JP2979921B2 - Ultra thin film laminate - Google Patents

Ultra thin film laminate

Info

Publication number
JP2979921B2
JP2979921B2 JP5244178A JP24417893A JP2979921B2 JP 2979921 B2 JP2979921 B2 JP 2979921B2 JP 5244178 A JP5244178 A JP 5244178A JP 24417893 A JP24417893 A JP 24417893A JP 2979921 B2 JP2979921 B2 JP 2979921B2
Authority
JP
Japan
Prior art keywords
thin film
ultra
film laminate
laminate
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5244178A
Other languages
Japanese (ja)
Other versions
JPH0797679A (en
Inventor
治世 福井
明 中山
誠 瀬戸山
剛 吉岡
一夫 山縣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP5244178A priority Critical patent/JP2979921B2/en
Publication of JPH0797679A publication Critical patent/JPH0797679A/en
Application granted granted Critical
Publication of JP2979921B2 publication Critical patent/JP2979921B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5062Borides, Nitrides or Silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、耐摩耗性および表面
保護機能向上のために、切削工具、耐摩工具等の硬質基
材の表面、或いは電気・電子部品、摺動部品、機械部品
の表面に形成する超薄膜積層体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface of a hard base material such as a cutting tool or a wear-resistant tool, or a surface of an electric / electronic part, a sliding part or a machine part for improving abrasion resistance and surface protection function. The present invention relates to an ultra-thin film laminate formed on a substrate.

【0002】[0002]

【従来の技術及びその課題】従来、耐摩耗性および表面
保護機能向上のため、WC基超硬合金、サーメット、セ
ラミックス、高速度鋼等からなる切削工具や耐摩工具等
の硬質基材の表面に、硬質被覆層として、PVD法やC
VD法によりTi、Hf、Zrの炭化物、窒化物、炭窒
化物あるいはAlの酸化物を単層又は複層形成すること
が行なわれている。
2. Description of the Related Art Conventionally, in order to improve abrasion resistance and surface protection function, the surface of a hard base material such as a cutting tool or abrasion resistant tool made of WC-based cemented carbide, cermet, ceramics, high-speed steel, etc. is conventionally used. , As a hard coating layer, PVD method or C
A single layer or multiple layers of carbides, nitrides, carbonitrides or oxides of Al, Ti, Hf, and Zr are formed by the VD method.

【0003】また、硬質被覆層の耐酸化性の向上を図る
目的で、例えば特公平4−53642号公報に示される
ように、切削工具の硬質被覆層として上述したTiの炭
・窒化物にAlを固溶させ、それぞれTiとAlの複合
炭化物固溶体、複合窒化物固溶体および複合炭窒化物固
溶体を形成することが知られている。
For the purpose of improving the oxidation resistance of the hard coating layer, for example, as disclosed in Japanese Patent Publication No. 4-53642, the above-mentioned Ti carbon / nitride is used as a hard coating layer of a cutting tool. Is known to form a complex carbide solid solution, a complex nitride solid solution, and a complex carbonitride solid solution of Ti and Al, respectively.

【0004】さらに、日本金属学会誌第57巻第8号
(1993)919−925には、Ti−Al−N系の
硬質被覆層において、Al−Nの固溶度の増大とともに
耐酸化性は向上するが、Al−Nの固溶度が75モル%
を越えると硬度が低下すると報告されている。
[0004] Furthermore, in the Journal of the Japan Institute of Metals, Vol. 57, No. 8, (1993) 919-925, it has been reported that in a Ti-Al-N-based hard coating layer, the oxidation resistance as well as the increase in the solid solubility of Al-N is increased. Although improved, the solid solubility of Al-N is 75 mol%
It is reported that the hardness is reduced when the ratio exceeds.

【0005】しかし、上記従来の硬質被覆層では、いず
れも被覆層を構成する物質固有の特性がそのまま被覆層
全体の特性を決定し、エンドミルやスローアウェイチッ
プ等の切削工具や耐摩工具に使用した場合、耐摩耗性と
耐酸化性の両立が難しく、特に高速切削や高硬度材料の
切削用途においては耐酸化性を重視した被覆層材質を採
用すると、耐摩耗性が低下するという問題があった。
However, in the above-mentioned conventional hard coating layers, the properties inherent to the material constituting the coating layer directly determine the properties of the entire coating layer, and are used for cutting tools such as end mills and indexable inserts and wear-resistant tools. In this case, it is difficult to achieve both abrasion resistance and oxidation resistance. In particular, in high-speed cutting and cutting of high-hardness materials, the use of a coating layer material that emphasizes oxidation resistance has a problem in that wear resistance is reduced. .

【0006】一方、被覆層の高硬化を達成する手段とし
て、nmオーダーの薄膜を積層し、界面での格子歪エネ
ルギーの効果により硬度上昇を図る方法もあるが、この
方法では、高硬度化の代わりに切削工具や耐摩工具に要
求される他の特性が犠牲になり、特に耐酸化性に関して
は効果が乏しいという欠点がある。
On the other hand, as a means for achieving high curing of the coating layer, there is a method of laminating a thin film of nm order to increase the hardness by the effect of lattice strain energy at the interface. Instead, other properties required for cutting tools and wear-resistant tools are sacrificed, and there is a drawback that the effect is particularly poor with respect to oxidation resistance.

【0007】また、上記切削工具や耐摩工具以外に、従
来、電気・電子部品、摺動部品、機械部品の表面に耐摩
耗膜や保護膜が形成され、例えば、磁気テープやフロッ
ピーディスク又は磁気ディスクといった高密度記録媒体
の表面には、耐摩耗膜としてCo−Ni、Co−P、γ
−Fe2 3 が被覆されたり、或いは保護膜として、厚
さ80nm程度の二酸化ケイ素、窒化ケイ素、酸化アル
ミ等の酸化物、窒化物、カーボン膜等が被覆されてい
る。
In addition to the above-mentioned cutting tools and wear-resistant tools, abrasion-resistant films and protective films are conventionally formed on the surfaces of electric / electronic parts, sliding parts and mechanical parts, for example, magnetic tapes, floppy disks or magnetic disks. Co-Ni, Co-P, γ as a wear-resistant film on the surface of a high-density recording medium such as
-Fe 2 O 3 is coated, or an oxide, nitride, carbon film or the like of silicon dioxide, silicon nitride, aluminum oxide or the like with a thickness of about 80 nm is coated as a protective film.

【0008】しかし、近年の高密度、大容量記録化の進
行に伴ない、保護膜にも一段の薄膜化が求められ、膜厚
として50nm以下にすることが要求されているが、こ
れに対して従来の保護膜では、膜厚を50nm以下に薄
くすると、耐摩耗性や耐食性が不十分になり、上記の要
求に対して十分に対応できない不具合がある。
However, with the recent progress of high-density and large-capacity recording, the protective film is required to be further reduced in thickness, and the film thickness is required to be 50 nm or less. If the thickness of the conventional protective film is reduced to 50 nm or less, the abrasion resistance and corrosion resistance become insufficient, and there is a problem that the above requirements cannot be sufficiently satisfied.

【0009】そこでこの発明は、上記の問題を解決し、
切削工具や耐摩工具における硬質被覆層の耐摩耗性向上
を実現し、かつ電気・電子部品、摺動部品、機械部品の
表面の耐摩耗膜や保護膜としても優れた特性を有する超
薄膜積層体を提供することを目的としている。
Therefore, the present invention solves the above problems,
Ultra-thin laminates that improve the wear resistance of the hard coating layer on cutting tools and wear-resistant tools, and also have excellent properties as wear-resistant and protective films on the surfaces of electrical and electronic parts, sliding parts, and machine parts It is intended to provide.

【0010】[0010]

【課題を解決するための手段】上記の課題を解決するた
め、この発明は、Ti、AlおよびNによって構成され
るTix Al1-x NおよびTiy Al1-y N(0≦x<
0.5、0.5<y≦1)なる2種類の化合物を、交互
に繰り返して積層し、積層体の全体組成として化学量論
的にアルミニウムリッチになるものとした構造を採用し
たのである。
In order to solve the above-mentioned problems, the present invention relates to Ti x Al 1-x N and Ti y Al 1-y N (0 ≦ x <
Two types of compounds, 0.5 and 0.5 <y ≦ 1), were alternately and repeatedly laminated to adopt a structure in which the overall composition of the laminate became stoichiometrically aluminum-rich. .

【0011】この発明の超薄膜積層体は、繰り返しの積
層周期を0.5nm〜20nmとし、全体の膜厚を0.
5μm〜10μmとすることにより最も好ましい効果を
得ることができ、切削チップ、ドリルまたはエンドミル
の被覆層として用いる場合、上記超薄膜積層体を、WC
基超硬合金、サーメット、セラミックス、高速度鋼等の
硬質基材の表面に被覆する。
The ultra-thin film laminate of the present invention has a repetitive lamination period of 0.5 nm to 20 nm and an overall film thickness of 0.1 nm.
The most preferable effect can be obtained by setting the thickness to 5 μm to 10 μm. When used as a coating layer of a cutting tip, a drill or an end mill, the ultra-thin film laminate is formed of WC
Coating on the surface of hard base material such as base cemented carbide, cermet, ceramics, high-speed steel, etc.

【0012】ここで、繰り返しの積層周期とは、例えば
図1に示すように、2種類の化合物AとBを交互に繰り
返し積層した場合、化合物Aの厚み(t1 )と化合物B
の厚み(t2 )との和(t1 +t2 =λ)をいう。
Here, the repetitive lamination cycle means, for example, as shown in FIG. 1, when two types of compounds A and B are repeatedly laminated alternately, the thickness (t 1 ) of the compound A and the compound B
(T 1 + t 2 = λ) with its thickness (t 2 ).

【0013】なお、図1において、符号1は超薄膜積層
体を、2は基材を示している。
In FIG. 1, reference numeral 1 denotes an ultra-thin film laminate, and reference numeral 2 denotes a substrate.

【0014】上記超薄膜積層体を基材の表面に被覆する
場合、図2に示すように、超薄膜積層体1と基材2の間
に界面層3を設け、この界面層3を、周期律表IVa
族、Va族、VIa族の金属元素の群から選択される1
種以上の元素と、C、Nの1種以上との組み合せからな
る化合物の少なくとも1種からなる膜厚0.05μm〜
5μmのものとするのが好ましい。
When the above-mentioned ultra-thin film laminate is coated on the surface of a substrate, an interface layer 3 is provided between the ultra-thin film laminate 1 and the substrate 2 as shown in FIG. Law table IVa
1 selected from the group consisting of group III, group Va, group VIa metal elements
A film thickness of at least one kind of a compound comprising a combination of at least one kind of element and at least one kind of C and N;
It is preferably 5 μm.

【0015】また、超薄膜積層体の使用用途を、電気・
電子部品や摺動部品、機械部品の表面の耐摩耗膜や保護
膜とする場合、電気・電子部品では全体の膜厚を5nm
〜2μm、摺動部品、機械部品においては全体の膜厚を
0.1μm〜10μmにするのがよい。
[0015] The use of the ultra-thin film laminate may be
When making a wear-resistant film or a protective film on the surface of electronic parts, sliding parts, and mechanical parts, the total thickness of electric and electronic parts is 5 nm.
It is preferable that the total film thickness is 0.1 μm to 10 μm for sliding parts and mechanical parts.

【0016】上記の超薄膜積層体を形成する方法として
は、CVD法やPVD法があり、特にPVD法は、融点
や硬度が著しく高いセラミックス皮膜を500℃以下の
温度で形成することが可能であるため、基材の強度を容
易に維持することができ、また積層物間の界面層におけ
る原子拡散の影響を小さくできる点で好ましい作製法と
云える。
As a method of forming the above-mentioned ultra thin film laminate, there are a CVD method and a PVD method. In particular, the PVD method can form a ceramic film having a remarkably high melting point and hardness at a temperature of 500 ° C. or less. Therefore, it is a preferable manufacturing method in that the strength of the base material can be easily maintained and the influence of atomic diffusion in the interface layer between the laminates can be reduced.

【0017】[0017]

【作用】この発明の超薄膜積層体は、Ti、Alおよび
Nによって構成される2種類の化合物を用いて、化学量
論的にアルミニウムリッチなTix Al1-x N(0≦x
<0.5)、および化学量論的にチタンリッチなTiy
Al1-y N(0.5<y≦1)を交互に繰り返し積層
し、薄膜全体の組成として耐酸化性に優れたアルミニウ
ムリッチなTi−Al−N化合物とするものである。
The ultra-thin film laminate according to the present invention uses two kinds of compounds composed of Ti, Al and N to form a stoichiometrically aluminum-rich Ti x Al 1 -xN (0 ≦ x
<0.5), and stoichiometric titanium-rich Ti y
Al 1-y N (0.5 <y ≦ 1) is alternately and repeatedly laminated to form an aluminum-rich Ti-Al-N compound having excellent oxidation resistance as a whole thin film composition.

【0018】このように化学量論的にチタンリッチな超
薄膜層を含む構成とすることにより、アルミニウムリッ
チなTi−Al−N化合物の薄膜単体で起こる硬度の低
下が抑制され、従来技術では得られない高硬度と耐酸化
性の両立を実現できる。この特性を利用すれば、切削工
具や耐摩工具の被覆層として用いた場合、工具の摩耗寿
命の大幅な延命化を図ることができる。
By adopting such a structure including a stoichiometrically titanium-rich ultra-thin film layer, a decrease in hardness caused by a thin film of an aluminum-rich Ti—Al—N compound alone is suppressed. It is possible to achieve both high hardness and oxidation resistance that cannot be achieved. By utilizing this characteristic, when used as a coating layer of a cutting tool or a wear-resistant tool, the wear life of the tool can be greatly extended.

【0019】また、異なる2種類の化合物を交互に0.
5nm〜20nmという極めて薄い膜厚で積層した場
合、ビッカース硬度が荷重25gfで3500kgf/mm
2 以上という化合物の薄膜単体では得ることができない
高硬度が実現でき、優れた耐摩耗性が発現する。
In addition, two different kinds of compounds are alternately used in 0.1.
When laminated with an extremely thin film thickness of 5 nm to 20 nm, the Vickers hardness is 3500 kgf / mm under a load of 25 gf.
High hardness, which cannot be obtained with a thin film of a compound of 2 or more alone, can be realized, and excellent wear resistance is exhibited.

【0020】これは、繰り返しの積層周期を20nm以
下にした場合、結晶を構成する原子の中で界面を形成す
る原子、すなわち界面に接する原子が多くなり、物質固
有の特性よりも界面に起因する特性が顕著になり、界面
での格子歪エネルギーの効果により硬度上昇が発現する
ものと考えられる。一方、繰り返しの積層周期が0.5
nm以下の場合は、界面での相互拡散等の影響により積
層物質同士の混合層となり、逆に、繰り返しの積層周期
が20nm以上の場合には、個々の薄膜の単体としての
特性が支配的となり、いずれも積層による顕著な硬度上
昇効果を得ることができない。
This is because, when the repetition lamination period is set to 20 nm or less, the atoms forming the interface among the atoms constituting the crystal, that is, the atoms in contact with the interface increase, and are caused by the interface rather than the characteristics inherent to the substance. It is considered that the characteristics are remarkable, and the hardness increases due to the effect of lattice strain energy at the interface. On the other hand, when the repetition lamination cycle is 0.5
In the case where the thickness is less than 10 nm, the layer becomes a mixed layer of the laminated materials due to the influence of interdiffusion at the interface. In any case, a remarkable hardness increasing effect by lamination cannot be obtained.

【0021】この発明の超薄膜積層体は、基材表面に直
接形成するよりも、両者の間に界面層を介在させる方
が、基材に対する超薄膜積層体の密着強度を向上させる
ことができる。これは、基材と超薄膜積層体という特性
の大きく異なる物質間に、中間的な特性を有する界面層
を設けることにより、特性の変化が連続的になり、膜の
残留応力の低減等の効果が期待できるからである。この
界面層の効果は、膜厚が0.05μm未満では密着強度
の向上が見られず、逆に、5μmを越えても密着強度の
更なる向上は見られず、所定の範囲で特有の効果を発揮
することができる。
In the ultra-thin film laminate of the present invention, the adhesive strength of the ultra-thin film laminate to the substrate can be improved by interposing an interface layer between the two rather than directly forming the substrate on the substrate surface. . This is because by providing an interfacial layer with intermediate properties between the base material and the ultra-thin film laminate, which have greatly different properties, the properties change continuously, and the effect of reducing the residual stress of the film etc. Is expected. The effect of the interface layer is not improved when the film thickness is less than 0.05 μm. Conversely, when the film thickness exceeds 5 μm, no further improvement in the adhesion strength is observed. Can be demonstrated.

【0022】なお、上述したものと同様の効果は、Ti
−Al系以外のAl合金の窒化物、例えば(AlZr)
N、(AlNb)N、(AlHf)N等の合金組成を変
化させた被膜を積層させることによっても得られるが、
この発明では、耐酸化性と硬度の良好なバランスからT
i−Al窒化物を採用するものである。
The same effect as that described above is obtained by using Ti
-Nitride of Al alloy other than Al-based, for example, (AlZr)
N, (AlNb) N, (AlHf) N, etc. can also be obtained by laminating a film with a changed alloy composition.
In the present invention, T is obtained from a good balance between oxidation resistance and hardness.
i-Al nitride is adopted.

【0023】[0023]

【実施例】次に、この発明の効果を見るために行なった
実施例について説明する。なお、以下の各実施例におい
て超薄膜積層体を形成する場合、nmオーダーの積層周
期の測定は、透過電子顕微鏡(TEM)による観察およ
び小角X線解析法により行なっている。また、長周期の
積層構造に関しては、高分解能走査電子顕微鏡による積
層周期の測定も可能である。
Next, a description will be given of an embodiment performed to see the effect of the present invention. In the following examples, when an ultra-thin film laminate is formed, the measurement of the lamination cycle on the order of nm is performed by observation with a transmission electron microscope (TEM) and small-angle X-ray analysis. In addition, for a long-period laminated structure, the lamination period can be measured by a high-resolution scanning electron microscope.

【0024】<実施例1>基材として、組成がJIS規
格P30、形状がJISSNG432の超硬合金製切削
チップを複数用意し、その表面に、真空アーク放電によ
るイオンプレーティング法を用いて表1に示す超薄膜積
層構造を形成した。ここで、この発明の実施例の切削チ
ップ試料を、No.1〜No.26とした。
<Example 1> A plurality of cutting tips made of cemented carbide having a composition of JIS standard P30 and a shape of JIS SNG432 were prepared as a base material, and the surface thereof was subjected to ion plating by vacuum arc discharge. Was formed. Here, the cutting insert samples according to the examples of the present invention were No. 1 to No. 26.

【0025】[0025]

【表1】 [Table 1]

【0026】図3は、切削チップ試料の製造方法を示し
ており、試料の形成は、成膜装置4の内部に複数個のT
i−Al化合物のターゲット5、6を配置し、ターゲッ
トの中心点を中心としてこれ等のターゲット間で回転す
る基材保持具7に切削チップ8を装着し、切削チップの
回転数と真空アークの放電電流(ターゲット材料の蒸発
量)の一方又は両方を調整することにより繰り返しの積
層周期を調整した。
FIG. 3 shows a method of manufacturing a cutting chip sample. The sample is formed by forming a plurality of T chips inside the film forming apparatus 4.
The targets 5 and 6 of the i-Al compound are arranged, and the cutting tip 8 is mounted on the substrate holder 7 which rotates between the targets about the center point of the target. By adjusting one or both of the discharge currents (evaporation amount of the target material), the repeating lamination cycle was adjusted.

【0027】これは、先ず、成膜装置4内の真空度を1
-5Torrとし、この雰囲気中にArガスを導入して
10-2Torrの真空度を保持しながら500℃まで加
熱し、切削チップ8に−1000Vの電圧をかけて洗浄
を行なった後、Arガスを排気した。次に、成膜装置4
内にN2 ガス、CH4 ガスのいずれか1種類或いは数種
類を基材回転に合わせた時間制御により200cc/m
inの割合で導入し、この状態で真空アーク放電を行な
うことにより周期律表IVa族、Va族、VIa族の金
属元素、及びTi−Al化合物のターゲット5、6を蒸
発・イオン化させ、これによって、回転する切削チップ
がターゲットの前を通過する際にターゲット材料と導入
ガス中のC、Nとの化合物層を切削チップ上に形成し
た。
First, the degree of vacuum in the film forming apparatus 4 is set to 1
0 -5 Torr, Ar gas was introduced into the atmosphere, the temperature was raised to 500 ° C. while maintaining a vacuum of 10 −2 Torr, and a voltage of −1000 V was applied to the cutting tip 8 for cleaning. Ar gas was exhausted. Next, the film forming apparatus 4
One or several kinds of N 2 gas and CH 4 gas are controlled at 200 cc / m by time control according to the rotation of the substrate.
in, and a vacuum arc discharge is performed in this state to vaporize and ionize the target elements 5, 6 of the metal elements of the groups IVa, Va, and VIa of the periodic table and the Ti-Al compound. When the rotating cutting tip passed in front of the target, a compound layer of the target material and C and N in the introduced gas was formed on the cutting tip.

【0028】また、上記の実施例の試料との比較のた
め、表1に試料27〜30で示す従来構造による硬質被
覆の切削チップを準備した。この場合、試料27〜29
は、通常の成膜装置を使用して真空アーク放電を用いた
イオンプレーティング法により、また試料30は、通常
のCVD法により、上述と同じ組成と形状の切削チップ
の表面に単独の硬質被覆層を形成して製作した。
For comparison with the samples of the above-mentioned examples, cutting tips having a hard coating having a conventional structure shown as samples 27 to 30 in Table 1 were prepared. In this case, samples 27 to 29
Is a single hard coating on the surface of a cutting tip having the same composition and shape as described above by an ion plating method using vacuum arc discharge using a normal film forming apparatus, and a sample 30 is formed by a normal CVD method. Fabricated by forming layers.

【0029】この実施例では、上記のように準備した各
種の切削チップ試料について、次の表2の条件により連
続切削試験と断続切削試験を行ない、切刃の逃げ面摩耗
幅を測定した。その各切削試験の結果を表3に示す。
In this example, a continuous cutting test and an intermittent cutting test were performed on the various cutting insert samples prepared as described above under the conditions shown in Table 2 below, and the flank wear width of the cutting edge was measured. Table 3 shows the results of each cutting test.

【0030】[0030]

【表2】 [Table 2]

【0031】[0031]

【表3】 [Table 3]

【0032】表3の結果から、従来構造の試料のうち硬
質被覆層をPVD法で形成した試料27〜29は耐摩耗
性に劣り、CVD法で形成した試料30は基材の靱性劣
化により刃先の耐欠損性が低下した。これに対して、こ
の発明に係る試料1〜24(試料8は除く)は、連続切
削及び断続切削の両方において優れた耐摩耗性を有し、
また、基材の靱性が維持され、優れた耐欠損性を示し
た。
From the results shown in Table 3, among the samples of the conventional structure, the samples 27 to 29 in which the hard coating layer was formed by the PVD method were inferior in wear resistance, and the sample 30 formed by the CVD method was inferior in the toughness of the base material. Decreased in fracture resistance. On the other hand, Samples 1 to 24 (excluding Sample 8) according to the present invention have excellent wear resistance in both continuous cutting and interrupted cutting,
Further, the toughness of the base material was maintained, and excellent fracture resistance was exhibited.

【0033】また、試料1〜7までの結果から、超薄膜
積層体を切削工具に適用した場合の繰り返しの積層周期
としては、0.5nm〜20nmが最適であり、さら
に、試料13〜18の試験結果から、界面層の膜厚とし
て0.05μm〜5μmが適当であることが明らかであ
る。
From the results of Samples 1 to 7, the optimum laminating cycle when the ultra-thin film laminate is applied to a cutting tool is 0.5 nm to 20 nm. From the test results, it is clear that an appropriate thickness of the interface layer is 0.05 μm to 5 μm.

【0034】加えて、試料9〜12の試験結果から、超
薄膜積層体の全体の膜厚として、0.5μm〜10μm
が適当であることがわかる。
In addition, from the test results of Samples 9 to 12, the total thickness of the ultra-thin film laminate was 0.5 μm to 10 μm
Is suitable.

【0035】また、試料19〜26の試験結果から、超
薄膜積層体の構造は、0≦x<0.5の範囲にあるアル
ミニウムリッチなTix Al1-x Nの化合物と、0.5
<y≦1の範囲にあるチタンリッチなTiy Al1-y
の化合物とを交互に繰り返し積層し、薄膜全体としてア
ルミニウムリッチなTi−Al−N化合物にすることが
適当であると言える。
Further, from the test results of Samples 19 to 26, the structure of the ultra-thin film laminate was composed of an aluminum-rich Ti x Al 1 -xN compound in the range of 0 ≦ x <0.5,
<Y ≦ 1 titanium rich Ti y Al 1-y N
It can be said that it is appropriate to alternately and repeatedly laminate the above compound to form an aluminum-rich Ti-Al-N compound as the whole thin film.

【0036】<実施例2>超薄膜積層体を電気・電子部
品の耐摩耗膜や保護膜に適用した場合の耐摩耗性を確か
めるため、磁気ヘッドの表面に超薄膜積層体を被覆し、
その磁気ヘッドの磁気ディスクとの接触摩耗試験を行な
った。
<Example 2> In order to confirm the wear resistance when the ultra-thin film laminate is applied to a wear-resistant film or a protective film of an electric / electronic component, the surface of a magnetic head is coated with the ultra-thin film laminate.
A contact wear test of the magnetic head with a magnetic disk was performed.

【0037】この摩耗試験では、磁気ヘッドとしてアル
ミニウムと炭化チタンからなる焼結体(ビッカース硬度
4000kgf/mm2 )を用い、これを磁気ディスク表面
の保護膜上に荷重600kgf/mm2 で押し付け、次に、
磁気ディスクを磁気ヘッドが浮上するまで高速回転さ
せ、浮上後回転を停止し、再び磁気ヘッドをディスク面
に接触させることを繰り返すCSS試験を行った。ここ
で、CSS試験とは、磁気ヘッドと磁気記録媒体とを接
触状態でセットした後、磁気記録媒体を回転浮上させた
後、回転を停止し、再び磁気ヘッドと磁気記録媒体を接
触させるサイクル試験である。
In this wear test, a sintered body (Vickers hardness 4000 kgf / mm 2 ) made of aluminum and titanium carbide was used as a magnetic head, and this was pressed against a protective film on the surface of a magnetic disk with a load of 600 kgf / mm 2. To
A CSS test was performed in which the magnetic disk was rotated at a high speed until the magnetic head floated, the rotation was stopped after the floating, and the magnetic head was brought into contact with the disk surface again. Here, the CSS test is a cycle test in which the magnetic head and the magnetic recording medium are set in contact with each other, the magnetic recording medium is rotated and levitated, the rotation is stopped, and the magnetic head and the magnetic recording medium are brought into contact again. It is.

【0038】表4は、上記CSS試験法により10万回
の繰り返し試験を行なった場合の結果を示している。
Table 4 shows the results when 100,000 repetitive tests were performed by the CSS test method.

【0039】[0039]

【表4】 [Table 4]

【0040】この表4において試料1〜14は、この発
明に係る超薄膜積層体を用いた例であり、スパッタリン
グ法を用いて作成した。また、試料15は比較例であ
り、SiO2 を保護膜として用いたものである。
In Table 4, Samples 1 to 14 are examples using the ultra-thin film laminate according to the present invention, and were prepared by a sputtering method. Sample 15 is a comparative example in which SiO 2 was used as a protective film.

【0041】なお、被覆層の硬度は、層が非常に薄く測
定ができず、真空中でのArイオンビーム(加速電圧3
KV)による層のエッチング速度と硬度との間に経験的
に正の相関があるため、エッチング速度を硬度の代替値
として示した。
The hardness of the coating layer was not measured because the layer was very thin and could not be measured.
Since there is an empirical positive correlation between the etching rate of the layer by KV) and the hardness, the etching rate is shown as an alternative value for the hardness.

【0042】表4の結果から、0≦x<0.5、0.5
<y≦1の諸元をもち、繰り返しの積層周期が0.5n
m〜20nmの範囲にある試料2〜5について、表面状
態や再生出力に変化が見られず、他の試料、特に従来構
造の試料15に比べて優れた耐摩耗性があることが示さ
れた。
From the results shown in Table 4, 0 ≦ x <0.5, 0.5
<Y ≦ 1 and the repetition lamination cycle is 0.5n
For Samples 2 to 5 in the range of m to 20 nm, no change was observed in the surface state and the reproduction output, and it was shown that the samples had excellent wear resistance as compared with other samples, particularly Sample 15 having a conventional structure. .

【0043】[0043]

【効果】以上のように、この発明の超薄膜積層体は、高
硬度と耐酸化性とを同時に併せ持つことができるので、
切削工具や耐摩工具の被覆層に用いることにより基材強
度を維持したままで従来より優れた耐摩耗性を有するこ
とができ、特に高速切削や高硬度材料の切削用途におい
て、切削寿命を大きく延長させることができる。
As described above, the ultra-thin film laminate of the present invention can have both high hardness and oxidation resistance at the same time.
By using it for the coating layer of cutting tools and wear-resistant tools, it has superior wear resistance while maintaining the strength of the base material, and greatly extends the cutting life, especially in high-speed cutting and cutting of hard materials. Can be done.

【0044】また、上記切削工具等の用途以外に、この
発明の超薄膜積層体は、電気・電子部品や摺動部品、機
械部品の表面に対して耐摩耗性に優れた耐摩耗膜や保護
膜として、適用することができる。
In addition to the above-mentioned applications such as cutting tools, the ultra-thin laminate of the present invention provides a wear-resistant film and a protective film having excellent wear resistance on the surface of electric / electronic parts, sliding parts, and mechanical parts. It can be applied as a membrane.

【0045】さらに、この超薄膜積層体を用いれば、光
磁気記録媒体、光学レンズ等の表面保護膜、或は光学特
性、電気特性等にも優れた薄膜を提供することができ
る。
Further, by using this ultra-thin film laminate, it is possible to provide a surface protective film such as a magneto-optical recording medium and an optical lens, or a thin film having excellent optical and electrical properties.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)はこの発明に係る超薄膜積層体を基材に
被覆した状態を示す模式図、(b)はその部分拡大図
FIG. 1A is a schematic view showing a state in which a substrate is coated with an ultra-thin film laminate according to the present invention, and FIG. 1B is a partially enlarged view thereof.

【図2】この発明に係る超薄膜積層体を界面層を介して
基材に被覆した状態を示す模式図
FIG. 2 is a schematic view showing a state in which a substrate is coated with the ultra-thin film laminate according to the present invention via an interface layer.

【図3】この発明に係る超薄膜積層体の形成方法を示す
FIG. 3 is a diagram showing a method for forming an ultra-thin film laminate according to the present invention.

【符号の説明】[Explanation of symbols]

1 超薄膜積層体 2 基材 3 界面層 4 成膜装置 5、6 ターゲット 7 基材保持具 8 切削チップ DESCRIPTION OF SYMBOLS 1 Ultra thin film laminated body 2 Substrate 3 Interface layer 4 Film forming apparatus 5, 6 Target 7 Substrate holder 8 Cutting tip

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C23C 16/34 C23C 16/34 28/04 28/04 (72)発明者 吉岡 剛 伊丹市昆陽北一丁目1番1号 住友電気 工業株式会社伊丹製作所内 (72)発明者 山縣 一夫 伊丹市昆陽北一丁目1番1号 住友電気 工業株式会社伊丹製作所内 (56)参考文献 特開 平3−120353(JP,A) (58)調査した分野(Int.Cl.6,DB名) C23C 14/00 - 14/58 B23B 27/14 B23P 15/28 B32B 15/01 C22C 29/16 C23C 16/00 - 16/56 C23C 28/04 G11B 5/84 G11B 7/26 ────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code FI C23C 16/34 C23C 16/34 28/04 28/04 (72) Inventor Tsuyoshi Yoshioka 1-1-1, Koyokita, Itami-shi Sumitomo (72) Inventor, Kazuo Yamagata 1-1-1, Kunyokita, Itami-shi, Itami Works, Sumitomo Electric Industries, Ltd. (56) References JP-A-3-120353 (JP, A) (58) 6) Surveyed field (Int.Cl. 6 , DB name) C23C 14/00-14/58 B23B 27/14 B23P 15/28 B32B 15/01 C22C 29/16 C23C 16/00-16/56 C23C 28/04 G11B 5/84 G11B 7/26

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Ti、AlおよびNによって構成される
Tix Al1-x NおよびTiy Al1-y N(0≦x<
0.5、0.5<y≦1)なる2種類の化合物を、交互
に繰り返して積層し、積層体の全体組成として化学量論
的にアルミニウムリッチになるものとした超薄膜積層
体。
1. Ti x Al 1-x N and Ti y Al 1-y N constituted by Ti, Al and N (0 ≦ x <
An ultra-thin film laminate in which two kinds of compounds of 0.5 and 0.5 <y ≦ 1) are alternately and repeatedly laminated to make the overall composition of the laminate stoichiometrically aluminum-rich.
【請求項2】 請求項1に記載の超薄膜積層体におい
て、繰り返しの積層周期を0.5nm〜20nmとし、
全体の膜厚を0.5μm〜10μmとした超薄膜積層
体。
2. The ultra-thin film laminate according to claim 1, wherein a repetitive lamination period is 0.5 nm to 20 nm,
An ultrathin laminate having an overall film thickness of 0.5 μm to 10 μm.
【請求項3】 請求項1又は2に記載の超薄膜積層体
を、WC基超硬合金、サーメット、セラミックス、高速
度鋼等の硬質基材の表面に被覆し、切削チップ、ドリル
またはエンドミルとして用いる超薄膜積層体の被覆物。
3. The ultra-thin film laminate according to claim 1 or 2 is coated on a surface of a hard base material such as a WC-based cemented carbide, cermet, ceramics, high-speed steel, etc., and is used as a cutting tip, a drill or an end mill. The coating of the ultra-thin film laminate to be used.
【請求項4】 請求項1又は2に記載の超薄膜積層体を
基材の表面に被覆し、その超薄膜積層体と基材との間
に、周期律表IVa族、Va族、VIa族の金属元素の
群から選択される1種以上の元素と、C、Nの1種以上
との組み合せからなる化合物の少なくとも1種からなる
膜厚0.05μm〜5μmの界面層を設けた超薄膜積層
体の被覆物。
4. The ultra-thin film laminate according to claim 1 or 2 is coated on the surface of a substrate, and a group IVa, Va, or VIa of the periodic table is provided between the ultra-thin film laminate and the substrate. An ultrathin film provided with an interface layer having a thickness of 0.05 μm to 5 μm and comprising at least one compound of a combination of at least one element selected from the group consisting of metal elements and at least one of C and N Laminate coating.
【請求項5】 請求項1又は2に記載の超薄膜積層体に
おいて、電気・電子部品、摺動部品、機械部品の耐摩耗
膜あるいは保護膜として用いるビッカース硬度が荷重2
5gfで3500kgf/mm2 以上のものである超薄膜積
層体。
5. The ultra-thin film laminate according to claim 1, wherein the Vickers hardness used as an abrasion-resistant film or a protective film for electric / electronic parts, sliding parts, and mechanical parts is a load of 2.
An ultra-thin film laminate of 5 gf and 3500 kgf / mm 2 or more.
【請求項6】 請求項5に記載の超薄膜積層体におい
て、積層体の全体の膜厚を5nm〜10μmとした超薄
膜積層体。
6. The ultra-thin film laminate according to claim 5, wherein the total film thickness of the laminate is 5 nm to 10 μm.
JP5244178A 1993-09-30 1993-09-30 Ultra thin film laminate Expired - Fee Related JP2979921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5244178A JP2979921B2 (en) 1993-09-30 1993-09-30 Ultra thin film laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5244178A JP2979921B2 (en) 1993-09-30 1993-09-30 Ultra thin film laminate

Publications (2)

Publication Number Publication Date
JPH0797679A JPH0797679A (en) 1995-04-11
JP2979921B2 true JP2979921B2 (en) 1999-11-22

Family

ID=17114929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5244178A Expired - Fee Related JP2979921B2 (en) 1993-09-30 1993-09-30 Ultra thin film laminate

Country Status (1)

Country Link
JP (1) JP2979921B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018087080A1 (en) * 2016-11-14 2018-05-17 Siemens Aktiengesellschaft Multilayer aluminum-containing protective coating and component

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2285460A1 (en) * 1998-02-04 1999-08-12 Osg Corporation Hard multilayer coated tool having increased toughness
US6284316B1 (en) * 1998-02-25 2001-09-04 Micron Technology, Inc. Chemical vapor deposition of titanium
SE9903089D0 (en) 1999-09-01 1999-09-01 Sandvik Ab Coated grooving or parting insert
JP3910373B2 (en) 2001-03-13 2007-04-25 オーエスジー株式会社 Hard multilayer coating for rotary cutting tool and hard multilayer coating coated rotary cutting tool
WO2003061884A1 (en) * 2002-01-21 2003-07-31 Mitsubishi Materials Kobe Tools Corporation Surface coated cutting tool member having hard coating layer exhibiting excellent abrasion resistance in high-speed cutting, and method for forming said hard coating layer on surface of cutting tool
KR100594333B1 (en) 2002-01-31 2006-06-30 미쓰비시 마테리알 가부시키가이샤 Coated cutting tool member having hard coating layer and method for forming the hard coating layer on cutting tool
US6660133B2 (en) * 2002-03-14 2003-12-09 Kennametal Inc. Nanolayered coated cutting tool and method for making the same
JP4029323B2 (en) * 2002-05-27 2008-01-09 三菱マテリアル株式会社 Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP3928480B2 (en) * 2002-05-27 2007-06-13 三菱マテリアル株式会社 Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
CN100439016C (en) * 2002-06-25 2008-12-03 三菱麻铁里亚尔株式会社 Coated cutting tool member
JP4120442B2 (en) * 2003-04-03 2008-07-16 三菱マテリアル株式会社 Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance of hard coating layer under high-speed cutting conditions and method for manufacturing the same
JP4120458B2 (en) * 2003-04-25 2008-07-16 三菱マテリアル株式会社 Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance of hard coating layer under high-speed cutting conditions and method for manufacturing the same
SE0701449L (en) 2007-06-01 2008-12-02 Sandvik Intellectual Property Fine-grained cemented carbide with refined structure
SE0701761A0 (en) 2007-06-01 2008-12-02 Sandvik Intellectual Property Fine-grained cemented carbide for turning in hot-strength super alloys (HRSA) and stainless steel
US8455116B2 (en) 2007-06-01 2013-06-04 Sandvik Intellectual Property Ab Coated cemented carbide cutting tool insert
JP2009000808A (en) * 2007-06-15 2009-01-08 Sandvik Intellectual Property Ab -fine particle cemented carbide for turning of heat resistant super alloy (hrsa) and stainless steel
JP2009034811A (en) * 2007-06-15 2009-02-19 Sandvik Intellectual Property Ab Cemented carbide insert for parting, grooving and threading
AT506133B1 (en) * 2007-11-16 2009-11-15 Boehlerit Gmbh & Co Kg friction stir welding tool
SE533884C2 (en) * 2009-06-01 2011-02-22 Seco Tools Ab Nanolaminated coated cutting tool
SE533883C2 (en) * 2009-06-01 2011-02-22 Seco Tools Ab Nanolaminated coated cutting tool
JP5892334B2 (en) * 2011-07-25 2016-03-23 三菱マテリアル株式会社 Surface coated drill with excellent wear resistance and chip evacuation
US9476114B2 (en) 2012-08-03 2016-10-25 Walter Ag TiAlN-coated tool
DE102012107129A1 (en) * 2012-08-03 2014-02-06 Walter Ag TiAIN coated tool
JP6090063B2 (en) * 2012-08-28 2017-03-08 三菱マテリアル株式会社 Surface coated cutting tool
US9126273B2 (en) * 2012-12-17 2015-09-08 Kennametal Inc Tool for the cutting machining of workpieces and process for coating substrate bodies
JP6044336B2 (en) * 2012-12-27 2016-12-14 三菱マテリアル株式会社 Surface coated cutting tool with excellent chipping resistance due to hard coating layer
CN103469154B (en) * 2013-09-05 2016-01-20 江西稀有稀土金属钨业集团有限公司 A kind of TiAlN compound coating and be provided with the preparation method of cutter of this coating
JP6238131B2 (en) * 2013-12-26 2017-11-29 住友電工ハードメタル株式会社 Coating and cutting tools
DE102014103220A1 (en) * 2014-03-11 2015-09-17 Walter Ag TiAIN layers with lamellar structure
JP6376466B2 (en) 2014-11-13 2018-08-22 三菱マテリアル株式会社 Surface coated cutting tool
JP6349581B2 (en) * 2015-01-14 2018-07-04 住友電工ハードメタル株式会社 Hard coating, cutting tool, and manufacturing method of hard coating
JP6503818B2 (en) * 2015-03-20 2019-04-24 三菱マテリアル株式会社 Surface coated cutting tool
CN107530786B (en) 2015-04-27 2020-05-05 株式会社泰珂洛 Coated cutting tool
US10737332B2 (en) 2016-04-07 2020-08-11 Tungaloy Corporation Coated cutting tool

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018087080A1 (en) * 2016-11-14 2018-05-17 Siemens Aktiengesellschaft Multilayer aluminum-containing protective coating and component
US11078574B2 (en) 2016-11-14 2021-08-03 Siemens Energy Global GmbH & Co. KG Multilayered aluminiferous protective coating and component

Also Published As

Publication number Publication date
JPH0797679A (en) 1995-04-11

Similar Documents

Publication Publication Date Title
JP2979921B2 (en) Ultra thin film laminate
KR0157995B1 (en) Ultra thin film laminated member
JP3995900B2 (en) Diamond-like carbon multilayer film
JP2793772B2 (en) Hard film coated tools and hard film coated members with excellent adhesion
JP5393108B2 (en) Manufacturing method of hard multilayer film molded body
EP2149620A1 (en) Multilayer film-coated member and method for producing it
JP2006152321A (en) Coated member with hard film and coating method therefor
KR100633286B1 (en) Covering member having hard coating on its surface excellent in abrasion resistance
EP1783244B1 (en) Hard films and sputtering targets for the deposition thereof
EP0191554A1 (en) Coated cemented carbides and manufacture thereof
JP3460288B2 (en) Surface coating member with excellent wear resistance
JP4398224B2 (en) Wear resistant parts
JP2979922B2 (en) Ultra thin film laminate
EP1310580B1 (en) Hard layer-coated tool
JP3460287B2 (en) Surface coating member with excellent wear resistance
JP3427448B2 (en) Ultra-thin laminate
JP3454428B2 (en) Wear-resistant film-coated tools
JP4331807B2 (en) Hard film and hard film coated member with excellent wear resistance
JP4388152B2 (en) Thin film laminate covering member
JP4350822B2 (en) Hard film and hard film coated member with excellent wear resistance
JPH08199340A (en) Coated hard alloy
JPH06279990A (en) Wear resistant coating film and its formation
JP3016702B2 (en) Coated hard alloy
JP2867605B2 (en) Surface-coated hard members for cutting tools and wear-resistant tools
JP3337884B2 (en) Multilayer coating member

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees