JP3995900B2 - Diamond-like carbon multilayer film - Google Patents

Diamond-like carbon multilayer film Download PDF

Info

Publication number
JP3995900B2
JP3995900B2 JP2001126827A JP2001126827A JP3995900B2 JP 3995900 B2 JP3995900 B2 JP 3995900B2 JP 2001126827 A JP2001126827 A JP 2001126827A JP 2001126827 A JP2001126827 A JP 2001126827A JP 3995900 B2 JP3995900 B2 JP 3995900B2
Authority
JP
Japan
Prior art keywords
film
layer
density
carbon
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001126827A
Other languages
Japanese (ja)
Other versions
JP2002322555A (en
Inventor
栄治 岩村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2001126827A priority Critical patent/JP3995900B2/en
Publication of JP2002322555A publication Critical patent/JP2002322555A/en
Application granted granted Critical
Publication of JP3995900B2 publication Critical patent/JP3995900B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Physical Vapour Deposition (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は工具,金型などの耐摩耗性部材、自動車用部品,家電部品に代表される産業用もしくは一般家庭用の機械部材・摺動部材、カードやチケットの自動読み取り機やプリンターなどの書き込み/読み取りヘッドの保護膜などに用いられ、特に耐摩耗性と高い摺動特性とが要求される表面保護膜として好適なダイヤモンドライクカーボン多層膜に関する。
【0002】
【従来の技術】
硬質炭素膜は、一般的にダイヤモンドライクカーボン(以下、DLCと略記する場合がある。)膜と呼ばれる。DLCは、硬質非晶質炭素、無定形炭素、硬質無定形炭素、i−カーボン、ダイヤモンド状炭素など様々な呼称が用いられているが、これらの用語に特に明確な区別はない。このようなさまざまな用語が使われるDLCの本質は、構造的にタイヤモンドとグラファイトが混ざり合った両者の中間の構造を有していることにあり、ダイヤモンドと同様に、硬度、耐摩耗性、固体潤滑性、熱伝導性、化学的安定性等に優れていることから、例えば摺動部材、金型、切削工具類、耐摩耗性機械部品、研磨材、磁気・光学部品等の各種部材の表面保護膜として利用されつつある。
【0003】
DLC膜の特質として、鉄、アルミ等の金属や、ガラス等のセラミックスなどのさまざまな相手材料との接触において摩擦係数(以下、μと記載する場合がある。)が小さいことが挙げられる。しかし、DLC膜の摩擦係数は測定環境や相手材により大きく変化することが知られており、一般的に、例えば鉄系の相手材の場合には大気中では0.15〜0.4、真空中や乾燥窒素雰囲気では0.1以下となる。
DLC膜の低μ化機構については数多くの研究がなされているが、一般的にはDLC膜より相手材に炭素原子が付着し、これがグラファイト化し、グラファイトのc面(π結合面)で滑り変形し、自己潤滑材として働くことによって低μ化するものと考えられている。
【0004】
DLC膜を硬質コーティング膜として実用に供する場合、鉄系相手材に対して0.1程度の低摩擦係数の実現、耐摩耗性を左右する薄膜硬度の確保、コーティングの信頼性に関わる基材との密着性の確保はそれぞれ必須の条件であり、これらの条件に関して多くの提案がなされている。
特に有力な手投としては、DLCへの合金元素の添加と、膜の積層構造化が挙げられる。合金元素の添加については、例えばSiを添加した場合、μは0.1〜0.15であり、硬度は30GPa程度であることが報告されている。DLCの積層構造化は内部応力の低減や密着度の改善、厚膜化による耐久性の向上、耐腐食性の向上に寄与し、また電気抵抗を制御する有力な手段として認識されており、例えば、以下の技術が知られている。
【0005】
(1) 特開平5−65625号公報には、基板上に硬質炭素膜と、硬質炭素膜との親和性の高い材料である、シリコン、ゲルマニウム、炭化ケイ素、窒化ケイ素、二酸化ケイ素、ガラス、アルミナから選ばれた1種類以上のバッファ層とを交互に積層し、最外層を硬質炭素膜とする積層体が記載されている。
(2) 特開平10−237827号公報には、硬質炭素膜もしくは少なくとも1種類以上の金属元素が添加された硬質炭素膜と、少なくとも1種類以上の金属または金属炭化物または金属窒化物または金属炭窒化物が繰り返し交互に積層された積層体、もしくは異なる種類の金属元素または異なる添加量の金属元素が添加された少なくとも2種類以上の硬質炭素膜が繰り返し交互に積層された積層体が記載されている。
(3) 特開平10−226874号公報には、電気抵抗率が少なくとも2桁相違する硬質炭素膜が交互に積層された積層体が記載されている。
(4) 特開平11−1013号公報には、サーマルヘッドの保護膜として、炭素を主成分とする炭素層と、Si、Ti、Zr、Hf、V、Nb、Ta、Cr、MoおよびWからなる群より選択される少なくとも1種以上または少なくとも2種以上からなる半金属または金属の合金を主成分とする金属層との積層膜が記載されている。
(5) 特開平10−72288号公報には、真空状態下で、炭素化合物ガスを含む成膜用原料ガスを電圧印加によりプラズマ化し、薄膜状炭素層および微粒子状炭素層からなる炭素層単位が1つあるいは2つ以上形成された炭素膜により応力を低減し、密着性の改善と厚膜化により耐久性を改善することが記載されている。
(6) 特開平9−298097号公報には、DLC積層膜において、導電性膜およびその導電性膜に比して硬度の高い膜を交互に、少なくとも3層以上積層し、最外層を導電性膜とする積層体が記載されている。
【0006】
【発明が解決しようとする課題】
DLCに代表される硬質炭素膜の高い摺動特性は、それに含まれる、もしくは摺動中に摺動界面に形成されるグラファイト結晶のπ結合面のすべりによる自己潤滑に起因するものと考えられている。よって、グラファイト自体は変形しやすく、硬質炭素膜自体に微粒子状のグラファイトを含むような膜では、摩擦係数は低く摺動性は良好となるが、膜硬度自体が低いため、摺動による摩耗が激しい。すなわち、低摩擦係数を得ようとすると高硬度が得られない、もしくは低摩擦係数でも低硬度であれば耐摩耗性が不十分となり、いずれにしてもコーティング膜としては耐久性が不足するという問題が生じる。逆に、DLC膜中のグラファイト成分を少なくした場合には、膜硬度は増加して耐摩耗性を確保できるが、グラファイトの自己潤滑性による低摩擦係数化は十分に達成されない。このため、従来の単層構造のDLCや、積層構造のものでも、少なくとも実用上必要とされる0.1〜0.15程度の低摩擦係数が安定的に実現され、かつ高耐摩耗性を備えたDLC膜は得られていない。
【0007】
また、硬質コーティング膜材料として従来から使われているTiN、TiAlN、CrNなどの金属窒化物の場合には、成膜時に生じるマクロパーティクルと呼ばれる飛沫粉や、相手材との摩擦により相手材を攻撃して、あるいは相手材に攻撃されることで生じる摩耗粉を潤滑材として利用することで摩擦係数を低減させている。しかし、かかる硬質材料を用いる場合、摺動部材の消耗、摩擦係数の経時的な増加、摩耗粉による目詰まりなどのトラブルが生じる。
