JP3638332B2 - Coated hard alloy - Google Patents

Coated hard alloy Download PDF

Info

Publication number
JP3638332B2
JP3638332B2 JP03461195A JP3461195A JP3638332B2 JP 3638332 B2 JP3638332 B2 JP 3638332B2 JP 03461195 A JP03461195 A JP 03461195A JP 3461195 A JP3461195 A JP 3461195A JP 3638332 B2 JP3638332 B2 JP 3638332B2
Authority
JP
Japan
Prior art keywords
film
oxidation
hard alloy
coated hard
nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03461195A
Other languages
Japanese (ja)
Other versions
JPH08209334A (en
Inventor
広志 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP03461195A priority Critical patent/JP3638332B2/en
Publication of JPH08209334A publication Critical patent/JPH08209334A/en
Application granted granted Critical
Publication of JP3638332B2 publication Critical patent/JP3638332B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【産業上の利用分野】
本願発明は、耐摩耗性、耐欠損性に優れる切削工具として用いられる被覆切削工具及び耐摩耗工具として用いられる被覆耐摩工具に関する。
【0002】
【従来の技術】
従来PVD法による硬質皮膜は、TiNが主流であったが、最近TiCN膜があるいは(TiAl)Nといった新しい種類の皮膜が開発され注目されてきている。TiCNはビッカース硬さが3000近くあり、TiNのビッカース硬さ2200に比べ格段に硬く耐摩耗性を著しく高める効果も持つ。一方(TiAl)NはTiとAlの比率により異なるが、概略2300〜2800のビッカース硬さを有し、TiNに比べ耐摩耗性を高める一方耐酸化性が著しく優れるため刃先が高温になる切削条件下などで優れた特性を発揮するものである。
【0003】
また、(TiAl)N膜の皮膜の改善としてTi/Alの比率を限定した特公平5−67705号や、(TiAlZr)N、(TiAlV)Nといった更に多元系の皮膜にした米国特許4871434号等が提案され、更に改善が計られている。しかしながら、これらの新しい皮膜は、Alの含有により耐酸化性は向上したものの、まだ十分に満足されるものではなく、また皮膜に残留する圧縮応力がTiN皮膜の1.5倍以上と高く、次のような種々の問題点を有するものである。
【0004】
【発明が解決しようとする課題】
皮膜の密着力は、皮膜の残留圧縮応力が高くなるほど弱くなるものであり、これら新しい皮膜はその密着性がTiNに比べ劣るものである。又、この残留応力が高いことは皮膜の密着性を悪くするだけでなく、膜厚が厚くなるに従い残留応力が増加するため皮膜の厚膜化への技術上の障害ともなり厚膜化が実現されていないのも現状である。
【0005】
残留圧縮応力を低減する最も簡単な方法は、被覆工程における被覆パラメーターを変更することが考えられる。本発明者は、アークイオン放電法により鋼基板上へTiNを3μm成膜する場合、被覆パラメーターである窒素分圧、バイアス電圧に付いて、残留圧縮応力を調べてみたところ、バイアス電圧−50Vにおいては−2GPa、同 −100Vにおいては−5GPaの残留圧縮応力を示した。又、窒素分圧を10-1Pa下においては−1GPa、同100 Paにおいては−2GPaの残留圧縮応力を示した。
この様に、成膜パラメーターを変えることにより容易に残留圧縮応力は変更可能ではあるが、アークイオン放電法やホロカソード法等においては、それぞれの最適なパラメーターの範囲を有すること、及びパラメーターの変更により成膜される皮膜の膜特性が全く異なってしまうことの理由により、事実上、パラメーターを変更することにより残留圧縮応力を低減することは不可能であった。
【0006】
一方、耐酸化性においては、Alを含む皮膜は確かに酸化開始温度は、TiN、TiCNに比べ高く、耐酸化性には優れるものの酸化が連続的に進行する条件下においては酸化進行速度は、TiN、TiCNと比べほとんど変わりのないものである。つまり、酸化により生成する酸化皮膜は、TiN、TiCNの場合と同様Alを含有する皮膜においても、ルチル構造を有し、ポーラスな皮膜である。従って、酸化進行に対する抵抗は、ルチル構造であるがために極めて低い結果となるわけである。
【0007】
【本発明の目的】
本発明は上述の残留圧縮応力が高い欠点を改善し、残留圧縮応力を低減することにより皮膜の密着性を高め、強いては被覆工具の耐剥離性を改善すると同時に厚膜化をも可能とする技術を提供するものである。
加えて、TiとAlを含有する窒化物、炭窒化物皮膜の耐酸化性をさらに改善し、酸化が連続的に進む高速切削において、より長寿命を示す皮膜を提供するものである。
【0008】
【課題を解決するための手段】
そこで本発明は、(TiAl)Nを基本にこれに各種元素を添加する検討を行った結果、次のような知見を得た。表1は、3μmの(TiAl)N皮膜をアークイオンプレーティング法により、バイアス電圧 −120V、窒素圧力10-1Paの条件下で成膜するときに種々の元素を添加した場合の残留圧縮応力を3μmのTiNの残留圧縮応力を1とした場合の比で示している。
【0009】
【表1】

Figure 0003638332
【0010】
表1より、(TiAl)N皮膜中に軟質金属を分散、または固溶体化させることにより、膜中の残留応力が減少する傾向があることがわかる。
また耐酸化性においては、(TiAlFe)Nを基本にこれに各種元素を添加する検討を行った結果、Y、Dy、Nd、Ce、Ca、Srのうちいずれか1種以上の添加により耐酸化性が著しく改善される知見を得た。
表2は、3μmの(TiAlFe)N皮膜をアークイオンプレーティング法により、バイアス電圧120V、窒素圧力10-1Paの条件下で成膜するときにYを添加した場合の酸化開始温度、及び850℃大気中での酸化速度を、3μmのTiN、(TiAl)N皮膜と比較した結果を示す。
【0011】
【表2】
Figure 0003638332
【0012】
表2より、(TiAlFe)N皮膜中にYを固溶体化させることにより、皮膜の耐酸化性が向上することがわかる。尚、同様の結果がDy、Nd、Ca、Ce、Srにおいても得られた。
よって、本願発明は、主成分としてTiとAl及び/またはその固溶体の窒化物、炭窒化物より構成された0.5〜10μmの膜厚から成る硬質皮膜の主成分の1部をFe族金属及びMで示される金属で置換した被覆硬質合金の該皮膜組成をモル比において、(Tia Alb Fe族cd)Cx1-xと表した場合、a、b、c、d、xがそれぞれ、a+b+c+d=1、0.3≦a≦0.7、0.3≦b≦0.7、0.01≦c≦0.2、0.001≦d≦0.2、0≦x≦1より成る皮膜であり、MはY、Dy、Nd、Ca、Ce、Srのうちいずれか1種以上の金属であり、さらに、主成分の一部をFe及びMで置換された(TiFeM)の窒化物、炭窒化物の層とAlの窒化物から成る層を5層以上の多層にし、厚膜化を達成したものである。
【0013】
【作用】
(TiAl)化合物の皮膜中にFe族を添加することにより、膜中の残留応力を減少させ、膜の耐衝撃性、特に断続切削等の機械的な衝撃に対しても剥離しにくい膜となる。
また、耐酸化性においては、(TiAlFe)化合物の皮膜中にY等を添加することにより、皮膜の耐酸化性を向上させることが可能である。特に酸化速度において著しい改善が可能になる理由は、Yを添加した場合、形成される酸化皮膜の形態がルチル構造ではなくアナターゼ構造を示すためである。つまり、Y等の添加により非常に緻密な酸化膜が形成され酸化の進行が形成された酸化膜中の酸素の拡散に律速される形態をとることにより、酸化の進行が著しく抑制されるわけである。
従って、酸化が連続的に進行する高速切削において、皮膜の酸化がごく表面のみで発生し、これが酸化に対し保護膜として作用し、皮膜内部にまで酸化が進行せず、長寿命が得られるわけである。
【0014】
以下、数値限定した理由に付いて説明する。
(TiAl)化合物膜中に固溶体/混合体として添加するFe族は、0.01未満では残留応力を低減するのに十分な効果がなく、0.2を越えると皮膜中のFe族の量が多くなりすぎ耐摩耗性、耐溶着性等が劣化するため0.01≦c≦0.2の範囲とした。
また、(TiAlFe族)化合物膜中に固溶体/混合体として添加するY等は共通して、0.01未満では耐酸化性を向上するのに必ずしも十分な効果がなく、0.20を越えると皮膜の硬さが著しく低下し、著しく耐摩耗性を劣化する傾向にあるため0.001≦c≦0.20の範囲とした。
【0015】
尚、上記の元素はターゲット材として固溶体化しても、また各元素を個別のターゲットとして蒸着時に成分を調整してもさらに固溶体ターゲットと個別ターゲットを組み合わせても同様の効果が得られる。
【0016】
皮膜中のCNの比率は、0≦x≦1、すなわち炭化物、窒化物、炭窒化物の範囲としたのは、(TiAl)膜中に固溶体/混合体として添加したFe族の効果により応力が緩和されるため、硬さの高い炭化物でも十分に使用でき、また硬さのやや低い窒化物、炭窒化物においてもFe族の量を調整することにより十分な性能を有するため0≦x≦1の範囲とした。
【0017】
【実施例】
以下、実施例により本願発明を詳細に説明する。
84WC−3TiC−1TiN−3TaC−9Coの組成になるよう市販の2.5μmのWC粉末、1.5μmのTiC粉末、同TiN粉末、1.2μmのTaC粉末をボールミルにて96時間混合し、乾燥造粒の後、SNMA432のスローアウェイインサートをプレスし、焼結後、所定の形状に加工した。
この超硬合金基体上にPVD法により、各種合金ターゲット、各元素単独のターゲットを用意し、表3に示すような皮膜を形成した。
【0018】
【表3】
Figure 0003638332
【0019】
尚、比較のため従来例で記載した膜に付いても行った。
次いで、これらの皮膜をスクラッチテスターにより、0から徐々に荷重を上げ、引っかいていき、膜が剥離する荷重を求めた。それらの結果を表4に示す。
【0020】
【表4】
Figure 0003638332
【0021】
また、下記に示す工具が繰り返し衝撃を受ける切削条件にて切削テストを行い最大摩耗が0.2mmに達するまでの寿命時間を求め、その結果を表4に併記する。
Figure 0003638332
【0022】
表4の結果より、スクラッチ荷重においては明確に違いがでていないが、機械的衝撃が加わる耐衝撃性の試験では使用初期に剥離を生じて、異状摩耗をきたしたことが分かる。
なお、実施例では窒化物の皮膜を使用したが、蒸着時の雰囲気を窒素、メタン等の分圧を調整することにより様々な組成比率の炭窒化物の製作も可能である。
【0023】
【実施例2】
84WC−3TiC−1TiN−3TaC−9Coの組成になるよう市販の2.5μmのWC粉末、1.5μmのTiC粉末、同TiN粉末、1.2μmのTaC粉末をボールミルにて96時間混合し、乾燥造粒の後、SNMG432のスローアウェイインサートをプレスし、焼結後、所定の形状に加工した。
この超硬合金基体上にPVD法により、各種(TiAlFeY)合金のターゲットを用い、表5に示すような皮膜を形成した。
尚、比較のため従来例で記載した膜も形成した。
【0024】
【表5】
Figure 0003638332
【0025】
次いで、これらの皮膜をコーティングされたスローアウェイインサートを大気中で徐々に昇温し、酸化増が認められる温度を測定した。また、大気中900℃において、時間とともに酸化増量を測定し、酸化速度を算出した。これらの結果も表5に併記する。
更に、下記に示す高速切削条件にて切削テストを行い最大摩耗が0.2mmに達するまでの時間を求め、その結果も表5に併記する。
Figure 0003638332
【0026】
表5より、Yを添加した皮膜は、格段に酸化速度が遅く、また、そのことが連続高速切削において著しい長寿命化に寄与している事が明らかである。
【0027】
【発明の効果】
本発明の被覆硬質合金は、従来のTiN、TiAlNに比べ、硬さの低い元素を添加/固溶させることにより、皮膜の残留圧縮応力を低め密着性を向上させ、断続切削などにおいて、格段に長い工具寿命が得られるものである。
また、本発明は超硬合金を主に説明してきたがTiCN基サーメットに適用した場合にも優れた効果を現すことは自明である。[0001]
[Industrial application fields]
The present invention relates to a coated cutting tool used as a cutting tool excellent in wear resistance and fracture resistance, and a coated wear resistant tool used as a wear resistant tool.
[0002]
[Prior art]
Conventionally, a hard film by PVD method has been mainly TiN, but recently, a new type of film such as a TiCN film or (TiAl) N has been developed and attracted attention. TiCN has a Vickers hardness of nearly 3000, which is much harder than TiN's Vickers hardness of 2200, and has the effect of significantly increasing wear resistance. On the other hand, (TiAl) N varies depending on the ratio of Ti and Al, but has a Vickers hardness of approximately 2300 to 2800, and has improved wear resistance compared to TiN, while the oxidation resistance is remarkably superior, so that the cutting edge is hot. Exhibits excellent properties underneath.
[0003]
Further, as an improvement of the coating of the (TiAl) N film, Japanese Patent Publication No. 5-67705 in which the ratio of Ti / Al is limited, US Pat. Has been proposed and further improvements are being planned. However, these new coatings have improved oxidation resistance due to the inclusion of Al, but are still not fully satisfied, and the compressive stress remaining in the coating is 1.5 times higher than that of the TiN coating. There are various problems as follows.
[0004]
[Problems to be solved by the invention]
The adhesion of the film becomes weaker as the residual compressive stress of the film becomes higher, and these new films are inferior in adhesion to TiN. In addition, the high residual stress not only deteriorates the adhesion of the film, but also increases the residual stress as the film thickness increases. The current situation is not.
[0005]
The simplest way to reduce residual compressive stress is to change the coating parameters in the coating process. The present inventor examined the residual compressive stress with respect to the nitrogen partial pressure and the bias voltage, which are coating parameters, in the case of forming a TiN film on a steel substrate by an arc ion discharge method. Showed a residual compressive stress of −5 GPa at −2 GPa and −100 V. Further, when the nitrogen partial pressure was 10 −1 Pa, the residual compressive stress was −1 GPa, and when the nitrogen partial pressure was 10 0 Pa, the residual compressive stress was −2 GPa.
In this way, the residual compressive stress can be easily changed by changing the film formation parameters, but in the arc ion discharge method and the holocathode method, etc., each has an optimum parameter range and can be changed by changing the parameters. In practice, it was impossible to reduce the residual compressive stress by changing the parameters because the film properties of the films formed were completely different.
[0006]
On the other hand, in the oxidation resistance, the coating film containing Al is surely higher in oxidation start temperature than TiN and TiCN, and excellent in oxidation resistance, but under the condition that oxidation proceeds continuously, the oxidation progress rate is It is almost the same as TiN and TiCN. That is, the oxide film produced by oxidation is a porous film having a rutile structure even in a film containing Al as in the case of TiN and TiCN. Therefore, the resistance to the progress of oxidation is extremely low because of the rutile structure.
[0007]
[Object of the present invention]
The present invention improves the above-mentioned drawback of high residual compressive stress, and improves the adhesion of the film by reducing the residual compressive stress, thereby improving the peel resistance of the coated tool and at the same time making it possible to increase the film thickness. Provide technology.
In addition, the oxidation resistance of a nitride or carbonitride film containing Ti and Al is further improved, and a film having a longer life is provided in high-speed cutting in which oxidation proceeds continuously.
[0008]
[Means for Solving the Problems]
Accordingly, the present invention has been based on (TiAl) N, and as a result of studying the addition of various elements thereto, the following knowledge has been obtained. Table 1 shows the residual compressive stress when various elements are added when a 3 μm (TiAl) N film is formed by arc ion plating under the conditions of a bias voltage of −120 V and a nitrogen pressure of 10 −1 Pa. Is expressed as a ratio when the residual compressive stress of TiN of 3 μm is 1.
[0009]
[Table 1]
Figure 0003638332
[0010]
From Table 1, it can be seen that the residual stress in the film tends to decrease by dispersing or solidifying the soft metal in the (TiAl) N film.
In addition, in terms of oxidation resistance, as a result of studying addition of various elements to (TiAlFe) N, oxidation resistance was obtained by adding one or more of Y, Dy, Nd, Ce, Ca, and Sr. The knowledge that the property is remarkably improved was obtained.
Table 2 shows the oxidation start temperature when Y is added when a 3 μm (TiAlFe) N film is formed by arc ion plating under the conditions of a bias voltage of 120 V and a nitrogen pressure of 10 −1 Pa, and 850 The result of comparing the oxidation rate in the atmosphere at 3 ° C. with a 3 μm TiN or (TiAl) N film is shown.
[0011]
[Table 2]
Figure 0003638332
[0012]
From Table 2, it can be seen that the oxidation resistance of the coating is improved by solidifying Y in the (TiAlFe) N coating. Similar results were obtained for Dy, Nd, Ca, Ce, and Sr.
Therefore, in the present invention, one part of the main component of the hard film composed of 0.5 to 10 μm thick composed of Ti and Al and / or its solid solution nitride and carbonitride as main components is Fe group metal. When the coating composition of the coated hard alloy substituted with a metal represented by M and M is expressed as (Ti a Al b Fe group c M d ) C x N 1-x in a molar ratio, a, b, c, d , X are a + b + c + d = 1, 0.3 ≦ a ≦ 0.7, 0.3 ≦ b ≦ 0.7, 0.01 ≦ c ≦ 0.2, 0.001 ≦ d ≦ 0.2, 0, respectively. ≦ x ≦ 1, M is one or more metals selected from Y, Dy, Nd, Ca, Ce, and Sr, and a part of the main component is substituted with Fe and M (TiFeM) Nitride / carbonitride layer and Al nitride layer are multi-layered with 5 or more layers to increase the thickness A.
[0013]
[Action]
By adding the Fe group to the (TiAl) compound film, the residual stress in the film is reduced, and the film is resistant to peeling, especially against mechanical shocks such as intermittent cutting. .
In addition, in terms of oxidation resistance, it is possible to improve the oxidation resistance of the film by adding Y or the like into the film of the (TiAlFe) compound. The reason why a remarkable improvement in the oxidation rate is possible is that when Y is added, the form of the oxide film formed shows an anatase structure instead of a rutile structure. In other words, the progress of oxidation is remarkably suppressed by taking a form controlled by the diffusion of oxygen in the oxide film in which a very dense oxide film is formed by the addition of Y or the like and the progress of oxidation is formed. is there.
Therefore, in high-speed cutting where oxidation proceeds continuously, oxidation of the film occurs only on the surface, which acts as a protective film against oxidation and does not progress to the inside of the film, resulting in a long life. It is.
[0014]
Hereinafter, the reason why the numerical values are limited will be described.
If the Fe group added as a solid solution / mixture in the (TiAl) compound film is less than 0.01, there is no sufficient effect to reduce the residual stress, and if it exceeds 0.2, the amount of the Fe group in the film is small. Too much wear resistance, welding resistance and the like deteriorate, so 0.01 ≦ c ≦ 0.2.
Further, Y or the like added as a solid solution / mixture in the (TiAlFe group) compound film is common, and if it is less than 0.01, there is not necessarily an effect sufficient to improve the oxidation resistance, and if it exceeds 0.20 Since the hardness of the film is remarkably lowered and the wear resistance is remarkably deteriorated, the range of 0.001 ≦ c ≦ 0.20 was set.
[0015]
The same effect can be obtained even if the above-mentioned elements are made into a solid solution as a target material, or each element is used as an individual target, the components are adjusted during vapor deposition, and the solid solution target and the individual target are combined.
[0016]
The ratio of CN in the film is 0 ≦ x ≦ 1, that is, the range of carbide, nitride, carbonitride is that the stress is due to the effect of Fe group added as a solid solution / mixture in the (TiAl) film. Since it is relaxed, even a carbide with high hardness can be used satisfactorily, and even with a slightly low hardness nitride and carbonitride, it has sufficient performance by adjusting the amount of Fe group, so 0 ≦ x ≦ 1 It was set as the range.
[0017]
【Example】
Hereinafter, the present invention will be described in detail by way of examples.
A commercially available 2.5 μm WC powder, 1.5 μm TiC powder, the same TiN powder, and 1.2 μm TaC powder were mixed in a ball mill for 96 hours to obtain a composition of 84WC-3TiC-1TiN-3TaC-9Co and dried. After granulation, the throw-away insert of SNMA432 was pressed, sintered, and then processed into a predetermined shape.
On this cemented carbide substrate, various alloy targets and single targets for each element were prepared by the PVD method, and films as shown in Table 3 were formed.
[0018]
[Table 3]
Figure 0003638332
[0019]
For comparison, it was also performed on the film described in the conventional example.
Next, these films were gradually increased from 0 with a scratch tester and scratched to determine the load at which the films peeled. The results are shown in Table 4.
[0020]
[Table 4]
Figure 0003638332
[0021]
Further, a cutting test is performed under cutting conditions in which the tool shown below is repeatedly subjected to impact, and a life time until the maximum wear reaches 0.2 mm is determined. The results are also shown in Table 4.
Figure 0003638332
[0022]
From the results of Table 4, it can be seen that although there is no clear difference in the scratch load, in the impact resistance test to which a mechanical impact is applied, peeling occurred in the initial stage of use and abnormal wear was caused.
Although nitride films were used in the examples, carbonitrides having various composition ratios can be manufactured by adjusting the partial pressure of nitrogen, methane, etc. in the atmosphere during vapor deposition.
[0023]
[Example 2]
A commercially available 2.5 μm WC powder, 1.5 μm TiC powder, the same TiN powder, and 1.2 μm TaC powder were mixed in a ball mill for 96 hours to obtain a composition of 84WC-3TiC-1TiN-3TaC-9Co and dried. After granulation, the throw-away insert of SNMG432 was pressed, sintered, and then processed into a predetermined shape.
A coating as shown in Table 5 was formed on this cemented carbide substrate by a PVD method using various (TiAlFeY) alloy targets.
For comparison, the film described in the conventional example was also formed.
[0024]
[Table 5]
Figure 0003638332
[0025]
Next, the throw-away insert coated with these films was gradually heated in the atmosphere, and the temperature at which increased oxidation was observed was measured. Moreover, the oxidation increase was measured with time at 900 ° C. in the atmosphere, and the oxidation rate was calculated. These results are also shown in Table 5.
Further, a cutting test is performed under the following high-speed cutting conditions, and the time until the maximum wear reaches 0.2 mm is obtained. The results are also shown in Table 5.
Figure 0003638332
[0026]
From Table 5, it is clear that the film to which Y is added has an extremely slow oxidation rate, and this contributes to a significant increase in life in continuous high-speed cutting.
[0027]
【The invention's effect】
Compared with conventional TiN and TiAlN, the coated hard alloy according to the present invention can reduce the residual compressive stress of the film and improve the adhesion by adding / dissolving an element having a low hardness, which makes it extremely useful in intermittent cutting. Long tool life can be obtained.
Although the present invention has mainly described cemented carbide, it is obvious that an excellent effect can be obtained when applied to a TiCN-based cermet.

Claims (2)

主成分としてTiとAl及び/またはその固溶体の窒化物、炭窒化物より構成された0.5〜10μmの膜厚から成る硬質皮膜の主成分の1部をFe族金属及びMで示される金属で置換した被覆硬質合金の該皮膜組成をモル比において、(Tia Alb Fe族cd)Cx1-xと表した場合、a、b、c、d、xがそれぞれ、a+b+c+d=1、0.3≦a≦0.7、0.3≦b≦0.7、0.01≦c≦0.2、0.001≦d≦0.2、0≦x≦1より成る皮膜であり、MはY、Dy、Nd、Ca、Ce、Srのうちいずれか1種以上の金属であることを特徴とする被覆硬質合金。Part of the main component of the hard coating composed of 0.5 to 10 μm thick composed of Ti and Al and / or its solid solution nitride and carbonitride as the main component is Fe group metal and metal represented by M in in substituted molar ratio said coating composition coated hard alloy, (Ti a Al b Fe group c M d) C x when expressed as N 1-x, a, b , c, d, x , respectively, a + b + c + d = 1, 0.3 ≦ a ≦ 0.7, 0.3 ≦ b ≦ 0.7, 0.01 ≦ c ≦ 0.2, 0.001 ≦ d ≦ 0.2, 0 ≦ x ≦ 1 A coated hard alloy characterized in that it is a film, and M is one or more metals selected from the group consisting of Y, Dy, Nd, Ca, Ce, and Sr. 請求項1記載の被覆硬質合金において、主成分の一部をFe及びMで置換された(TiFeM)の窒化物、炭窒化物の層とAlの窒化物から成る層を5層以上の多層にしたことを特徴とする被覆硬質合金。The coated hard alloy according to claim 1, wherein a layer composed of (TiFeM) nitride, carbonitride and Al nitride partially substituted with Fe and M is partly composed of five or more layers. Coated hard alloy characterized by that.
JP03461195A 1995-01-31 1995-01-31 Coated hard alloy Expired - Fee Related JP3638332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03461195A JP3638332B2 (en) 1995-01-31 1995-01-31 Coated hard alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03461195A JP3638332B2 (en) 1995-01-31 1995-01-31 Coated hard alloy

Publications (2)

Publication Number Publication Date
JPH08209334A JPH08209334A (en) 1996-08-13
JP3638332B2 true JP3638332B2 (en) 2005-04-13

Family

ID=12419175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03461195A Expired - Fee Related JP3638332B2 (en) 1995-01-31 1995-01-31 Coated hard alloy

Country Status (1)

Country Link
JP (1) JP3638332B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE528789C2 (en) 2004-09-10 2007-02-13 Sandvik Intellectual Property PVD-coated cemented carbide cutter and way to manufacture it
WO2009047867A1 (en) 2007-10-12 2009-04-16 Hitachi Tool Engineering, Ltd. Member covered with hard coating film and process for the production of the member
JP5438665B2 (en) * 2010-02-16 2014-03-12 株式会社神戸製鋼所 Hard film covering member, jig and tool, and target
CN102595833A (en) * 2011-01-05 2012-07-18 鸿富锦精密工业(深圳)有限公司 Aluminum or aluminum alloy shell and manufacturing method thereof
CN102605318A (en) * 2011-01-19 2012-07-25 鸿富锦精密工业(深圳)有限公司 Aluminum or aluminum alloy shell and method for manufacturing same
CN102618826A (en) * 2011-01-28 2012-08-01 鸿富锦精密工业(深圳)有限公司 Aluminum or aluminum alloy housing and manufacturing method thereof
CN102650052B (en) * 2011-02-28 2016-07-20 中山市海量五金制造有限公司 The housing of aluminum or aluminum alloy and manufacture method thereof

Also Published As

Publication number Publication date
JPH08209334A (en) 1996-08-13

Similar Documents

Publication Publication Date Title
KR960015546B1 (en) Diffusion barrier coating material
EP2446987B1 (en) Tool having coated cubic boron nitride sintered body
EP2072636B1 (en) Method of making a coated cutting tool
JP2985300B2 (en) Hard layer coated cermet
JP3452726B2 (en) Multi-layer coated hard tool
US8003231B2 (en) Wear-resistant member with hard coating
JPH06220571A (en) Sintered hard alloy and coated sintered hard alloy for cutting tool
JPH08209336A (en) Coated hard alloy
JPH08118106A (en) Cutting tool coated with hard layer
JP3638332B2 (en) Coated hard alloy
JP3546967B2 (en) Coated hard alloy
JP3712242B2 (en) Coated cutting tool / Coated wear resistant tool
JP3353449B2 (en) Coated cutting tool
JP2009034811A (en) Cemented carbide insert for parting, grooving and threading
JP3712241B2 (en) Coated cutting tool / Coated wear resistant tool
JPH08132130A (en) Surface covered cermet drawing die having hard covering layer excellent in adhesivity
JPH04297568A (en) Surface coated member excellent in wear resistance and formation of film
JP5400692B2 (en) Wear-resistant member provided with hard coating and method for producing the same
JP2004176085A (en) Hard film
JPH1121651A (en) Cutting tool made of surface coated cemented carbide, excellent in thermal shock resistance
KR20230073856A (en) Cutting tool having hard coating layer with ecellent wear resistance and toughness
JP3016702B2 (en) Coated hard alloy
JP3445899B2 (en) Surface coated end mill
JP2008105135A (en) Surface coated cutting tool having hard coating layer exhibiting excellent wear resistance
JP3368794B2 (en) Surface-coated cermet throw-away type cutting insert with a hard coating layer with excellent fracture resistance

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050111

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees