JPH0797679A - Ultra-thin film laminate - Google Patents

Ultra-thin film laminate

Info

Publication number
JPH0797679A
JPH0797679A JP24417893A JP24417893A JPH0797679A JP H0797679 A JPH0797679 A JP H0797679A JP 24417893 A JP24417893 A JP 24417893A JP 24417893 A JP24417893 A JP 24417893A JP H0797679 A JPH0797679 A JP H0797679A
Authority
JP
Japan
Prior art keywords
film laminate
ultrathin film
ultrathin
kinds
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24417893A
Other languages
Japanese (ja)
Other versions
JP2979921B2 (en
Inventor
Haruyo Fukui
治世 福井
Akira Nakayama
明 中山
Makoto Setoyama
誠 瀬戸山
Takeshi Yoshioka
剛 吉岡
Kazuo Yamagata
一夫 山縣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP5244178A priority Critical patent/JP2979921B2/en
Publication of JPH0797679A publication Critical patent/JPH0797679A/en
Application granted granted Critical
Publication of JP2979921B2 publication Critical patent/JP2979921B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5062Borides, Nitrides or Silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To improve the wear resistance and oxidation resistance of the surface of a substrate by alternately repetitively laminating thin films of two kinds of Ti-Al-N compds. varying in compsn. on the surface of the substrate. CONSTITUTION:The thin film 3 which consists of carbides, nitride and carbonitrides of group IVa, Va and VIa metals in periodic table and has a thickness of 0.05 to 5mum is formed by an ion plating method by a vacuum arc discharge on the surface of the hard base material 2, such as cutting tip, drill or end mill, consisting of a WC-base sintered hard a way, cermet, ceramics or high-speed steel, Two kinds of the compds. A, B expressed by TixAl1-xN (where 0<=X<0.5) and TiyAl1-yN (where 0.5<y<=1) are alternately laminated in many layers on the surface of the thin-film layer 3 by setting the sum lambdaof the thickness t1, t2 of these compds. as a repetitive lamination period of 0.5 to 20nm. The thin films 1 having the total thickness of 0.5 to 10mum are thus formed. The wear resistance and oxidation resistance of the substrate 1 are greatly improved by the alternately laminated thin films of the Ti-Al-N alloy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、耐摩耗性および表面
保護機能向上のために、切削工具、耐摩工具等の硬質基
材の表面、或いは電気・電子部品、摺動部品、機械部品
の表面に形成する超薄膜積層体に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to the surface of a hard base material such as a cutting tool or an abrasion resistant tool, or the surface of an electric / electronic component, a sliding component or a mechanical component in order to improve wear resistance and surface protection function. The present invention relates to an ultrathin film laminate formed in.

【0002】[0002]

【従来の技術及びその課題】従来、耐摩耗性および表面
保護機能向上のため、WC基超硬合金、サーメット、セ
ラミックス、高速度鋼等からなる切削工具や耐摩工具等
の硬質基材の表面に、硬質被覆層として、PVD法やC
VD法によりTi、Hf、Zrの炭化物、窒化物、炭窒
化物あるいはAlの酸化物を単層又は複層形成すること
が行なわれている。
2. Description of the Related Art Conventionally, in order to improve wear resistance and surface protection function, the surface of a hard base material such as a cutting tool or an abrasion resistant tool made of WC-based cemented carbide, cermet, ceramics, high speed steel, etc. , As a hard coating layer, PVD method or C
The VD method is used to form a single layer or multiple layers of Ti, Hf, Zr carbides, nitrides, carbonitrides, or Al oxides.

【0003】また、硬質被覆層の耐酸化性の向上を図る
目的で、例えば特公平4−53642号公報に示される
ように、切削工具の硬質被覆層として上述したTiの炭
・窒化物にAlを固溶させ、それぞれTiとAlの複合
炭化物固溶体、複合窒化物固溶体および複合炭窒化物固
溶体を形成することが知られている。
Further, for the purpose of improving the oxidation resistance of the hard coating layer, for example, as disclosed in Japanese Patent Publication No. 4-53642, Al is added to the carbon / nitride of Ti described above as the hard coating layer of the cutting tool. It is known to form a solid solution of Ti and Al to form a complex carbide solid solution, a complex nitride solid solution, and a complex carbonitride solid solution, respectively.

【0004】さらに、日本金属学会誌第57巻第8号
(1993)919−925には、Ti−Al−N系の
硬質被覆層において、Al−Nの固溶度の増大とともに
耐酸化性は向上するが、Al−Nの固溶度が75モル%
を越えると硬度が低下すると報告されている。
Further, in the Journal of the Japan Institute of Metals, Vol. 57, No. 8 (1993) 919-925, in a Ti-Al-N-based hard coating layer, the oxidation resistance is increased as the solid solubility of Al-N increases. Improves, but the solid solubility of Al-N is 75 mol%
It is reported that the hardness decreases when the value exceeds 1.0.

【0005】しかし、上記従来の硬質被覆層では、いず
れも被覆層を構成する物質固有の特性がそのまま被覆層
全体の特性を決定し、エンドミルやスローアウェイチッ
プ等の切削工具や耐摩工具に使用した場合、耐摩耗性と
耐酸化性の両立が難しく、特に高速切削や高硬度材料の
切削用途においては耐酸化性を重視した被覆層材質を採
用すると、耐摩耗性が低下するという問題があった。
However, in any of the above-mentioned conventional hard coating layers, the characteristics peculiar to the material constituting the coating layer determine the characteristics of the entire coating layer as they are, and they are used for cutting tools such as end mills and throw-away inserts and wear resistant tools. In this case, it is difficult to achieve both wear resistance and oxidation resistance, and especially in high-speed cutting and cutting applications of high hardness materials, if a coating layer material that emphasizes oxidation resistance is adopted, there is a problem that wear resistance decreases. .

【0006】一方、被覆層の高硬化を達成する手段とし
て、nmオーダーの薄膜を積層し、界面での格子歪エネ
ルギーの効果により硬度上昇を図る方法もあるが、この
方法では、高硬度化の代わりに切削工具や耐摩工具に要
求される他の特性が犠牲になり、特に耐酸化性に関して
は効果が乏しいという欠点がある。
On the other hand, as a means for achieving high hardening of the coating layer, there is also a method of laminating nm-thin films and increasing the hardness by the effect of lattice strain energy at the interface. Instead, it sacrifices other properties required for cutting tools and wear resistant tools, and has the disadvantage of being particularly ineffective in terms of oxidation resistance.