【0008】
本発明はかかる問題に鑑みなされたもので、耐摩耗性に優れ、かつ摩擦係数が低く、しかも相手材に対する攻撃性が低い、優れた摺動特性を有するダイヤモンドライクカーボン膜を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明者らは、DLCの微細構造によって摩擦係数や薄膜硬度の発現が大きく影響を受けることに注目し、微細構造の異なるDLC超薄膜を機能的に積層させ、微細構造と摺動特性との関係を調べた。その結果、DLC膜の膜密度を制御し、膜密度が異なる2種類のDLC膜を適当な膜厚、周期にて積層させることで優れた耐摩耗性と摺動特性が得られることを知見し、本発明を完成するに至った。
【0010】
すなわち、本発明によるダイヤモンドライクカーボン多層膜は、膜密度の低いダイヤモンドライクカーボンで形成された低密度炭素層と、膜密度の高いダイヤモンドライクカーボンで形成された高密度炭素層とが交互に積層され、前記低密度炭素層は平均の膜密度が2.2g/cm3以下であり、一方前記高密度炭素層は平均の膜密度が2.3〜3.2g/cm3であり、前記高密度炭素層は膜中に含まれる水素成分が5at%以下であり、前記低密度炭素層の層厚が0.4〜30nmであり、前記高密度炭素層の層厚が0.4〜10nmであり、前記低密度炭素層の層厚T1と高密度炭素層の層厚T2の比T1/T2が5〜0.2とされたものである。前記多層膜において、好ましくは最外層を前記低密度炭素層で形成し、その層厚を2〜200nmとするのがよい。
【0011】
【発明の実施の形態】
本発明の実施形態にかかるDLC多層膜は、図1に示すように、基材1の表面に中間層2を介して積層形成された多層膜3であって、膜密度の低いDLCによって形成された低密度炭素層4と、膜密度の高いDLCによって形成された高密度炭素層5とが交互に積層された積層部7を有し、さらにその上に前記層4と同様の低密度炭素層で形成された最上層6が形成されている。
【0012】
ここで、多層膜3においてDLCで形成された炭素層の密度を変えて積層する技術的意義について詳しく説明する。
DLC膜において、耐摩耗性の向上を図るには、摩擦面における膜の塑性変形を避けることが必要である。すなわち、塑性指数を小さくすることが望しく、この塑性指数は材料表面の形状とともに材料の性質である弾性定数E、膜硬度Hおよびこれらの比E/Hに強く依存するものであり、材料的にはE,Hが大きく、E/Hの小さな材料が良いとされる(『薄膜トライポロジー』、榎本,三宅著、東京大学出版会発行、p58)。金属材料の場合、E/Hは種類によらずほぼ一定であるが、金属に比してE/Hの小さなセラミックスでは耐摩耗性が高く、硬質コーティング膜として好適な所以である。また、材料の摩耗率はHに反比例する。
一方、摩擦係数は摩擦面でのせん断応力に対する抵抗力に依存し、これはコーティング膜表面の硬度と密接な相関を持つ。例えば、固体潤滑膜として用いられるグラファイト、ニ硫化モリブデン、銀、インジウムなどは硬度が低く、せん断カに対する抵抗力が小さいため、摩擦係数は低い値をとる。
【0013】
上記説明より、DLC膜であっても、単一の材質である限り、耐摩耗性と低摩擦係数とを同時に実現することは本質的に不可能である。一方、本発明者は、DLC膜の機械的特性およびそれに相関した耐摩耗性や摺摺動特性について鋭意研究した結果、これらの特性はDLC膜の膜密度と密接な関係を持ち、膜密度というマクロ的なパラメータにより制御が可能であることを知見した。そこで、炭素層を形成する過程で、膜密度に所定差を付けて、摩擦係数の低減による摺動性に寄与する低密度炭素層と、耐摩耗性が高いことで摩擦耐久性の向上に寄与する高密度炭素層とを所定条件の下で連続的に交互に多層化して形成させることによって、両特性を満足するDLC膜を得ることに成功した。以下、必要とされる膜密度についてさらに説明する。
【0014】
前記低密度炭素層4のDLCの平均の膜密度は、2.2g/cm3以下とし、好ましくは2.0g/cm3以下とするのがよい。平均膜密度を2.2g/cm3以下とすることで、弾性定数が200GPaより小さく、さらに膜硬度も30GPaより小さくなり、摩擦面でのせん断応力に対して変形し易く、摩擦係数を小さくすることができる。
一方、前記高密度炭素層の平均の膜密度は2.3g/cm3以上、好ましくは2.5g/cm3以上とするのがよい。平均膜密度を2.3g/cm3以上とすることにより、弾性定数が300GPaより大きく、さらに膜硬度も50GPaより大きくなり、十分な耐摩耗性を備えるようになる。もっとも、膜密度が高くなり過ぎると、膜の固有応力も過大となり、使用時の負荷応力による変形能が低下し、剥離や膜破壊などの問題が生じるようになるので、3.2g/cm3以下、好ましくは3.0g/cm3以下、より好ましくは2.7g/cm3以下に止めるのがよい。
【0015】
前記膜密度は炭素層における平均値を意味するものであり、炭素層の厚さ方向における密度分布の形態を問わない。例えば、図2に示すように、各炭素層における膜密度が一定の形態(A)に限らず、膜密度が層内で厚さ方向に傾斜状に変化する形態(B)または(C)をとってもよい。なお、膜密度は、ラザフォードバックスキャッタリング(RBS)法やX線反射率法、もしくはSink-Float法(ASTMD729)やDensity Gradient Column法(ASTMD1505)などによって測定することができる。
【0016】
前記高密度炭素層5における水素含有量は少ない程良く、5at%以下に止めることが望ましい。不純物である水素を5at%以下に抑制することによって、高膜密度下における膜硬度、弾性定数を容易に高めることができ、耐摩耗性をより向上させることができる。炭素層の膜密度とその中に含まれる水素との関係については、Scheibeらが報告(IEEE Tran. On Plasma Sci., vol 25(1997),p685)しているように、DLCの膜密度は弾性定数Eおよび膜硬度Hに密接に相関することが知られている。すなわち、膜密度が高いとEおよびHがともに大きくなり、膜密度が低いとEおよびHがともに低くなる。これはDLCに含まれる不純物元素によって増減率が異なるが、特に水素が5at%より少なく含まれる場合、その相関度が大きくなり、高膜密度の下ではEおよびHがともに大きな値をとるため、塑性指数が小さくなって耐摩耗性をより向上させることができる。
【0017】
前記低密度炭素層4の層厚は、0.4nm以上、30nm以下とすることが好ましく、前記高密度炭素層5の層厚は0.4nm以上、10nm以下とすることが好ましい。低密度炭素層4、高密度炭素層5が各々0.4nm未満では各層がその特性を維持することが困難になる。また、低密度炭素層4が30nm超では、この層はせん断応力に対する抵抗が低いため、摩擦による消耗量が増大し、トラブルの原因となる。一方、高密度炭素層5が10nm超では、摩擦面や摺動面に露出した部分において、この層での摩擦が全体の摺動特性に影響するようになり、またこの層はせん断応力に対する抵抗性が大きいために、摩擦係数が増大するようになる。
【0018】
また、前記低密度炭素層4の層厚をT1、前記高密度炭素層5の層厚をT2としたとき、層厚比T1/T2を5〜0.2とすることが望ましい。層厚比の決定に際しては、低密度炭素層4は厚すぎず、高密度炭素層5は薄すぎず、コーティング膜全体の摩擦のせん断応力に対する抵抗力がバランスするようにすることが必要である。層厚比T1/T2が5超となり、低密度炭素層4が高密度炭素層5に比して著しく厚くなると、低密度炭素層4は摩擦に対する抵抗力が小さいために変形量が大きくなり、また高密度炭素層5が相対的に薄くなることと相まって、耐摩耗性の低下を招く。一方、比T1/T2が0.2未満となり、高密度炭素層5が低密度炭素層4に比して著しく厚くなると、摩擦に対する変形量が小さくなり、摩擦係数の上昇をまねく。
【0019】
また、前記最外層6は必ずしも必要とされるものではないが、最外層6として低密度炭素層を設けることにより、摺動初期における表面の変形が容易になり、さらに相手材への炭素原子の付着を促進することができ、特に摺動試験初期において摩擦係数の低減を実現することができる。もっとも、最外層6の厚さが2nm未満では前記作用が過少であり、一方200nmを超えると摩擦による消耗量が増大し、摺動部分での摩耗粉の発生により、摩擦が滑らかに起こらないようになり、すなわち摩擦係数が不安定になり、さらに摩擦量が増加するなどのトラブルの原因となるので、最外層6の厚さは2〜200nmとするのがよい。
【0020】
また、低密度炭素層4と高密度炭素層5との1組の層さ方向の繰り返し周期は30nm以下、好ましくは10nm以下にすることが望ましい。積層膜を30nm以下の超薄膜とすることにより、両層の特性が効率的に摺動面での摩擦現象に対して発揮され、優れた耐摩耗性と低い摩擦係数を安定的に実現することができる。また、最外層6を設ける場合、最外層6より内側の積層部7の厚さを最外層6より少なくとも500nm以上とすることが好ましい。なお、最外層6を積層部7における低密度炭素層4の層厚よりも厚く形成する場合、前記T1、T2、T1/T2、繰り返し周期の数値については積層部7における低密度炭素層4、高密度炭素層5についての推奨値を意味する。
【0021】
前記多層膜3を積層形成する基材1としては、超硬合金、鉄系合金、チタン系合金、アルミ系合金、銅系合金、ガラス,アルミナなどのセラミックス、Si、樹脂材料等の適宜の金属材、非金属材を用いることができる。また、前記基材1と多層膜3との間に設けられる中間層2は、基材1と多層膜3との密着性を確保する役目をなすものであり、かかる作用を有するタングステン等の金属や、例えば特開平10−29718号公報に記載された金属と炭素の混合物、あるいは基材の保護等のための金属もしくは半金属の炭化物、または金属もしくは半金属の窒化物、または金属もしくは半金属の炭窒化物を用いることができる。なお、中間層2は単層に限らず、複層とすることもできる。
【0022】
本発明の多層膜の形成方法には特に制限はないが、固体炭素を蒸発源(ターゲット)として、スバッタリングにより形成する方法は、ナノメートル(nm)オーダーでの層厚や膜密度の制御を容易に行うことができるので好ましい。また、炭素膜中の水素を低減させるという観点からも、成膜原料ガスとしてメタン等の炭化水素ガスを用いて炭素膜を成膜する手法は不適当であり、固体炭素をターゲットとするスパッタリングが好ましい。
【0023】
低密度炭素層4を形成する場合は特に基板に負のバイアス電圧を印加する必要はないが、高密度炭素層5を形成する場合は負のバイアス電圧を印加することが好ましい。すなわち、基板に負の直流電圧、直流パルス電圧もしくは高周波バイアス電圧を印加し、その印加電圧により成膜時に膜の堆積と同時にイオンを照射するようにして、イオン打ち込み効果で膜密度を上げるように制御することが好ましい。一般に通常のスパッタリングでは、バイアス電圧の印加による手法では膜密度が2.6g/cm3を超える硬質炭素膜を形成することは難しいが、誘導結合プラズマ(IPC)法や高周波プラズマ(rf)法をスバッタリングに付加したり、もしくはアークイオンプレーティングやレーザーアプレーション等を付加することによって、炭素のイオン化率を高めることでスパッタリングによっても2.6g/cm3を超える硬質炭素膜を容易に形成することができる。
【0024】
ところで、既述の通り、前記特開平10−226874号公報には電気抵抗率が少なくとも2桁相違する2種類の硬質炭素膜が交互に積層されたDLC膜が記載されているが、本質的に電気抵抗率と膜密度とは関係がない。また、同公報に記載された実施例1,2および4のように炭化水素ガスを原料ガスとして成膜すると、例え密度が高くなっても、水素を多量に含み、弾性率Eや硬度Hが高くならず、耐摩耗性を向上させることができない。また、実施例3のようにカソードアークイオンプレーティング法では基板電圧を600Vから60Vに変化させても2.1g/cm3以下の低密度膜を成膜することはできないものと推測される。
また、前記特開平10−72288号公報には薄膜状炭素層と微粒子状炭素層とを交互に積層されたDLC膜が記載されているが、本発明では粒子状炭素層は必須ではなく、またこれらの炭素層は炭化水素ガスを成膜用原料ガスとして用いることが記載されており、前記と同様、かかる炭化水素ガスを原料ガスとして成膜する限り、本発明にかかる耐摩耗性の良好な高密度炭素層を形成することは困難である。
また、特開平9−298097号公報には導電性膜とそれより硬度の高い絶縁性膜とを交互に積層したDLC膜が記載されているが、前記絶縁性膜はソースガスとしてメタンガスを用いて成膜するものであり、上記の通り、かかる炭化水素ガスをソースガスとして用いる限り、本発明にかかる耐摩耗性の良好な高密度炭素層を形成することは困難である。
【0025】
次に実施例を挙げて本発明をより具体的に説明するが、本発明は下記実施例によって制限的に解釈されるものではない。
【0026】
【実施例】
まず、摩擦係数・耐摩耗性測定用として直径50mm、厚さ約8mmのSKH(高速度鋼)基材、膜密度・膜中水素量測定用として2インチ径、厚さ約200μm のSiウエハー基材を準備した。これら基材を成膜前処理としてアセトンにて脱脂し、20分間超音波洗浄した後、圧縮空気を噴射して十分に乾燥させた。こうした処理を施した基材を、スパッタチャンバー内にセットして、3×10-6torr以下に真空引きした。その後、動作ガスとしてArガスを3 mtorr圧までチャンバー内に導入し、高周波電源を印加してArプラズマを生成させ、Arイオンによる基材表面のスバッタエッチングをrfパワー200Wにて5分間実施した。
【0027】
摩擦係数・耐摩耗性測定用試料として、前記SKH基材の表面に下記の要領にて図1に示す多層膜あるいは単層膜をコーティングした。多層膜の場合、最外層6を低密度炭素層で形成するようにした。最外層を除く積層部7を構成する低密度炭素層4の層厚T1、高密度炭素層5の層厚T2、層厚比T1/T2、積層数および最外層6の層厚を表1に示す。表1には層4と層5とを一組とする積層周期、積層数も併記した。
(1) 試料No. 23以外
SKH基材に対して、まず第1中間層としてWメタル層を厚さ約50nmで形成し、さらに回転成膜により第2中間層としてW−炭素混合非晶質層を厚さ約200nm形成した。さらにその上に低密度炭素層4および高密度炭素層5を交互に形成し、最後に最外層6を成膜した。
(2) 試料No. 23
SKH基材の上に、まずアークイオンプレーティング成膜装置にて下地中間層としてTiAlN層を1μm 形成し、その上にスバッタリング法にて第1中間層のTiメタル層を厚さ約50nm形成し、さらに回転成膜により第2中間層であるTi−炭素混合非晶質層を厚さ約200nmで形成した。さらにその上に低密度炭素層4および高密度炭素層5を交互に形成し、最後に最外層6を成膜した。
【0028】
前記中間層、低密度炭素層、高密度炭素層および最外層はいずれも島津製作所製HSM−752スパッタリングシステムによるdcマグネトロンスパッタリングにより行った。
共通する成膜条件として、ターゲット/基材間距離は55mm、基材温度は室温、金属ターゲットに対しては通常のカソード構造(以下CMと略す。)を用い、カーボンターゲットにはUBM(アンバランスドマグネトロン)カソード構造を用いて成膜した。
成膜パワーは第1中間層が500W、第2中間層では金属ターゲットについてパワーを500Wから0Wに滑らかに減少させた。また、カーボンターゲットにおいてはパワーを0Wから1kWに滑らかに増加させて、組成が連続的に変化する傾斜層を設けた。
低密度炭素層4(最外層6を含む。)の形成においては基材にはバイアス電圧を印加することなく、一方高密度炭素層5の形成においては所定のdcバイアス電圧を印加した。さらに、No. 16〜18および34では高密度炭素層の成膜時に結合誘導プラズマを付加して積層部の成膜を実施した。また、No. 20〜22では、低密度炭素層4について水素化の悪影響がないことを確かめるため、低密度炭素層4の成膜時のみメタンガスをチャンバー内に導入し、Arガスに対するメタンガスの分圧を5〜20%として低密度炭素層4を水素化した。
【0029】
一方、膜密度・膜中水素量測定用試料として、Siウエハー基材に中間層を形成することなく、前記多層膜の各層を成膜する際と同条件により、単層の低密度炭素層あるいは高密度炭素層を成膜した。
【0030】
【表1】

Figure 0003995900
【0031】
作製された試料について、下記の方法によって、摩擦係数、耐摩耗性並びに膜密度および水素含有量を測定評価した。
(1) 摩擦係数
HEIDON式往復摺動試験機を用いて摩擦係数を測定した。このとき試料はステージに固定し、直径約8mmのSUJ2製鋼球を用いて試料表面に負荷4.9N、摺動速度20mm/sec 、摺動幅10mmで摺動試験をおこない、積算摺動距離0〜5m、50〜150m、150〜200mでの平均摩擦係数と、積層摺動距離が1kmに達した時の摩擦係数を測定した。試験環境は大気中で、気温20〜26℃、湿度40〜80%に制御した。
(2) 耐摩耗性
上記HEIDON式往復摺動試験の後、摺動痕の部分の深さを触針式の表面粗さ計にて測定し、摩耗した体積を測定し、摺動距離と荷重に対する比摩耗量を計算し、耐摩耗性を評価した。
(3) 膜密度および水素含有量
Siウエハー基材に成膜した単層の低密度炭素層あるいは高密度炭素層に対してラザフォードバックスキャッタリング(RBS)法によって膜密度および層中の水素含有量を測定した。
上記測定結果を表2に示す。同表には水素含有量については示されていないが、低密度炭素層の水素含有量はNo. 20が6at%、No. 21および22が各々10at%、他の試料は1at%未満であった。高密度炭素層についても1at%未満であった。
【0032】
【表2】
Figure 0003995900
【0033】
表2より、発明例のDLC硬質多層膜(No. 1〜26)によれば、摺動初期の摩擦係数はやや高いものの、その後は安定的に0.15以下の摩擦係数が得られ、耐摩耗性にも優れており、相手材への攻撃性も非常に小さいことがわかる。もっとも、No. 26のように、最外層が300nmと厚過ぎると、摩耗量が増大し、摩擦係数が不安定になる。
【0034】
一方、高密度炭素層のみの単層膜(No. 31)あるいは低密度単層膜のみの単層膜(No. 32)では、摺動初期の摩擦係数が0.2を越えたり、摺動距離が増えるに伴い摩擦係数が上昇するなどの問題があり、また比摩耗量が大きく、耐久性に問題が生じることがわかる。また、DLC多層膜であっても、No. 33〜40のように各硬質炭素層の平均膜密度、層厚、層厚比、最外層の層厚が発明条件外となると、安定的に0.15以下の良好な摩擦係数が得られなかったり、耐摩耗性が不足し、高耐摩耗性と高摺動性の両立に欠ける多層膜となることがわかる。
【0035】
【発明の効果】
本発明のDLC硬質多層膜は、0.1〜0.15程度の低摩擦係数が安定的に得られ、かつ耐摩耗性に優れ、しかも相手材への攻撃性も小さいため、各種摺動部材、特に自動車部品、工具、機械部品等の保護膜や、カードやチケットの自動読取機やプリンターなどの磁気ヘッドの保護膜などに好適に利用することができる。
【図面の簡単な説明】
【図1】本発明の実施形態にかかるDLC多層膜を備えた部材の要部断面を示す模式図である。
【図2】平均膜密度の意味を明らかにするための厚さ方向の密度分布形態を示す図である。
【符号の説明】
1 基材
2 中間層
3 多層膜
4 低密度炭素層
5 高密度炭素層
6 最外層
7 積層部[0001]
[Technical field to which the invention belongs]
The present invention is a tool, a wear-resistant member such as a mold, an automobile part, a machine member / sliding member represented by an industrial or general household such as a household electrical appliance part, a card, a ticket automatic reading machine, a printer, etc. The present invention relates to a diamond-like carbon multilayer film that is used as a protective film for a read head and is particularly suitable as a surface protective film that requires high wear resistance and high sliding characteristics.
[0002]
[Prior art]
The hard carbon film is generally called a diamond-like carbon (hereinafter sometimes abbreviated as DLC) film. DLC has various names such as hard amorphous carbon, amorphous carbon, hard amorphous carbon, i-carbon, diamond-like carbon, etc., but these terms are not particularly clearly distinguished. The essence of DLC in which these various terms are used is that it has a structure intermediate between both of tiremond and graphite structurally. Like diamond, hardness, wear resistance, Because of its excellent solid lubricity, thermal conductivity, chemical stability, etc., it can be used for various parts such as sliding members, molds, cutting tools, wear-resistant mechanical parts, abrasives, magnetic / optical parts, etc. It is being used as a surface protective film.
[0003]
A characteristic of the DLC film is that the coefficient of friction (hereinafter sometimes referred to as μ) is small in contact with various mating materials such as metals such as iron and aluminum and ceramics such as glass. However, it is known that the friction coefficient of the DLC film varies greatly depending on the measurement environment and the counterpart material. In general, for example, in the case of an iron-based counterpart material, 0.15 to 0.4 in the atmosphere, vacuum It becomes 0.1 or less in a medium or dry nitrogen atmosphere.
Much research has been done on the mechanism for reducing the DLC film's μ, but generally carbon atoms are attached to the opposite material from the DLC film, which graphitizes and slips on the c-plane (π bond plane) of the graphite. However, it is considered that the value of μ decreases by acting as a self-lubricating material.
[0004]
When the DLC film is put into practical use as a hard coating film, it realizes a low friction coefficient of about 0.1 for iron-based counterparts, secures thin film hardness that affects wear resistance, and a substrate related to coating reliability. Ensuring adhesion is an essential condition, and many proposals have been made regarding these conditions.
Particularly effective hand throwing includes the addition of alloy elements to DLC and the layered structure of the film. Regarding the addition of alloy elements, for example, when Si is added, it is reported that μ is 0.1 to 0.15 and the hardness is about 30 GPa. The layered structure of DLC is recognized as an effective means of controlling electrical resistance, contributing to the reduction of internal stress, the improvement of adhesion, the improvement of durability by thickening, the improvement of corrosion resistance, The following techniques are known.
[0005]
(1) Japanese Laid-Open Patent Publication No. 5-65625 discloses a hard carbon film on a substrate and a material having high affinity for the hard carbon film, silicon, germanium, silicon carbide, silicon nitride, silicon dioxide, glass, alumina A laminated body in which one or more buffer layers selected from the above are alternately laminated and the outermost layer is a hard carbon film is described.
(2) Japanese Patent Laid-Open No. 10-237827 discloses a hard carbon film or a hard carbon film to which at least one metal element is added, and at least one metal or metal carbide or metal nitride or metal carbonitride. There is described a laminate in which materials are alternately and alternately laminated, or a laminate in which at least two or more types of hard carbon films to which different types of metal elements or different amounts of added metal elements are added are repeatedly and alternately laminated. .
(3) Japanese Patent Application Laid-Open No. 10-226874 describes a laminate in which hard carbon films having different electrical resistivity by at least two orders of magnitude are alternately laminated.
(4) In Japanese Patent Laid-Open No. 11-1013, as a protective film for a thermal head, a carbon layer mainly composed of carbon, Si, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo and W are used. A laminated film with a metal layer composed mainly of a semi-metal or metal alloy composed of at least one or at least two selected from the group consisting of is described.
(5) In Japanese Patent Laid-Open No. 10-72288, a film-forming raw material gas containing a carbon compound gas is converted into a plasma by applying a voltage in a vacuum state, and a carbon layer unit comprising a thin-film carbon layer and a fine-particle carbon layer is disclosed. It is described that stress is reduced by one or two or more formed carbon films, and durability is improved by improving adhesion and increasing film thickness.
(6) In Japanese Patent Laid-Open No. 9-298097, in a DLC laminated film, at least three or more layers of a conductive film and a film having higher hardness than the conductive film are alternately laminated, and the outermost layer is made conductive. A laminate as a film is described.
[0006]
[Problems to be solved by the invention]
The high sliding characteristics of the hard carbon film typified by DLC are considered to be due to self-lubrication due to slippage of the π-bonded surface of the graphite crystal contained in it or formed at the sliding interface during sliding. Yes. Therefore, the graphite itself is easily deformed, and the film containing fine graphite in the hard carbon film itself has a low coefficient of friction and good slidability. However, since the film hardness itself is low, wear due to sliding is difficult. Intense. That is, when trying to obtain a low coefficient of friction, high hardness cannot be obtained, or even if the coefficient of friction is low, the wear resistance is insufficient, and in any case, the durability of the coating film is insufficient. Occurs. On the contrary, when the graphite component in the DLC film is reduced, the film hardness increases and the wear resistance can be secured, but the low friction coefficient due to the self-lubricating property of graphite is not sufficiently achieved. For this reason, even a conventional DLC having a single layer structure or a layered structure can stably realize a low friction coefficient of about 0.1 to 0.15 which is practically required and has high wear resistance. The DLC film provided is not obtained.
[0007]
Also, in the case of metal nitrides such as TiN, TiAlN, and CrN that are conventionally used as hard coating film materials, the opponent material is attacked by splashing powder called macro particles generated during film formation and friction with the other material. In addition, the friction coefficient is reduced by using, as a lubricant, wear powder generated by being attacked by a counterpart material. However, when such a hard material is used, troubles such as wear of the sliding member, an increase in coefficient of friction over time, and clogging due to wear powder occur.
[0008]
The present invention has been made in view of such problems, and an object of the present invention is to provide a diamond-like carbon film having excellent sliding properties, having excellent wear resistance, a low coefficient of friction, and low aggressiveness against a counterpart material. And
[0009]
[Means for Solving the Problems]
The present inventors pay attention to the fact that the friction coefficient and the thin film hardness are greatly affected by the DLC microstructure, and functionally stack the DLC ultra-thin films having different microstructures to obtain the relationship between the microstructure and the sliding characteristics. I investigated the relationship. As a result, it was found that excellent wear resistance and sliding characteristics can be obtained by controlling the film density of the DLC film and laminating two types of DLC films with different film densities at appropriate film thicknesses and periods. The present invention has been completed.
[0010]
That is, the diamond-like carbon multilayer film according to the present invention is formed by alternately laminating a low-density carbon layer made of diamond-like carbon having a low film density and a high-density carbon layer made of diamond-like carbon having a high film density. The low density carbon layer has an average film density of 2.2 g / cm. Three While the high density carbon layer has an average film density of 2.3 to 3.2 g / cm. Three In the high-density carbon layer, the hydrogen component contained in the film is 5 at% or less, the layer thickness of the low-density carbon layer is 0.4 to 30 nm, and the layer thickness of the high-density carbon layer is 0 4 to 10 nm, and the ratio T1 / T2 of the layer thickness T1 of the low-density carbon layer and the layer thickness T2 of the high-density carbon layer is set to 5 to 0.2. In the multilayer film, the outermost layer is preferably formed of the low-density carbon layer, and the layer thickness is 2 to 200 nm.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
As shown in FIG. 1, the DLC multilayer film according to the embodiment of the present invention is a multilayer film 3 laminated on the surface of a base material 1 via an intermediate layer 2, and is formed by DLC having a low film density. The low-density carbon layer 4 and the high-density carbon layer 5 formed by DLC having a high film density are alternately stacked, and the low-density carbon layer similar to the layer 4 is further formed thereon. The uppermost layer 6 is formed.
[0012]
Here, the technical significance of stacking the multilayer film 3 by changing the density of the carbon layer formed of DLC will be described in detail.
In order to improve the wear resistance of the DLC film, it is necessary to avoid plastic deformation of the film on the friction surface. That is, it is desired to reduce the plasticity index, and this plasticity index strongly depends on the elastic constant E, film hardness H and the ratio E / H which are the properties of the material as well as the shape of the material surface. It is considered that materials with large E and H and small E / H are good ("Thin Film Tripology", Enomoto and Miyake, published by the University of Tokyo Press, p58). In the case of a metal material, the E / H is almost constant regardless of the type, but a ceramic having a smaller E / H than a metal has high wear resistance and is a suitable reason for a hard coating film. The wear rate of the material is inversely proportional to H.
On the other hand, the friction coefficient depends on the resistance against the shear stress on the friction surface, which has a close correlation with the hardness of the coating film surface. For example, graphite, molybdenum disulfide, silver, indium and the like used as a solid lubricating film have low hardness and low resistance to shearing forces, and therefore have a low coefficient of friction.
[0013]
From the above description, even with a DLC film, it is essentially impossible to achieve wear resistance and a low friction coefficient at the same time as long as it is a single material. On the other hand, as a result of intensive studies on the mechanical properties of the DLC film and the wear resistance and sliding properties associated with the DLC film, the present inventor has a close relationship with the film density of the DLC film. It was found that control is possible with macro parameters. Therefore, in the process of forming the carbon layer, the film density is given a certain difference, and the low-density carbon layer contributes to slidability by reducing the friction coefficient, and the high wear resistance contributes to the improvement of friction durability. The DLC film satisfying both characteristics was successfully obtained by forming the high-density carbon layer to be continuously and alternately multilayered under predetermined conditions. Hereinafter, the required film density will be further described.
[0014]
The average film density of the DLC of the low density carbon layer 4 is 2.2 g / cm. Three Or less, preferably 2.0 g / cm Three The following is recommended. Average film density is 2.2 g / cm Three By setting it as below, the elastic constant is smaller than 200 GPa, the film hardness is smaller than 30 GPa, and it is easy to be deformed against the shear stress on the friction surface, and the friction coefficient can be reduced.
Meanwhile, the average film density of the high-density carbon layer is 2.3 g / cm. Three Or more, preferably 2.5 g / cm Three It is good to be the above. Average film density is 2.3 g / cm Three By setting it as the above, an elastic constant will be larger than 300 GPa, and also film | membrane hardness will become larger than 50 GPa, and it comes to have sufficient abrasion resistance. However, if the film density becomes too high, the intrinsic stress of the film becomes excessive, the deformability due to load stress during use decreases, and problems such as peeling and film breakage occur, so 3.2 g / cm Three Below, preferably 3.0 g / cm Three Or less, more preferably 2.7 g / cm Three It is better to stop it below.
[0015]
The said film density means the average value in a carbon layer, and the form of the density distribution in the thickness direction of a carbon layer is not ask | required. For example, as shown in FIG. 2, not only the form (A) in which the film density in each carbon layer is constant, but also the form (B) or (C) in which the film density changes in an inclined manner in the thickness direction within the layer. It may be taken. The film density can be measured by Rutherford backscattering (RBS) method, X-ray reflectivity method, Sink-Float method (ASTMD 729), Density Gradient Column method (ASTMD 1505), or the like.
[0016]
It is desirable that the hydrogen content in the high-density carbon layer 5 is as small as possible, and it should be limited to 5 at% or less. By suppressing hydrogen as an impurity to 5 at% or less, film hardness and elastic constant under high film density can be easily increased, and wear resistance can be further improved. Regarding the relationship between the film density of the carbon layer and the hydrogen contained therein, as reported by Scheibe et al. (IEEE Tran. On Plasma Sci., Vol 25 (1997), p685), the film density of DLC is It is known to correlate closely with the elastic constant E and the film hardness H. That is, when the film density is high, both E and H are large, and when the film density is low, both E and H are low. Although the rate of increase / decrease varies depending on the impurity element contained in DLC, particularly when hydrogen is contained in an amount of less than 5 at%, the degree of correlation increases, and both E and H take large values under high film density. The plasticity index is reduced, and the wear resistance can be further improved.
[0017]
The layer thickness of the low density carbon layer 4 is preferably 0.4 nm or more and 30 nm or less, and the layer thickness of the high density carbon layer 5 is preferably 0.4 nm or more and 10 nm or less. If the low density carbon layer 4 and the high density carbon layer 5 are each less than 0.4 nm, it is difficult for each layer to maintain its characteristics. On the other hand, if the low-density carbon layer 4 exceeds 30 nm, this layer has low resistance to shear stress, so that the amount of wear due to friction increases and causes trouble. On the other hand, if the high-density carbon layer 5 exceeds 10 nm, the friction at this layer affects the overall sliding characteristics at the exposed portions on the friction surface and sliding surface, and this layer is resistant to shear stress. The coefficient of friction increases due to the large property.
[0018]
Further, when the layer thickness of the low density carbon layer 4 is T1, and the layer thickness of the high density carbon layer 5 is T2, the layer thickness ratio T1 / T2 is preferably 5 to 0.2. In determining the layer thickness ratio, the low-density carbon layer 4 is not too thick, the high-density carbon layer 5 is not too thin, and it is necessary to balance the resistance to frictional shear stress of the entire coating film. . When the layer thickness ratio T1 / T2 is greater than 5 and the low density carbon layer 4 is significantly thicker than the high density carbon layer 5, the low density carbon layer 4 has a low resistance to friction, so the amount of deformation increases. Further, coupled with the relatively thin high-density carbon layer 5, the wear resistance is reduced. On the other hand, when the ratio T1 / T2 is less than 0.2 and the high-density carbon layer 5 is significantly thicker than the low-density carbon layer 4, the amount of deformation with respect to friction is reduced, leading to an increase in the coefficient of friction.
[0019]
Further, although the outermost layer 6 is not necessarily required, by providing a low-density carbon layer as the outermost layer 6, the surface can be easily deformed at the initial stage of sliding, and the carbon atoms to the counterpart material can be further deformed. Adhesion can be promoted, and a reduction in the friction coefficient can be realized particularly in the early stage of the sliding test. However, if the thickness of the outermost layer 6 is less than 2 nm, the above-mentioned effect is too small. On the other hand, if it exceeds 200 nm, the amount of wear due to friction increases, and friction does not occur smoothly due to the generation of wear powder at the sliding portion. That is, the friction coefficient becomes unstable and causes a trouble such as an increase in the amount of friction. Therefore, the thickness of the outermost layer 6 is preferably 2 to 200 nm.
[0020]
In addition, the repetition period in the layer direction of the pair of the low density carbon layer 4 and the high density carbon layer 5 is 30 nm or less, preferably 10 nm or less. By making the laminated film an ultra-thin film with a thickness of 30 nm or less, the characteristics of both layers can be efficiently exhibited against the friction phenomenon on the sliding surface, and excellent wear resistance and a low friction coefficient can be realized stably. Can do. Further, when the outermost layer 6 is provided, it is preferable that the thickness of the laminated portion 7 inside the outermost layer 6 is at least 500 nm or more from the outermost layer 6. When the outermost layer 6 is formed to be thicker than the layer thickness of the low density carbon layer 4 in the stacked portion 7, the numerical values of T1, T2, T1 / T2, and the repetition period are the low density carbon layer 4 in the stacked portion 7, This means a recommended value for the high-density carbon layer 5.
[0021]
As the base material 1 on which the multilayer film 3 is formed, an appropriate metal such as cemented carbide, iron-based alloy, titanium-based alloy, aluminum-based alloy, copper-based alloy, ceramics such as glass and alumina, Si, resin material, etc. A material or a non-metallic material can be used. Further, the intermediate layer 2 provided between the base material 1 and the multilayer film 3 plays a role of ensuring adhesion between the base material 1 and the multilayer film 3, and a metal such as tungsten having such an action. Or, for example, a metal and carbon mixture described in Japanese Patent Application Laid-Open No. 10-29718, a metal or metalloid carbide for protecting a substrate, a metal or metalloid nitride, or a metal or metalloid The carbonitride of this can be used. The intermediate layer 2 is not limited to a single layer, and may be a multiple layer.
[0022]
There are no particular restrictions on the method of forming the multilayer film of the present invention, but the method of forming by sputtering using solid carbon as an evaporation source (target) controls the layer thickness and film density on the nanometer (nm) order. Can be easily performed. Also, from the viewpoint of reducing hydrogen in the carbon film, a method of forming a carbon film using a hydrocarbon gas such as methane as a film forming source gas is inappropriate, and sputtering using a solid carbon as a target is not suitable. preferable.
[0023]
When the low density carbon layer 4 is formed, it is not particularly necessary to apply a negative bias voltage to the substrate. However, when the high density carbon layer 5 is formed, it is preferable to apply a negative bias voltage. That is, a negative DC voltage, a DC pulse voltage or a high frequency bias voltage is applied to the substrate, and ions are irradiated simultaneously with the deposition of the film by the applied voltage so that the film density is increased by the ion implantation effect. It is preferable to control. In general, in ordinary sputtering, a film density of 2.6 g / cm is obtained by applying a bias voltage. Three It is difficult to form a hard carbon film that exceeds the above range, but the inductively coupled plasma (IPC) method and the high-frequency plasma (rf) method are added to the sputtering, or arc ion plating, laser application, etc. are added. To increase the ionization rate of carbon by 2.6 g / cm by sputtering. Three A hard carbon film exceeding 1 can be easily formed.
[0024]
By the way, as described above, Japanese Patent Laid-Open No. 10-226874 describes a DLC film in which two types of hard carbon films having electrical resistivity different by at least two orders of magnitude are alternately stacked. There is no relationship between electrical resistivity and film density. Further, when the hydrocarbon gas is formed as a raw material gas as in Examples 1, 2 and 4 described in the publication, even if the density is increased, a large amount of hydrogen is contained, and the elastic modulus E and hardness H are high. The wear resistance is not improved. Further, in the cathode arc ion plating method as in Example 3, even when the substrate voltage is changed from 600 V to 60 V, 2.1 g / cm. Three It is estimated that the following low-density film cannot be formed.
In addition, the above-mentioned Japanese Patent Application Laid-Open No. 10-72288 describes a DLC film in which thin carbon layers and fine carbon layers are alternately laminated. However, in the present invention, the particulate carbon layer is not essential, It is described that these carbon layers use hydrocarbon gas as a raw material gas for film formation. Like the above, as long as a film is formed using such a hydrocarbon gas as a raw material gas, the wear resistance according to the present invention is good. It is difficult to form a high density carbon layer.
Japanese Patent Application Laid-Open No. 9-298097 describes a DLC film in which conductive films and insulating films having higher hardness are alternately laminated. The insulating film uses methane gas as a source gas. As described above, as long as such a hydrocarbon gas is used as a source gas, it is difficult to form a high-density carbon layer with good wear resistance according to the present invention.
[0025]
EXAMPLES Next, although an Example is given and this invention is demonstrated more concretely, this invention is not restrictively interpreted by the following Example.
[0026]
【Example】
First, an SKH (high speed steel) base material with a diameter of 50 mm and a thickness of about 8 mm for measuring friction coefficient and wear resistance, and a Si wafer base with a diameter of 2 inches and a thickness of about 200 μm for measuring the film density and the amount of hydrogen in the film. The material was prepared. These base materials were degreased with acetone as a pre-deposition treatment, ultrasonically washed for 20 minutes, and then sufficiently dried by jetting compressed air. The base material subjected to such treatment is set in a sputter chamber and 3 × 10 -6 A vacuum was drawn below torr. Thereafter, Ar gas was introduced into the chamber as an operating gas up to a pressure of 3 mtorr, a high frequency power source was applied to generate Ar plasma, and sputtering of the substrate surface with Ar ions was performed at an rf power of 200 W for 5 minutes. .
[0027]
As a sample for measuring the friction coefficient and wear resistance, the surface of the SKH base material was coated with the multilayer film or single-layer film shown in FIG. 1 in the following manner. In the case of a multilayer film, the outermost layer 6 is formed of a low density carbon layer. Table 1 shows the layer thickness T1 of the low-density carbon layer 4 constituting the laminated portion 7 excluding the outermost layer, the layer thickness T2 of the high-density carbon layer 5, the layer thickness ratio T1 / T2, the number of layers, and the layer thickness of the outermost layer 6. Show. Table 1 also shows the stacking cycle and the number of stacks of layer 4 and layer 5 as a set.
(1) Other than sample No. 23
First, a W metal layer having a thickness of about 50 nm was formed as a first intermediate layer on the SKH base material, and a W-carbon mixed amorphous layer was formed as a second intermediate layer by rotating film formation to a thickness of about 200 nm. . Further, low density carbon layers 4 and high density carbon layers 5 were alternately formed thereon, and finally an outermost layer 6 was formed.
(2) Sample No. 23
On the SKH substrate, a TiAlN layer of 1 μm is first formed as a base intermediate layer by an arc ion plating film forming apparatus, and a Ti metal layer of the first intermediate layer is formed thereon by a sputtering method to a thickness of about 50 nm. Then, a Ti-carbon mixed amorphous layer as a second intermediate layer was formed to a thickness of about 200 nm by rotating film formation. Further, low density carbon layers 4 and high density carbon layers 5 were alternately formed thereon, and finally an outermost layer 6 was formed.
[0028]
The intermediate layer, low density carbon layer, high density carbon layer, and outermost layer were all formed by dc magnetron sputtering using a Shimadzu HSM-752 sputtering system.
As common film forming conditions, the target / substrate distance is 55 mm, the substrate temperature is room temperature, a normal cathode structure (hereinafter abbreviated as CM) is used for the metal target, and UBM (unbalance) is used for the carbon target. The film was formed using a (dotron magnetron) cathode structure.
The deposition power was smoothly reduced from 500 W to 0 W for the first intermediate layer and from 500 W to 0 W for the metal target in the second intermediate layer. In addition, the carbon target was provided with an inclined layer in which the power was smoothly increased from 0 W to 1 kW and the composition continuously changed.
In the formation of the low density carbon layer 4 (including the outermost layer 6), no bias voltage was applied to the substrate, while in the formation of the high density carbon layer 5, a predetermined dc bias voltage was applied. Further, in Nos. 16 to 18 and 34, the inductive plasma was applied during the formation of the high-density carbon layer, and the laminated portion was formed. In Nos. 20 to 22, in order to confirm that the low density carbon layer 4 is not adversely affected by hydrogenation, methane gas was introduced into the chamber only during the formation of the low density carbon layer 4 to separate the methane gas from the Ar gas. The low density carbon layer 4 was hydrogenated at a pressure of 5 to 20%.
[0029]
On the other hand, as a sample for measuring the film density and the amount of hydrogen in the film, a single low-density carbon layer or a single-layer carbon film is formed under the same conditions as when forming each layer of the multilayer film without forming an intermediate layer on the Si wafer substrate. A high density carbon layer was deposited.
[0030]
[Table 1]
Figure 0003995900
[0031]
About the produced sample, the friction coefficient, abrasion resistance, film density, and hydrogen content were measured and evaluated by the following methods.
(1) Friction coefficient
The coefficient of friction was measured using a HEIDON reciprocating sliding tester. At this time, the sample was fixed on the stage, and a sliding test was performed on the surface of the sample using a SUJ2 steel ball having a diameter of about 8 mm with a load of 4.9 N, a sliding speed of 20 mm / sec, and a sliding width of 10 mm. The average friction coefficient at ˜5 m, 50 to 150 m, and 150 to 200 m and the friction coefficient when the lamination sliding distance reached 1 km were measured. The test environment was controlled in the air at a temperature of 20 to 26 ° C. and a humidity of 40 to 80%.
(2) Abrasion resistance
After the HEIDON type reciprocating sliding test, measure the depth of the sliding mark with a stylus type surface roughness meter, measure the worn volume, and calculate the specific wear amount with respect to the sliding distance and load. The wear resistance was evaluated.
(3) Film density and hydrogen content
The film density and the hydrogen content in the layer were measured by Rutherford backscattering (RBS) method on a single low-density carbon layer or high-density carbon layer formed on a Si wafer substrate.
The measurement results are shown in Table 2. Although the hydrogen content is not shown in the table, the hydrogen content of the low-density carbon layer is 6 at% for No. 20, 10 at% for No. 21 and 22 and less than 1 at% for the other samples. It was. The high density carbon layer was also less than 1 at%.
[0032]
[Table 2]
Figure 0003995900
[0033]
From Table 2, according to the DLC hard multilayer film (No. 1-26) of the invention example, although the friction coefficient at the initial stage of sliding is slightly high, a friction coefficient of 0.15 or less is stably obtained thereafter, It can be seen that it is excellent in wear and has very little offensiveness to the counterpart material. However, as in No. 26, when the outermost layer is too thick at 300 nm, the amount of wear increases and the friction coefficient becomes unstable.
[0034]
On the other hand, in the case of a single-layer film having only a high-density carbon layer (No. 31) or a single-layer film having only a low-density single-layer film (No. 32), the initial friction coefficient exceeds 0.2, or the sliding It can be seen that there is a problem that the friction coefficient increases as the distance increases, and that the specific wear amount is large, resulting in a problem in durability. Moreover, even if it is a DLC multilayer film, when the average film density of each hard carbon layer, layer thickness, layer thickness ratio, and outermost layer thickness become outside invention conditions like No. 33-40, it will be stably 0. It can be seen that a good friction coefficient of .15 or less cannot be obtained, or the wear resistance is insufficient, resulting in a multilayer film lacking both high wear resistance and high slidability.
[0035]
【The invention's effect】
Since the DLC hard multilayer film of the present invention can stably obtain a low coefficient of friction of about 0.1 to 0.15, is excellent in wear resistance, and has little attack on the mating material, various sliding members In particular, it can be suitably used for protective films for automobile parts, tools, machine parts, etc., and protective films for magnetic heads such as card and ticket automatic readers and printers.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a cross section of a main part of a member provided with a DLC multilayer film according to an embodiment of the present invention.
FIG. 2 is a diagram showing a density distribution form in the thickness direction for clarifying the meaning of the average film density.
[Explanation of symbols]
1 Base material
2 Middle layer
3 Multilayer film
4 Low density carbon layer
5 High density carbon layer
6 outermost layer
7 Stacking part

Claims (2)

膜密度の低いダイヤモンドライクカーボンで形成された低密度炭素層と、膜密度の高いダイヤモンドライクカーボンで形成された高密度炭素層とが交互に積層されたダイヤモンドライクカーボン多層膜であって、
前記低密度炭素層は平均の膜密度が2.2g/cm3以下であり、一方前記高密度炭素層は平均の膜密度が2.3〜3.2g/cm3であり、前記高密度炭素層は膜中に含まれる水素成分が5at%以下であり、前記低密度炭素層の層厚が0.4〜30nmであり、前記高密度炭素層の層厚が0.4〜10nmであり、前記低密度炭素層の層厚T1と高密度炭素層の層厚T2の比T1/T2が5〜0.2である、ダイヤモンドライクカーボン多層膜。
A diamond-like carbon multilayer film in which a low-density carbon layer made of diamond-like carbon having a low film density and a high-density carbon layer made of diamond-like carbon having a high film density are alternately laminated,
The low density carbon layer has an average film density of 2.2 g / cm 3 or less, while the high density carbon layer has an average film density of 2.3 to 3.2 g / cm 3 , The layer has a hydrogen component contained in the film of 5 at% or less, the layer thickness of the low-density carbon layer is 0.4 to 30 nm, the layer thickness of the high-density carbon layer is 0.4 to 10 nm, A diamond-like carbon multilayer film in which a ratio T1 / T2 of a layer thickness T1 of the low-density carbon layer and a layer thickness T2 of the high-density carbon layer is 5 to 0.2.
最外層が前記低密度炭素層で形成され、その層厚が2〜200nmである請求項1に記載のダイヤモンドライクカーボン多層膜。2. The diamond-like carbon multilayer film according to claim 1, wherein an outermost layer is formed of the low-density carbon layer and has a thickness of 2 to 200 nm.
JP2001126827A 2001-04-25 2001-04-25 Diamond-like carbon multilayer film Expired - Fee Related JP3995900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001126827A JP3995900B2 (en) 2001-04-25 2001-04-25 Diamond-like carbon multilayer film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001126827A JP3995900B2 (en) 2001-04-25 2001-04-25 Diamond-like carbon multilayer film

Publications (2)

Publication Number Publication Date
JP2002322555A JP2002322555A (en) 2002-11-08
JP3995900B2 true JP3995900B2 (en) 2007-10-24

Family

ID=18975799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001126827A Expired - Fee Related JP3995900B2 (en) 2001-04-25 2001-04-25 Diamond-like carbon multilayer film

Country Status (1)

Country Link
JP (1) JP3995900B2 (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004137535A (en) * 2002-10-16 2004-05-13 Nissan Motor Co Ltd Hard carbon film slide member
EP1598441B1 (en) 2003-02-26 2018-09-26 Sumitomo Electric Industries, Ltd. Amorphous carbon film and process for producing the same
JP2005054609A (en) * 2003-08-07 2005-03-03 Nissan Motor Co Ltd High pressure fuel pump
JP2005199380A (en) * 2004-01-15 2005-07-28 Fujikura Rubber Ltd Buffer material for sucking and holding
JP2006036611A (en) * 2004-07-29 2006-02-09 Sumitomo Electric Ind Ltd Hydrogen-containing carbon film
US7820293B2 (en) * 2005-08-18 2010-10-26 Nv Bekaert Sa Substrate coated with a layered structure comprising a tetrahedral carbon coating
JP4918656B2 (en) * 2005-12-21 2012-04-18 株式会社リケン Amorphous hard carbon film
JP4968715B2 (en) * 2006-07-31 2012-07-04 日産自動車株式会社 High-strength gear, transmission mechanism, and high-strength gear manufacturing method
JP5109320B2 (en) * 2006-09-28 2012-12-26 ブラザー工業株式会社 Sliding member
JP4430112B2 (en) 2007-03-28 2010-03-10 古河電気工業株式会社 Thermal conductive film, semiconductor device and electronic equipment provided with thermal conductive film
JP2008106361A (en) * 2007-10-18 2008-05-08 Sumitomo Electric Ind Ltd Carbon film
DE102009003232A1 (en) * 2009-05-19 2010-12-02 Federal-Mogul Burscheid Gmbh Sliding element of an internal combustion engine, in particular piston ring
WO2012063735A1 (en) * 2010-11-09 2012-05-18 株式会社ニコン Carbon thin film, mold for molding optical element and method for producing optical element
JP2012202522A (en) 2011-03-28 2012-10-22 Tpr Co Ltd Piston ring
JP5436486B2 (en) 2011-04-15 2014-03-05 株式会社豊田中央研究所 Sliding member
EP2924142B1 (en) * 2012-05-15 2016-11-16 ZhongAo HuiCheng Technology Co. Ltd. A nano-multilayer film
EP3101315B1 (en) * 2014-01-31 2021-11-24 Nippon Piston Ring Co., Ltd. Piston ring and manufacturing method therefor
JP6196170B2 (en) * 2014-02-10 2017-09-13 大同メタル工業株式会社 Sliding member
US10233537B2 (en) * 2014-04-23 2019-03-19 Zhongao Huicheng Technology Co., Ltd. Artificial joint cup, magnetic control sputtering coating film device and preparation method thereof
US10118229B2 (en) 2014-04-24 2018-11-06 Kyocera Corporation Coated tool
WO2016098217A1 (en) * 2014-12-17 2016-06-23 オーエスジー株式会社 Amorphous carbon coating film and amorphous-carbon-coating-film-covered tool
JP6343581B2 (en) * 2015-04-06 2018-06-13 株式会社豊田中央研究所 Sliding member and sliding machine
JP6209552B2 (en) * 2015-04-06 2017-10-04 株式会社豊田中央研究所 Sliding member and sliding machine
US10578214B2 (en) * 2015-07-31 2020-03-03 Nippon Piston Ring Co., Ltd Piston ring and manufacturing method therefor
JP6343266B2 (en) 2015-09-09 2018-06-13 株式会社リケン Sliding member and piston ring
EP3392369B1 (en) * 2015-12-18 2023-07-19 Nippon Piston Ring Co., Ltd. Coating film, manufacturing method therefor, and pvd apparatus
JP6534123B2 (en) 2016-03-23 2019-06-26 日本アイ・ティ・エフ株式会社 Coating film, method for producing the same and PVD apparatus
JP6883802B2 (en) * 2017-03-02 2021-06-09 トヨタ自動車株式会社 Abrasion resistant material manufacturing method
CN108656757B (en) * 2017-03-28 2020-07-10 罗姆股份有限公司 Thermal print head
JP2018165048A (en) * 2017-03-28 2018-10-25 ローム株式会社 Thermal print head
JP2018172706A (en) * 2017-03-31 2018-11-08 日本アイ・ティ・エフ株式会社 Hard carbon coating film
JP7094739B2 (en) * 2017-10-31 2022-07-04 日本ピストンリング株式会社 piston ring
CN112996945B (en) * 2018-07-10 2024-04-05 耐科思特生物识别集团股份公司 Heat conduction and protective coating for electronic equipment

Also Published As

Publication number Publication date
JP2002322555A (en) 2002-11-08

Similar Documents

Publication Publication Date Title
JP3995900B2 (en) Diamond-like carbon multilayer film
JP4730753B2 (en) Diamond-like carbon hard multilayer film and members with excellent wear resistance and sliding resistance
JP5393108B2 (en) Manufacturing method of hard multilayer film molded body
JP2979921B2 (en) Ultra thin film laminate
JP4536819B2 (en) Nitrogen-containing amorphous carbon film, amorphous carbon film and sliding member
EP2362000B1 (en) Hard multilayer film formed body and method for manufacturing same
JP4704950B2 (en) Amorphous carbon-based hard multilayer film and hard surface member having this film on the surface
JP4918656B2 (en) Amorphous hard carbon film
JP3737291B2 (en) Diamond-like carbon hard multilayer film molded body
Ziebert et al. Hard multilayer coatings containing TiN and/or ZrN: A review and recent progress in their nanoscale characterization
JP5424103B2 (en) Covering mold for plastic working
JP5592625B2 (en) Hard film forming method and hard film
JP2004238736A (en) Hard film, and hard film-coated tool
JP2003026414A (en) Amorphous carbon coating film, method of producing the same, and member coated with the amorphous carbon coating film
Cao et al. Microstructure, mechanical and tribological properties of multilayer TiAl/TiAlN coatings on Al alloys by FCVA technology
JP3719709B2 (en) Amorphous carbon coated tool and method for manufacturing the same
JP5592626B2 (en) Hard film forming method and hard film
JP2004269991A (en) Diamond like carbon multilayer film having excellent wear resistance in different environment
JP3718664B2 (en) Amorphous carbon coated tool and method for manufacturing the same
JP3427448B2 (en) Ultra-thin laminate
KR102252719B1 (en) Mold and its manufacturing method
Huang et al. Effects of C content on the microstructure, mechanical and tribological properties of TiAlSiCN coatings
JP2004176085A (en) Hard film
JP5592627B2 (en) Hard film forming method and hard film
KR20210124463A (en) Coating mold, coating mold manufacturing method, and target for forming a hard film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070801

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3995900

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees