adjacent crystal grains in parallel to the tool base surface has a layer thickness of 6 When five lines are drawn at equal intervals, both on the line segment L1 closest to the tool base side end face and the line segment L3 located at the center in the layer thickness direction,
Relationship: Xα avg avg + 0.10 ≦ when ≦ 0.90 Xβ avg ≦ 1.00,0.90 <When Xα avg Xα avg + 0.05 ≦ Xβ avg ≦ 1.00 ( provided that, X [alpha avg and Xβ avg is the average value of the content ratio of Al in the total amount of Ti and Al in the regions α and β, respectively.
Satisfy,
A surface-coated cutting tool characterized in that
前記複合窒化物層または複合炭窒化物層について、該層の縦断面を観察した場合に、前記複合窒化物層または複合炭窒化物層内の前記NaCl型の面心立方構造を有する個々の結晶粒の粒界に存在する、ウルツ鉱型構造を有する結晶粒の面積割合は5.0面積%以下であり、該結晶粒の平均粒径Rは0.50μm以下であることを特徴とする請求項1に記載の表面被覆切削工具。
Individual crystals having the NaCl-type face-centered cubic structure in the composite nitride layer or the composite carbonitride layer when the longitudinal section of the composite nitride layer or the composite carbonitride layer is observed. The area ratio of the crystal grains having a wurtzite structure existing in the grain boundaries of the grains is 5.0 area% or less, and the average grain size R of the crystal grains is 0.50 μm or less. Item 1. The surface-coated cutting tool according to Item 1.
JP2018245065A 2018-12-27 2018-12-27 A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance Active JP7198412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018245065A JP7198412B2 (en) 2018-12-27 2018-12-27 A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018245065A JP7198412B2 (en) 2018-12-27 2018-12-27 A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance

Publications (2)

Publication Number Publication Date
JP2020104209A true JP2020104209A (en) 2020-07-09
JP7198412B2 JP7198412B2 (en) 2023-01-04

Family

ID=71447758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018245065A Active JP7198412B2 (en) 2018-12-27 2018-12-27 A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance

Country Status (1)

Country Link
JP (1) JP7198412B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015163423A (en) * 2014-01-31 2015-09-10 三菱マテリアル株式会社 Surface coated cutting tool whose hard coating layer exerts excellent chipping resistance in high-speed intermittent cutting work
JP2016030319A (en) * 2014-07-30 2016-03-07 三菱マテリアル株式会社 Surface coated cutting tool having hard coating layer exhibiting superior chipping resistance
JP2016049573A (en) * 2014-08-28 2016-04-11 三菱マテリアル株式会社 Surface-coated cutting tool allowing hard coating layer to exhibit superior chipping resistance
JP2018522748A (en) * 2015-07-27 2018-08-16 ヴァルター アーゲー Tool with TiAlN coating
JP2018144115A (en) * 2017-03-01 2018-09-20 三菱マテリアル株式会社 Surface-coated cutting tool having hard coating layer excellent in chipping resistance and peeling resistance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015163423A (en) * 2014-01-31 2015-09-10 三菱マテリアル株式会社 Surface coated cutting tool whose hard coating layer exerts excellent chipping resistance in high-speed intermittent cutting work
JP2016030319A (en) * 2014-07-30 2016-03-07 三菱マテリアル株式会社 Surface coated cutting tool having hard coating layer exhibiting superior chipping resistance
JP2016049573A (en) * 2014-08-28 2016-04-11 三菱マテリアル株式会社 Surface-coated cutting tool allowing hard coating layer to exhibit superior chipping resistance
JP2018522748A (en) * 2015-07-27 2018-08-16 ヴァルター アーゲー Tool with TiAlN coating
JP2018144115A (en) * 2017-03-01 2018-09-20 三菱マテリアル株式会社 Surface-coated cutting tool having hard coating layer excellent in chipping resistance and peeling resistance

Also Published As

Publication number Publication date
JP7198412B2 (en) 2023-01-04

Similar Documents

Publication Publication Date Title
JP6478100B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6620482B2 (en) Surface coated cutting tool with excellent chipping resistance
JP6590255B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6284034B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
KR20150138246A (en) Surface-coated cutting tool
JP6657594B2 (en) Surface coated cutting tool
JP2015157351A (en) Surface coating cutting tool in which hard coating layer is excellent in chipping resistance
JP2017013223A (en) Surface coating and cutting tool
WO2016148056A1 (en) Surface-coated cutting tool with rigid coating layers exhibiting excellent chipping resistance
JP2017056497A (en) Surface coat cutting tool allowing hard coat layer to exhibit superior chipping resistance
JP2018114611A (en) Surface coated cutting tool with hard coating layer exhibiting excellent chipping resistance and wear resistance
JP7231885B2 (en) A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance
JP2019217579A (en) Surface-coated cutting tool with hard coating layer exhibiting excellent fracture resistance and chipping resistance
JP6850998B2 (en) Surface coating cutting tool with a hard coating layer that exhibits excellent wear resistance and chipping resistance
WO2020166683A1 (en) Surface-coated cutting tool
JP6709536B2 (en) Surface coated cutting tool with excellent hard coating layer and chipping resistance
US11998992B2 (en) Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance
JP7198412B2 (en) A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance
JP6957824B2 (en) Surface coating cutting tool with excellent chipping resistance and wear resistance with a hard coating layer
JP2022030402A (en) Surface-coated cutting tool
JP7486045B2 (en) Surface-coated cutting tools
JP2019063900A (en) Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance and wear resistance
JP7125013B2 (en) A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance
JP7492678B2 (en) Surface-coated cutting tools
WO2016084938A1 (en) Surface-coated cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221130

R150 Certificate of patent or registration of utility model

Ref document number: 7198412

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150