【0007】また、上記切削工具や耐摩工具以外に、従
来、電気・電子部品、摺動部品、機械部品の表面に耐摩
耗膜や保護膜が形成され、例えば、磁気テープやフロッ
ピーディスク又は磁気ディスクといった高密度記録媒体
の表面には、耐摩耗膜としてCo−Ni、Co−P、γ
−Fe2 3 が被覆されたり、或いは保護膜として、厚
さ80nm程度の二酸化ケイ素、窒化ケイ素、酸化アル
ミ等の酸化物、窒化物、カーボン膜等が被覆されてい
る。
In addition to the above cutting tools and abrasion resistant tools, conventionally, wear resistant films and protective films have been formed on the surfaces of electric and electronic parts, sliding parts and machine parts. For example, magnetic tapes, floppy disks or magnetic disks. Such as Co-Ni, Co-P, γ as a wear resistant film on the surface of the high density recording medium.
—Fe 2 O 3 is coated, or as a protective film, an oxide such as silicon dioxide, silicon nitride, and aluminum oxide, a nitride, a carbon film or the like having a thickness of about 80 nm is coated.

【0008】しかし、近年の高密度、大容量記録化の進
行に伴ない、保護膜にも一段の薄膜化が求められ、膜厚
として50nm以下にすることが要求されているが、こ
れに対して従来の保護膜では、膜厚を50nm以下に薄
くすると、耐摩耗性や耐食性が不十分になり、上記の要
求に対して十分に対応できない不具合がある。
However, with the progress of high-density and large-capacity recording in recent years, the protective film is required to be further thinned, and the film thickness is required to be 50 nm or less. If the conventional protective film is thinned to 50 nm or less, the abrasion resistance and the corrosion resistance become insufficient, and there is a problem that the above requirements cannot be sufficiently met.

【0009】そこでこの発明は、上記の問題を解決し、
切削工具や耐摩工具における硬質被覆層の耐摩耗性向上
を実現し、かつ電気・電子部品、摺動部品、機械部品の
表面の耐摩耗膜や保護膜としても優れた特性を有する超
薄膜積層体を提供することを目的としている。
Therefore, the present invention solves the above problems,
An ultra-thin film laminate that achieves improved wear resistance of the hard coating layer in cutting tools and wear-resistant tools, and also has excellent properties as a wear-resistant film and protective film on the surfaces of electrical / electronic parts, sliding parts, and mechanical parts. Is intended to provide.

【0010】[0010]

【課題を解決するための手段】上記の課題を解決するた
め、この発明は、Ti、AlおよびNによって構成され
るTix Al1-x NおよびTiy Al1-y N(0≦x<
0.5、0.5<y≦1)なる2種類の化合物を、交互
に繰り返して積層し、積層体の全体組成として化学量論
的にアルミニウムリッチになるものとした構造を採用し
たのである。
In order to solve the above-mentioned problems, the present invention provides Ti x Al 1-x N and Ti y Al 1-y N (0≤x <
Two kinds of compounds of 0.5 and 0.5 <y ≦ 1) are alternately and repeatedly laminated, and a structure in which the entire composition of the laminated body is stoichiometrically aluminum rich is adopted. .

【0011】この発明の超薄膜積層体は、繰り返しの積
層周期を0.5nm〜20nmとし、全体の膜厚を0.
5μm〜10μmとすることにより最も好ましい効果を
得ることができ、切削チップ、ドリルまたはエンドミル
の被覆層として用いる場合、上記超薄膜積層体を、WC
基超硬合金、サーメット、セラミックス、高速度鋼等の
硬質基材の表面に被覆する。
The ultrathin film laminate of the present invention has a repeating stacking period of 0.5 nm to 20 nm and a total film thickness of 0.
The most preferable effect can be obtained by adjusting the thickness to 5 μm to 10 μm, and when used as a coating layer for a cutting tip, a drill or an end mill, the above ultra thin film laminate is
Coating on the surface of hard base materials such as base cemented carbide, cermet, ceramics, high speed steel.

【0012】ここで、繰り返しの積層周期とは、例えば
図1に示すように、2種類の化合物AとBを交互に繰り
返し積層した場合、化合物Aの厚み(t1 )と化合物B
の厚み(t2 )との和(t1 +t2 =λ)をいう。
Here, the term “repeated stacking period” means, for example, when two kinds of compounds A and B are alternately stacked repeatedly as shown in FIG. 1, the thickness (t 1 ) of the compound A and the compound B are
(T 1 + t 2 = λ) with the thickness (t 2 ).

【0013】なお、図1において、符号1は超薄膜積層
体を、2は基材を示している。
In FIG. 1, reference numeral 1 is an ultrathin film laminate, and 2 is a base material.

【0014】上記超薄膜積層体を基材の表面に被覆する
場合、図2に示すように、超薄膜積層体1と基材2の間
に界面層3を設け、この界面層3を、周期律表IVa
族、Va族、VIa族の金属元素の群から選択される1
種以上の元素と、C、Nの1種以上との組み合せからな
る化合物の少なくとも1種からなる膜厚0.05μm〜
5μmのものとするのが好ましい。
When the surface of the base material is coated with the ultrathin film laminate, an interface layer 3 is provided between the ultrathin film laminate 1 and the base material 2 as shown in FIG. Table IVa
1 selected from the group of metal elements belonging to group III, group Va, group VIa
A film thickness of 0.05 μm consisting of at least one kind of compound consisting of a combination of one or more elements and one or more kinds of C and N
It is preferably 5 μm.

【0015】また、超薄膜積層体の使用用途を、電気・
電子部品や摺動部品、機械部品の表面の耐摩耗膜や保護
膜とする場合、電気・電子部品では全体の膜厚を5nm
〜2μm、摺動部品、機械部品においては全体の膜厚を
0.1μm〜10μmにするのがよい。
In addition, the application of the ultra-thin film laminate is
When it is used as a wear resistant film or a protective film on the surface of electronic parts, sliding parts, and mechanical parts, the total film thickness of electrical and electronic parts is 5 nm.
.About.2 .mu.m, and in the case of sliding parts and mechanical parts, the total film thickness is preferably 0.1 .mu.m to 10 .mu.m.

【0016】上記の超薄膜積層体を形成する方法として
は、CVD法やPVD法があり、特にPVD法は、融点
や硬度が著しく高いセラミックス皮膜を500℃以下の
温度で形成することが可能であるため、基材の強度を容
易に維持することができ、また積層物間の界面層におけ
る原子拡散の影響を小さくできる点で好ましい作製法と
云える。
As a method for forming the above ultra-thin film laminate, there are a CVD method and a PVD method. Particularly, the PVD method can form a ceramic film having a remarkably high melting point and hardness at a temperature of 500 ° C. or lower. Therefore, it can be said to be a preferable production method in that the strength of the substrate can be easily maintained and the influence of atomic diffusion in the interface layer between the laminates can be reduced.

【0017】[0017]

【作用】この発明の超薄膜積層体は、Ti、Alおよび
Nによって構成される2種類の化合物を用いて、化学量
論的にアルミニウムリッチなTix Al1-x N(0≦x
<0.5)、および化学量論的にチタンリッチなTiy
Al1-y N(0.5<y≦1)を交互に繰り返し積層
し、薄膜全体の組成として耐酸化性に優れたアルミニウ
ムリッチなTi−Al−N化合物とするものである。
The ultrathin film laminate of the present invention uses two kinds of compounds composed of Ti, Al and N to stoichiometrically enrich the aluminum Ti x Al 1-x N (0 ≦ x
<0.5), and stoichiometrically titanium-rich Ti y
Al 1-y N (0.5 <y ≦ 1) is alternately and repeatedly laminated to form an aluminum-rich Ti—Al—N compound having excellent oxidation resistance as the composition of the entire thin film.

【0018】このように化学量論的にチタンリッチな超
薄膜層を含む構成とすることにより、アルミニウムリッ
チなTi−Al−N化合物の薄膜単体で起こる硬度の低
下が抑制され、従来技術では得られない高硬度と耐酸化
性の両立を実現できる。この特性を利用すれば、切削工
具や耐摩工具の被覆層として用いた場合、工具の摩耗寿
命の大幅な延命化を図ることができる。
As described above, the stoichiometrically titanium-containing ultra-thin film layer is included, so that the decrease in hardness that occurs in a single thin film of an aluminum-rich Ti-Al-N compound is suppressed. Both high hardness and oxidation resistance can be achieved. By utilizing this characteristic, when used as a coating layer for a cutting tool or an abrasion resistant tool, the wear life of the tool can be significantly extended.

【0019】また、異なる2種類の化合物を交互に0.
5nm〜20nmという極めて薄い膜厚で積層した場
合、ビッカース硬度が荷重25gfで3500kgf/mm
2 以上という化合物の薄膜単体では得ることができない
高硬度が実現でき、優れた耐摩耗性が発現する。
Further, two different kinds of compounds are alternately mixed with each other to 0.
When laminated with an extremely thin film thickness of 5 nm to 20 nm, the Vickers hardness is 3500 kgf / mm at a load of 25 gf.
High hardness, which cannot be obtained with a thin film of a compound of 2 or more, can be realized, and excellent wear resistance is exhibited.

【0020】これは、繰り返しの積層周期を20nm以
下にした場合、結晶を構成する原子の中で界面を形成す
る原子、すなわち界面に接する原子が多くなり、物質固
有の特性よりも界面に起因する特性が顕著になり、界面
での格子歪エネルギーの効果により硬度上昇が発現する
ものと考えられる。一方、繰り返しの積層周期が0.5
nm以下の場合は、界面での相互拡散等の影響により積
層物質同士の混合層となり、逆に、繰り返しの積層周期
が20nm以上の場合には、個々の薄膜の単体としての
特性が支配的となり、いずれも積層による顕著な硬度上
昇効果を得ることができない。
This is because when the repeating stacking period is set to 20 nm or less, the number of atoms forming the interface, that is, atoms in contact with the interface becomes large among the atoms constituting the crystal, which is caused by the interface rather than the characteristic peculiar to the substance. It is considered that the characteristics become remarkable, and the hardness increase appears due to the effect of the lattice strain energy at the interface. On the other hand, the repeated stacking cycle is 0.5
When the thickness is less than or equal to nm, a mixed layer of stacked materials is formed due to the influence of mutual diffusion at the interface, and conversely, when the repeated stacking period is greater than or equal to 20 nm, individual thin film characteristics are dominant. However, in both cases, it is not possible to obtain a remarkable effect of increasing the hardness due to the lamination.

【0021】この発明の超薄膜積層体は、基材表面に直
接形成するよりも、両者の間に界面層を介在させる方
が、基材に対する超薄膜積層体の密着強度を向上させる
ことができる。これは、基材と超薄膜積層体という特性
の大きく異なる物質間に、中間的な特性を有する界面層
を設けることにより、特性の変化が連続的になり、膜の
残留応力の低減等の効果が期待できるからである。この
界面層の効果は、膜厚が0.05μm未満では密着強度
の向上が見られず、逆に、5μmを越えても密着強度の
更なる向上は見られず、所定の範囲で特有の効果を発揮
することができる。
In the ultrathin film laminate of the present invention, it is possible to improve the adhesion strength of the ultrathin film laminate to the substrate by interposing the interface layer between the two, rather than directly forming it on the substrate surface. . This is because by providing an interface layer having intermediate properties between the base material and the ultra-thin film laminate, which have greatly different properties, the changes in properties become continuous and the effect of reducing residual stress in the film is achieved. Can be expected. As for the effect of this interface layer, when the film thickness is less than 0.05 μm, the adhesion strength is not improved, and conversely, when it exceeds 5 μm, the adhesion strength is not further improved. Can be demonstrated.

【0022】なお、上述したものと同様の効果は、Ti
−Al系以外のAl合金の窒化物、例えば(AlZr)
N、(AlNb)N、(AlHf)N等の合金組成を変
化させた被膜を積層させることによっても得られるが、
この発明では、耐酸化性と硬度の良好なバランスからT
i−Al窒化物を採用するものである。
The same effect as that described above can be obtained by using Ti
-Nitride of Al alloy other than Al type, for example (AlZr)
It can also be obtained by stacking coating films having different alloy compositions such as N, (AlNb) N and (AlHf) N.
According to the present invention, T has a good balance between oxidation resistance and hardness.
i-Al nitride is adopted.

【0023】[0023]

【実施例】次に、この発明の効果を見るために行なった
実施例について説明する。なお、以下の各実施例におい
て超薄膜積層体を形成する場合、nmオーダーの積層周
期の測定は、透過電子顕微鏡(TEM)による観察およ
び小角X線解析法により行なっている。また、長周期の
積層構造に関しては、高分解能走査電子顕微鏡による積
層周期の測定も可能である。
EXAMPLES Next, examples carried out to see the effects of the present invention will be described. When forming an ultrathin film laminate in each of the following examples, the nm-order lamination period is measured by observation with a transmission electron microscope (TEM) and a small-angle X-ray analysis method. Further, regarding the long-period stacking structure, the stacking period can be measured by a high-resolution scanning electron microscope.

【0024】<実施例1>基材として、組成がJIS規
格P30、形状がJISSNG432の超硬合金製切削
チップを複数用意し、その表面に、真空アーク放電によ
るイオンプレーティング法を用いて表1に示す超薄膜積
層構造を形成した。ここで、この発明の実施例の切削チ
ップ試料を、No.1〜No.26とした。
<Example 1> As a base material, a plurality of cemented carbide cutting tips having a composition of JIS standard P30 and a shape of JISSNG432 were prepared, and the surfaces thereof were subjected to an ion plating method by vacuum arc discharge to obtain a table 1 The ultrathin film laminated structure shown in was formed. Here, the cutting tip samples of the examples of the present invention were No. 1 to No. 26.

【0025】[0025]

【表1】 [Table 1]

【0026】図3は、切削チップ試料の製造方法を示し
ており、試料の形成は、成膜装置4の内部に複数個のT
i−Al化合物のターゲット5、6を配置し、ターゲッ
トの中心点を中心としてこれ等のターゲット間で回転す
る基材保持具7に切削チップ8を装着し、切削チップの
回転数と真空アークの放電電流(ターゲット材料の蒸発
量)の一方又は両方を調整することにより繰り返しの積
層周期を調整した。
FIG. 3 shows a method of manufacturing a cutting tip sample. The sample is formed by forming a plurality of T inside the film forming apparatus 4.
The targets 5 and 6 of the i-Al compound are arranged, the cutting tip 8 is attached to the base material holder 7 that rotates between these targets around the center point of the target, and the rotation speed of the cutting tip and the vacuum arc The repeated stacking cycle was adjusted by adjusting one or both of the discharge current (evaporation amount of the target material).

【0027】これは、先ず、成膜装置4内の真空度を1
-5Torrとし、この雰囲気中にArガスを導入して
10-2Torrの真空度を保持しながら500℃まで加
熱し、切削チップ8に−1000Vの電圧をかけて洗浄
を行なった後、Arガスを排気した。次に、成膜装置4
内にN2 ガス、CH4 ガスのいずれか1種類或いは数種
類を基材回転に合わせた時間制御により200cc/m
inの割合で導入し、この状態で真空アーク放電を行な
うことにより周期律表IVa族、Va族、VIa族の金
属元素、及びTi−Al化合物のターゲット5、6を蒸
発・イオン化させ、これによって、回転する切削チップ
がターゲットの前を通過する際にターゲット材料と導入
ガス中のC、Nとの化合物層を切削チップ上に形成し
た。
First, the degree of vacuum in the film forming apparatus 4 is set to 1
The pressure was set to 0 -5 Torr, Ar gas was introduced into this atmosphere, the temperature was raised to 500 ° C. while maintaining a vacuum degree of 10 -2 Torr, and the cutting tip 8 was cleaned by applying a voltage of -1000 V. Ar gas was exhausted. Next, the film forming apparatus 4
200 cc / m by controlling the time of one or several of N 2 gas and CH 4 gas according to the rotation of the substrate.
It is introduced at a ratio of in, and vacuum arc discharge is performed in this state to evaporate and ionize the metal elements of the IVa group, Va group, and VIa group of the periodic table, and the targets 5 and 6 of the Ti—Al compound. When the rotating cutting tip passed in front of the target, a compound layer of the target material and C and N in the introduced gas was formed on the cutting tip.

【0028】また、上記の実施例の試料との比較のた
め、表1に試料27〜30で示す従来構造による硬質被
覆の切削チップを準備した。この場合、試料27〜29
は、通常の成膜装置を使用して真空アーク放電を用いた
イオンプレーティング法により、また試料30は、通常
のCVD法により、上述と同じ組成と形状の切削チップ
の表面に単独の硬質被覆層を形成して製作した。
Further, for comparison with the samples of the above-mentioned examples, hard coated cutting chips having conventional structures shown in Tables 1 to 27 were prepared. In this case, samples 27-29
Is an ion plating method using a vacuum arc discharge using an ordinary film forming apparatus, and the sample 30 is an ordinary CVD method, and a single hard coating is applied to the surface of a cutting tip having the same composition and shape as described above. It was manufactured by forming layers.

【0029】この実施例では、上記のように準備した各
種の切削チップ試料について、次の表2の条件により連
続切削試験と断続切削試験を行ない、切刃の逃げ面摩耗
幅を測定した。その各切削試験の結果を表3に示す。
In this example, various cutting tip samples prepared as described above were subjected to a continuous cutting test and an intermittent cutting test under the conditions shown in Table 2 below to measure the flank wear width of the cutting edge. The results of each cutting test are shown in Table 3.

【0030】[0030]

【表2】 [Table 2]

【0031】[0031]

【表3】 [Table 3]

【0032】表3の結果から、従来構造の試料のうち硬
質被覆層をPVD法で形成した試料27〜29は耐摩耗
性に劣り、CVD法で形成した試料30は基材の靱性劣
化により刃先の耐欠損性が低下した。これに対して、こ
の発明に係る試料1〜24(試料8は除く)は、連続切
削及び断続切削の両方において優れた耐摩耗性を有し、
また、基材の靱性が維持され、優れた耐欠損性を示し
た。
From the results shown in Table 3, among the samples having the conventional structure, the samples 27 to 29 in which the hard coating layer was formed by the PVD method were inferior in wear resistance, and the sample 30 formed by the CVD method was inferior in the toughness of the base material. The chipping resistance of was decreased. On the other hand, Samples 1 to 24 (excluding Sample 8) according to the present invention have excellent wear resistance in both continuous cutting and intermittent cutting,
Further, the toughness of the base material was maintained and excellent fracture resistance was exhibited.

【0033】また、試料1〜7までの結果から、超薄膜
積層体を切削工具に適用した場合の繰り返しの積層周期
としては、0.5nm〜20nmが最適であり、さら
に、試料13〜18の試験結果から、界面層の膜厚とし
て0.05μm〜5μmが適当であることが明らかであ
る。
Further, from the results of Samples 1 to 7, the optimum stacking cycle of 0.5 nm to 20 nm when the ultrathin film stack is applied to a cutting tool is 0.5 nm to 20 nm. From the test results, it is clear that the film thickness of the interface layer is preferably 0.05 μm to 5 μm.

【0034】加えて、試料9〜12の試験結果から、超
薄膜積層体の全体の膜厚として、0.5μm〜10μm
が適当であることがわかる。
In addition, from the test results of Samples 9 to 12, the total film thickness of the ultrathin film laminate was 0.5 μm to 10 μm.
It turns out that is suitable.

【0035】また、試料19〜26の試験結果から、超
薄膜積層体の構造は、0≦x<0.5の範囲にあるアル
ミニウムリッチなTix Al1-x Nの化合物と、0.5
<y≦1の範囲にあるチタンリッチなTiy Al1-y
の化合物とを交互に繰り返し積層し、薄膜全体としてア
ルミニウムリッチなTi−Al−N化合物にすることが
適当であると言える。
Further, from the test results of Samples 19 to 26, the structure of the ultrathin film laminate has a composition of aluminum rich Ti x Al 1-x N in the range of 0 ≦ x <0.5 and 0.5.
Titanium-rich Ti y Al 1-y N in the range of <y ≦ 1
It can be said that it is appropriate to repeatedly and repeatedly stack the above compounds with each other to form an aluminum-rich Ti-Al-N compound as the whole thin film.

【0036】<実施例2>超薄膜積層体を電気・電子部
品の耐摩耗膜や保護膜に適用した場合の耐摩耗性を確か
めるため、磁気ヘッドの表面に超薄膜積層体を被覆し、
その磁気ヘッドの磁気ディスクとの接触摩耗試験を行な
った。
<Example 2> In order to confirm the wear resistance when the ultrathin film laminate is applied to a wear resistant film or a protective film of electric / electronic parts, the surface of the magnetic head is coated with the ultrathin film laminated product,
A contact wear test of the magnetic head with the magnetic disk was conducted.

【0037】この摩耗試験では、磁気ヘッドとしてアル
ミニウムと炭化チタンからなる焼結体(ビッカース硬度
4000kgf/mm2 )を用い、これを磁気ディスク表面
の保護膜上に荷重600kgf/mm2 で押し付け、次に、
磁気ディスクを磁気ヘッドが浮上するまで高速回転さ
せ、浮上後回転を停止し、再び磁気ヘッドをディスク面
に接触させることを繰り返すCSS試験を行った。ここ
で、CSS試験とは、磁気ヘッドと磁気記録媒体とを接
触状態でセットした後、磁気記録媒体を回転浮上させた
後、回転を停止し、再び磁気ヘッドと磁気記録媒体を接
触させるサイクル試験である。
In this abrasion test, a sintered body made of aluminum and titanium carbide (Vickers hardness of 4000 kgf / mm 2 ) was used as a magnetic head, and this was pressed against the protective film on the surface of the magnetic disk with a load of 600 kgf / mm 2 , To
A CSS test was conducted in which the magnetic disk was rotated at high speed until the magnetic head floated, the rotation was stopped after flying, and the magnetic head was brought into contact with the disk surface again. Here, the CSS test is a cycle test in which the magnetic head and the magnetic recording medium are set in contact with each other, the magnetic recording medium is rotatably levitated, the rotation is stopped, and the magnetic head and the magnetic recording medium are again brought into contact with each other. Is.

【0038】表4は、上記CSS試験法により10万回
の繰り返し試験を行なった場合の結果を示している。
Table 4 shows the results when 100,000 repeated tests were carried out by the CSS test method.

【0039】[0039]

【表4】 [Table 4]

【0040】この表4において試料1〜14は、この発
明に係る超薄膜積層体を用いた例であり、スパッタリン
グ法を用いて作成した。また、試料15は比較例であ
り、SiO2 を保護膜として用いたものである。
In Table 4, Samples 1 to 14 are examples using the ultrathin film laminate according to the present invention and were prepared by the sputtering method. Sample 15 is a comparative example, and uses SiO 2 as a protective film.

【0041】なお、被覆層の硬度は、層が非常に薄く測
定ができず、真空中でのArイオンビーム(加速電圧3
KV)による層のエッチング速度と硬度との間に経験的
に正の相関があるため、エッチング速度を硬度の代替値
として示した。
The hardness of the coating layer cannot be measured because the layer is very thin, and the Ar ion beam (accelerating voltage 3
Since there is an empirical positive correlation between the etching rate of the layer by KV) and the hardness, the etching rate is shown as an alternative value for the hardness.

【0042】表4の結果から、0≦x<0.5、0.5
<y≦1の諸元をもち、繰り返しの積層周期が0.5n
m〜20nmの範囲にある試料2〜5について、表面状
態や再生出力に変化が見られず、他の試料、特に従来構
造の試料15に比べて優れた耐摩耗性があることが示さ
れた。
From the results of Table 4, 0 ≦ x <0.5, 0.5
<Y ≦ 1 and the repeating stacking period is 0.5 n
Regarding Samples 2 to 5 in the range of m to 20 nm, no change was observed in the surface state and the reproduction output, and it was shown that the samples 2 to 5 have excellent wear resistance as compared with other samples, especially Sample 15 of the conventional structure. .

【0043】[0043]

【効果】以上のように、この発明の超薄膜積層体は、高
硬度と耐酸化性とを同時に併せ持つことができるので、
切削工具や耐摩工具の被覆層に用いることにより基材強
度を維持したままで従来より優れた耐摩耗性を有するこ
とができ、特に高速切削や高硬度材料の切削用途におい
て、切削寿命を大きく延長させることができる。
As described above, since the ultrathin film laminate of the present invention can have both high hardness and oxidation resistance at the same time,
By using it as a coating layer for cutting tools and abrasion resistant tools, it is possible to have better wear resistance than before while maintaining the strength of the base material, and in particular the cutting life is greatly extended in high speed cutting and cutting applications of high hardness materials. Can be made.

【0044】また、上記切削工具等の用途以外に、この
発明の超薄膜積層体は、電気・電子部品や摺動部品、機
械部品の表面に対して耐摩耗性に優れた耐摩耗膜や保護
膜として、適用することができる。
In addition to the above-mentioned applications such as cutting tools, the ultra-thin film laminate of the present invention has a wear-resistant film and protection excellent in wear resistance on the surfaces of electric / electronic parts, sliding parts and machine parts. It can be applied as a membrane.

【0045】さらに、この超薄膜積層体を用いれば、光
磁気記録媒体、光学レンズ等の表面保護膜、或は光学特
性、電気特性等にも優れた薄膜を提供することができ
る。
Further, by using this ultrathin film laminate, it is possible to provide a surface protective film for a magneto-optical recording medium, an optical lens or the like, or a thin film excellent in optical characteristics, electric characteristics and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)はこの発明に係る超薄膜積層体を基材に
被覆した状態を示す模式図、(b)はその部分拡大図
FIG. 1A is a schematic view showing a state in which a base material is coated with an ultrathin film laminate according to the present invention, and FIG. 1B is a partially enlarged view thereof.

【図2】この発明に係る超薄膜積層体を界面層を介して
基材に被覆した状態を示す模式図
FIG. 2 is a schematic diagram showing a state in which a base material is coated with an ultrathin film laminate according to the present invention via an interface layer.

【図3】この発明に係る超薄膜積層体の形成方法を示す
FIG. 3 is a diagram showing a method for forming an ultrathin film laminate according to the present invention.

【符号の説明】[Explanation of symbols]

1 超薄膜積層体 2 基材 3 界面層 4 成膜装置 5、6 ターゲット 7 基材保持具 8 切削チップ 1 Ultra Thin Film Laminate 2 Base Material 3 Interface Layer 4 Film Forming Device 5, 6 Target 7 Base Material Holder 8 Cutting Tip

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22C 29/16 C23C 16/34 28/04 (72)発明者 吉岡 剛 伊丹市昆陽北一丁目1番1号 住友電気工 業株式会社伊丹製作所内 (72)発明者 山縣 一夫 伊丹市昆陽北一丁目1番1号 住友電気工 業株式会社伊丹製作所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI technical display location C22C 29/16 C23C 16/34 28/04 (72) Inventor Tsuyoshi Yoshioka 1-1 Kunyokita, Itami City No. 1 Sumitomo Electric Industries Itami Works Co., Ltd. (72) Inventor Kazuo Yamagata 1-1-1 Kunyo Kita, Itami City Sumitomo Electric Works Itami Works

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 Ti、AlおよびNによって構成される
Tix Al1-x NおよびTiy Al1-y N(0≦x<
0.5、0.5<y≦1)なる2種類の化合物を、交互
に繰り返して積層し、積層体の全体組成として化学量論
的にアルミニウムリッチになるものとした超薄膜積層
体。
1. Ti x Al 1-x N and Ti y Al 1-y N (0 ≦ x <, composed of Ti, Al and N.
An ultrathin film laminate in which two kinds of compounds of 0.5 and 0.5 <y ≦ 1) are alternately and repeatedly laminated so that the overall composition of the laminate becomes stoichiometrically aluminum-rich.
【請求項2】 請求項1に記載の超薄膜積層体におい
て、繰り返しの積層周期を0.5nm〜20nmとし、
全体の膜厚を0.5μm〜10μmとした超薄膜積層
体。
2. The ultrathin film laminate according to claim 1, wherein the repeating lamination cycle is 0.5 nm to 20 nm,
An ultra-thin film laminate having a total film thickness of 0.5 μm to 10 μm.
【請求項3】 請求項1又は2に記載の超薄膜積層体
を、WC基超硬合金、サーメット、セラミックス、高速
度鋼等の硬質基材の表面に被覆し、切削チップ、ドリル
またはエンドミルとして用いる超薄膜積層体の被覆物。
3. The surface of a hard base material such as WC-based cemented carbide, cermet, ceramics, high-speed steel, etc., coated with the ultrathin film laminate according to claim 1 or 2, and used as a cutting tip, a drill or an end mill. The coating of the ultrathin film laminate used.
【請求項4】 請求項1又は2に記載の超薄膜積層体を
基材の表面に被覆し、その超薄膜積層体と基材との間
に、周期律表IVa族、Va族、VIa族の金属元素の
群から選択される1種以上の元素と、C、Nの1種以上
との組み合せからなる化合物の少なくとも1種からなる
膜厚0.05μm〜5μmの界面層を設けた超薄膜積層
体の被覆物。
4. The surface of a substrate is coated with the ultrathin film laminate according to claim 1 or 2, and the IVa group, the Va group and the VIa group of the periodic table are provided between the ultrathin film laminate and the substrate. Ultrathin film provided with an interface layer having a film thickness of 0.05 μm to 5 μm, which is made of at least one kind of compound consisting of a combination of one or more kinds of elements selected from the group of the metallic elements described above and one or more kinds of C and N. Laminated coating.
【請求項5】 請求項1又は2に記載の超薄膜積層体に
おいて、電気・電子部品、摺動部品、機械部品の耐摩耗
膜あるいは保護膜として用いるビッカース硬度が荷重2
5gfで3500kgf/mm2 以上のものである超薄膜積
層体。
5. The ultrathin film laminate according to claim 1 or 2, wherein the Vickers hardness used as a wear-resistant film or a protective film for electric / electronic parts, sliding parts, mechanical parts is a load of 2.
An ultra-thin film laminate having a weight of 3500 kgf / mm 2 or more at 5 gf.
【請求項6】 請求項5に記載の超薄膜積層体におい
て、積層体の全体の膜厚を5nm〜10μmとした超薄
膜積層体。
6. The ultrathin film laminate according to claim 5, wherein the total film thickness of the laminate is 5 nm to 10 μm.
JP5244178A 1993-09-30 1993-09-30 Ultra thin film laminate Expired - Fee Related JP2979921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5244178A JP2979921B2 (en) 1993-09-30 1993-09-30 Ultra thin film laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5244178A JP2979921B2 (en) 1993-09-30 1993-09-30 Ultra thin film laminate

Publications (2)

Publication Number Publication Date
JPH0797679A true JPH0797679A (en) 1995-04-11
JP2979921B2 JP2979921B2 (en) 1999-11-22

Family

ID=17114929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5244178A Expired - Fee Related JP2979921B2 (en) 1993-09-30 1993-09-30 Ultra thin film laminate

Country Status (1)

Country Link
JP (1) JP2979921B2 (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999040233A1 (en) * 1998-02-04 1999-08-12 Osg Corporation Multilayer coated tool
WO2003061884A1 (en) * 2002-01-21 2003-07-31 Mitsubishi Materials Kobe Tools Corporation Surface coated cutting tool member having hard coating layer exhibiting excellent abrasion resistance in high-speed cutting, and method for forming said hard coating layer on surface of cutting tool
WO2003064085A1 (en) * 2002-01-31 2003-08-07 Mitsubishi Materials Corporation Coated cutting tool member having hard coating layer and method for forming the hard coating layer on cutting tool
JP2003340606A (en) * 2002-05-27 2003-12-02 Mitsubishi Materials Corp Surface-covered cemented carbide made cutting tool having hard coated layer to exhibit excellent abrasion resistance in high-speed cutting work
JP2003340607A (en) * 2002-05-27 2003-12-02 Mitsubishi Materials Corp Surface-covered cemented carbide made cutting tool having hard coating layer to exhibit excellent chipping resistance in high-speed heavy cutting condition
WO2004000494A1 (en) 2002-06-25 2003-12-31 Mitsubishi Materials Corporation Coated cutting tool member
JP2004306166A (en) * 2003-04-03 2004-11-04 Mitsubishi Materials Kobe Tools Corp Cutting tool made of surface coated cemented carbide having hard coating layer exhibiting excellent wear resistance under high-speed cutting condition and its manufacturing method
JP2004322267A (en) * 2003-04-25 2004-11-18 Mitsubishi Materials Kobe Tools Corp Surface-coated cemented carbide cutting tool having hard coating layer exhibiting superior abrasion resistance under high speed cutting condition and its manufacturing method
US6830838B2 (en) 1998-02-25 2004-12-14 Micron Technology, Inc. Chemical vapor deposition of titanium
USRE40025E1 (en) 1999-09-01 2008-01-22 Sandvik Intellectual Property Ab Coated grooving or parting insert and method of making same
JP2009000808A (en) * 2007-06-15 2009-01-08 Sandvik Intellectual Property Ab -fine particle cemented carbide for turning of heat resistant super alloy (hrsa) and stainless steel
JP2009034811A (en) * 2007-06-15 2009-02-19 Sandvik Intellectual Property Ab Cemented carbide insert for parting, grooving and threading
US20100258612A1 (en) * 2007-11-16 2010-10-14 Boehlerit Gmbh & Co.Kg. Friction stir welding tool
US8283058B2 (en) 2007-06-01 2012-10-09 Sandvik Intellectual Property Ab Fine grained cemented carbide cutting tool insert
JP2012528732A (en) * 2009-06-01 2012-11-15 セコ ツールズ アクティエボラーグ Nanolaminate coated cutting tool
JP2012528733A (en) * 2009-06-01 2012-11-15 セコ ツールズ アクティエボラーグ Nanolaminate coated cutting tool
JP2013046957A (en) * 2011-07-25 2013-03-07 Mitsubishi Materials Corp Surface coated drill excellent in wear resistance and chip discharge property
US8455116B2 (en) 2007-06-01 2013-06-04 Sandvik Intellectual Property Ab Coated cemented carbide cutting tool insert
US8500966B2 (en) * 2002-03-14 2013-08-06 Kennametal Inc. Nanolayered coated cutting tool and method for making the same
CN103469154A (en) * 2013-09-05 2013-12-25 江西稀有稀土金属钨业集团有限公司 TiAlN composite coating and preparation method of cutter provided with same
WO2014019897A1 (en) * 2012-08-03 2014-02-06 Walter Ag Tialn-coated tool
US20140169891A1 (en) * 2012-12-17 2014-06-19 Kennametal, Inc. Tool For The Cutting Machining Of Workpieces And Process For Coating Substrate Bodies
CN103894636A (en) * 2012-12-27 2014-07-02 三菱综合材料株式会社 Coating and cutting tool for hard material wrapped excellent knife breaking surface
US9005329B2 (en) 2007-06-01 2015-04-14 Sandvik Intellectual Property Ab Fine grained cemented carbide with refined structure
JP2015124407A (en) * 2013-12-26 2015-07-06 住友電工ハードメタル株式会社 Coating, cutting tool and method of producing coating
EP2891536A4 (en) * 2012-08-28 2016-04-13 Mitsubishi Materials Corp Surface-coated cutting tool
WO2016076386A1 (en) * 2014-11-13 2016-05-19 三菱マテリアル株式会社 Surface-coated cutting tool
JP2016130344A (en) * 2015-01-14 2016-07-21 住友電工ハードメタル株式会社 Hard coating, cutting tool and method of manufacturing hard coating
JP2016175161A (en) * 2015-03-20 2016-10-06 三菱マテリアル株式会社 Surface-coated cutting tool
US9476114B2 (en) 2012-08-03 2016-10-25 Walter Ag TiAlN-coated tool
JP2017508632A (en) * 2014-03-11 2017-03-30 バルター アクチェンゲゼルシャフト TiAlCN layer with layered structure
KR20170117131A (en) 2015-04-27 2017-10-20 가부시키가이샤 탕가로이 Cloth cutting tool
DE10210839B4 (en) 2001-03-13 2018-07-05 Osg Corp. Hard multilayer coating and use of hard multilayer coating
KR20190080932A (en) * 2016-11-14 2019-07-08 지멘스 악티엔게젤샤프트 Multilayer aluminum-containing protective coatings and parts
US10737332B2 (en) 2016-04-07 2020-08-11 Tungaloy Corporation Coated cutting tool

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6309738B1 (en) 1998-02-04 2001-10-30 Osg Corporation Hard multilayer coated tool having increased toughness
WO1999040233A1 (en) * 1998-02-04 1999-08-12 Osg Corporation Multilayer coated tool
US6903462B2 (en) * 1998-02-25 2005-06-07 Micron Technology, Inc. Chemical vapor deposition of titanium
US6830838B2 (en) 1998-02-25 2004-12-14 Micron Technology, Inc. Chemical vapor deposition of titanium
US6830820B2 (en) 1998-02-25 2004-12-14 Micron Technology, Inc. Chemical vapor deposition of titanium
USRE40025E1 (en) 1999-09-01 2008-01-22 Sandvik Intellectual Property Ab Coated grooving or parting insert and method of making same
DE10210839B4 (en) 2001-03-13 2018-07-05 Osg Corp. Hard multilayer coating and use of hard multilayer coating
WO2003061884A1 (en) * 2002-01-21 2003-07-31 Mitsubishi Materials Kobe Tools Corporation Surface coated cutting tool member having hard coating layer exhibiting excellent abrasion resistance in high-speed cutting, and method for forming said hard coating layer on surface of cutting tool
CN100408237C (en) * 2002-01-21 2008-08-06 三菱麻铁里亚尔株式会社 Surface-coated cutting tool member having coating layer exhibiting superior wear resistance during high speed cutting operation and method for forming hard coating layer on surface of cutting tool
KR100707755B1 (en) * 2002-01-21 2007-04-17 미츠비시 마테리알 고베 툴스 가부시키가이샤 Surface coated cutting tool member having hard coating layer exhibiting excellent abrasion resistance in high-speed cutting, and method for forming said hard coating layer on surface of cutting tool
US7094479B2 (en) 2002-01-21 2006-08-22 Mitsubishi Materials Kobe Tools Corporation Surface-coated cutting tool member having hard coating layer exhibiting superior wear resistance during high speed cutting operation and method for forming hard coating layer on surface of cutting tool
CN1325212C (en) * 2002-01-31 2007-07-11 三菱麻铁里亚尔株式会社 Coated cutting tool member having hard coating layer and method for forming the hard coating layer on cutting tool
US7144639B2 (en) 2002-01-31 2006-12-05 Mitsubishi Materials Corporation Surface-coated cutting tool member having hard coating layer and method for forming the hard coating layer on surface of cutting tool
WO2003064085A1 (en) * 2002-01-31 2003-08-07 Mitsubishi Materials Corporation Coated cutting tool member having hard coating layer and method for forming the hard coating layer on cutting tool
US8500966B2 (en) * 2002-03-14 2013-08-06 Kennametal Inc. Nanolayered coated cutting tool and method for making the same
JP2003340607A (en) * 2002-05-27 2003-12-02 Mitsubishi Materials Corp Surface-covered cemented carbide made cutting tool having hard coating layer to exhibit excellent chipping resistance in high-speed heavy cutting condition
JP2003340606A (en) * 2002-05-27 2003-12-02 Mitsubishi Materials Corp Surface-covered cemented carbide made cutting tool having hard coated layer to exhibit excellent abrasion resistance in high-speed cutting work
WO2004000494A1 (en) 2002-06-25 2003-12-31 Mitsubishi Materials Corporation Coated cutting tool member
EP2255908A1 (en) * 2002-06-25 2010-12-01 Mitsubishi Materials Corporation Coated cutting tool member
US7258933B2 (en) 2002-06-25 2007-08-21 Mitsubishi Materials Corporation Coated cutting tool member
JP2004306166A (en) * 2003-04-03 2004-11-04 Mitsubishi Materials Kobe Tools Corp Cutting tool made of surface coated cemented carbide having hard coating layer exhibiting excellent wear resistance under high-speed cutting condition and its manufacturing method
JP2004322267A (en) * 2003-04-25 2004-11-18 Mitsubishi Materials Kobe Tools Corp Surface-coated cemented carbide cutting tool having hard coating layer exhibiting superior abrasion resistance under high speed cutting condition and its manufacturing method
US8283058B2 (en) 2007-06-01 2012-10-09 Sandvik Intellectual Property Ab Fine grained cemented carbide cutting tool insert
US9005329B2 (en) 2007-06-01 2015-04-14 Sandvik Intellectual Property Ab Fine grained cemented carbide with refined structure
US8455116B2 (en) 2007-06-01 2013-06-04 Sandvik Intellectual Property Ab Coated cemented carbide cutting tool insert
JP2009034811A (en) * 2007-06-15 2009-02-19 Sandvik Intellectual Property Ab Cemented carbide insert for parting, grooving and threading
JP2009000808A (en) * 2007-06-15 2009-01-08 Sandvik Intellectual Property Ab -fine particle cemented carbide for turning of heat resistant super alloy (hrsa) and stainless steel
US20100258612A1 (en) * 2007-11-16 2010-10-14 Boehlerit Gmbh & Co.Kg. Friction stir welding tool
JP2012528733A (en) * 2009-06-01 2012-11-15 セコ ツールズ アクティエボラーグ Nanolaminate coated cutting tool
JP2012528732A (en) * 2009-06-01 2012-11-15 セコ ツールズ アクティエボラーグ Nanolaminate coated cutting tool
JP2013046957A (en) * 2011-07-25 2013-03-07 Mitsubishi Materials Corp Surface coated drill excellent in wear resistance and chip discharge property
US9476114B2 (en) 2012-08-03 2016-10-25 Walter Ag TiAlN-coated tool
WO2014019897A1 (en) * 2012-08-03 2014-02-06 Walter Ag Tialn-coated tool
CN104520472A (en) * 2012-08-03 2015-04-15 瓦尔特公开股份有限公司 Tialn-coated tool
EP2891536A4 (en) * 2012-08-28 2016-04-13 Mitsubishi Materials Corp Surface-coated cutting tool
US20140169891A1 (en) * 2012-12-17 2014-06-19 Kennametal, Inc. Tool For The Cutting Machining Of Workpieces And Process For Coating Substrate Bodies
US9126273B2 (en) * 2012-12-17 2015-09-08 Kennametal Inc Tool for the cutting machining of workpieces and process for coating substrate bodies
CN103894636A (en) * 2012-12-27 2014-07-02 三菱综合材料株式会社 Coating and cutting tool for hard material wrapped excellent knife breaking surface
JP2014128837A (en) * 2012-12-27 2014-07-10 Mitsubishi Materials Corp Surface-coated cutting tool with hard coating layer exerting excellent anti-chipping properties
CN103469154A (en) * 2013-09-05 2013-12-25 江西稀有稀土金属钨业集团有限公司 TiAlN composite coating and preparation method of cutter provided with same
JP2015124407A (en) * 2013-12-26 2015-07-06 住友電工ハードメタル株式会社 Coating, cutting tool and method of producing coating
JP2017508632A (en) * 2014-03-11 2017-03-30 バルター アクチェンゲゼルシャフト TiAlCN layer with layered structure
JP2016093857A (en) * 2014-11-13 2016-05-26 三菱マテリアル株式会社 Surface-coated cutting tool
WO2016076386A1 (en) * 2014-11-13 2016-05-19 三菱マテリアル株式会社 Surface-coated cutting tool
US10384269B2 (en) 2014-11-13 2019-08-20 Mitsubishi Materials Corporation Surface-coated cutting tool
JP2016130344A (en) * 2015-01-14 2016-07-21 住友電工ハードメタル株式会社 Hard coating, cutting tool and method of manufacturing hard coating
JP2016175161A (en) * 2015-03-20 2016-10-06 三菱マテリアル株式会社 Surface-coated cutting tool
KR20170117131A (en) 2015-04-27 2017-10-20 가부시키가이샤 탕가로이 Cloth cutting tool
US10583493B2 (en) 2015-04-27 2020-03-10 Tungaloy Corporation Coated cutting tool
US10737332B2 (en) 2016-04-07 2020-08-11 Tungaloy Corporation Coated cutting tool
KR20190080932A (en) * 2016-11-14 2019-07-08 지멘스 악티엔게젤샤프트 Multilayer aluminum-containing protective coatings and parts
US11078574B2 (en) 2016-11-14 2021-08-03 Siemens Energy Global GmbH & Co. KG Multilayered aluminiferous protective coating and component

Also Published As

Publication number Publication date
JP2979921B2 (en) 1999-11-22

Similar Documents

Publication Publication Date Title
JP2979921B2 (en) Ultra thin film laminate
CN101254673B (en) Hard laminated film
US6562445B2 (en) Diamond-like carbon hard multilayer film and component excellent in wear resistance and sliding performance
JP3995900B2 (en) Diamond-like carbon multilayer film
US8025991B2 (en) Cutting tool with oxide coating
CN100419117C (en) Hard laminated film, method of manufacturing the same and film-forming device
JP4373897B2 (en) Hard film coating member and coating method thereof
JP5190971B2 (en) Coating, cutting tool, and manufacturing method of coating
JP3460288B2 (en) Surface coating member with excellent wear resistance
JP4155641B2 (en) Abrasion resistant coating, method for producing the same, and abrasion resistant member
JP2979922B2 (en) Ultra thin film laminate
JP2008290163A (en) Coating film, cutting tool and coating film making method
JP5099500B2 (en) Surface coated cutting tool
JP3427448B2 (en) Ultra-thin laminate
JPH07205361A (en) Surface coating member excellent in wear resistance
JP3638332B2 (en) Coated hard alloy
JP2004176085A (en) Hard film
JP4388152B2 (en) Thin film laminate covering member
JP5580906B2 (en) Coating, cutting tool, and manufacturing method of coating
JPH08199340A (en) Coated hard alloy
JPH06279990A (en) Wear resistant coating film and its formation
JP3016702B2 (en) Coated hard alloy
JP2867605B2 (en) Surface-coated hard members for cutting tools and wear-resistant tools
JPH10130821A (en) Hard-film-coated small-diameter shank tool made of high speed steel, excellent in wear resistance, and its production
JP3337884B2 (en) Multilayer coating member

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070917

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090917

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100917

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100917

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20110917

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20110917

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees