JP2008106361A - Carbon film - Google Patents

Carbon film Download PDF

Info

Publication number
JP2008106361A
JP2008106361A JP2007271447A JP2007271447A JP2008106361A JP 2008106361 A JP2008106361 A JP 2008106361A JP 2007271447 A JP2007271447 A JP 2007271447A JP 2007271447 A JP2007271447 A JP 2007271447A JP 2008106361 A JP2008106361 A JP 2008106361A
Authority
JP
Japan
Prior art keywords
carbon
film
carbon film
atomic
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007271447A
Other languages
Japanese (ja)
Inventor
Kazuhiko Oda
一彦 織田
Hisanori Ohara
久典 大原
Yoshiharu Uchiumi
慶春 内海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2007271447A priority Critical patent/JP2008106361A/en
Publication of JP2008106361A publication Critical patent/JP2008106361A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbon film for improving the abrasion resistance and durability of tools, dies, machine parts or the like instead of a diamond film or a diamond like carbon film. <P>SOLUTION: The carbon film is deposited in an atmosphere satisfying a vacuum degree of ≤0.05 Pa at a synthesis temperature of 100 to 300°C using isotropic graphite as solid carbon by a cathode arc ion plating process, and has a density of 2.8 to 3.3 g/cm<SP>3</SP>, a spin density of 1×10<SP>18</SP>to 1×10<SP>21</SP>spins/cm<SP>3</SP>and a knoop hardness of 1,500 to 6,000. Preferably, the concentration of carbon is controlled to ≥99.5 atomic%, the concentration of hydrogen is controlled to ≤0.5 atomic%, the concentration of rare earth elements is controlled to ≤0.5 atomic%, and the knoop hardness is controlled to 2,000 to 6,000. A carbon film-coated member coated with the carbon film has excellent abrasion resistance and durability. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は高硬度の炭素膜に関し、工具、金型、機械部品、電気・電子部品あるいは光学部品などの被覆に適用される。   The present invention relates to a high-hardness carbon film and is applied to coating of tools, molds, mechanical parts, electrical / electronic parts, optical parts, and the like.

炭素系被膜は、その機械的特性および化学的安定性を利用して各種部材の耐磨耗性や耐久性を向上するための被覆材料として用いられてきている。従来、炭素からなる膜としては、ダイヤモンド膜、グラファイト膜あるいはダイヤモンド状炭素膜などが挙げられ、これらの製法や特徴は次のとおりである。ダイヤモンド膜は、一般にフィラメントCVD法、マイクロ波プラズマCVD法などで合成され、その合成温度は700℃以上の高温である。この合成は、1%前後のメタンなどの炭化水素ガスに、99%程度の多量の水素ガスを導入することにより行われる。このように水素ガスを導入するのは、多量の原子状水素を発生させ、合成される膜中の非晶成分をこの原子状水素と反応させて除去するためである。   Carbon-based coatings have been used as coating materials for improving the wear resistance and durability of various members by utilizing their mechanical properties and chemical stability. Conventionally, examples of the film made of carbon include a diamond film, a graphite film, and a diamond-like carbon film, and their manufacturing methods and features are as follows. The diamond film is generally synthesized by a filament CVD method, a microwave plasma CVD method, or the like, and the synthesis temperature is a high temperature of 700 ° C. or higher. This synthesis is performed by introducing a large amount of hydrogen gas of about 99% into about 1% of hydrocarbon gas such as methane. The reason why the hydrogen gas is introduced in this way is to generate a large amount of atomic hydrogen and to remove the amorphous component in the synthesized film by reacting with the atomic hydrogen.

ダイヤモンド膜の構造は立方晶系で、電子線回折やX線回折では、ダイヤモンド構造を反映した回折像が得られる。ラマン分光分析では、1333cm-1付近にダイヤモンド構造に対応する狭いピークが見られる。結晶質であるため、得られる膜は、結晶を反映した凹凸の激しい表面となる。物性は、ヌープ硬度が9000以上、密度は3.51g/cm3以上である。一方、グラファイト膜は、真空蒸着法や炭化水素ガスの熱分解で得られる。前者は500℃以下の低温で、後者は1000℃以上の高温で合成される。グラファイトの結晶構造は、六方晶系での結晶質である。ヌープ硬度は200以下ときわめて軟質で、密度は約2.25g/cm3である。 The structure of the diamond film is cubic, and a diffraction image reflecting the diamond structure can be obtained by electron diffraction or X-ray diffraction. In the Raman spectroscopic analysis, a narrow peak corresponding to the diamond structure is observed near 1333 cm −1 . Since it is crystalline, the resulting film has a highly uneven surface reflecting crystals. Regarding physical properties, Knoop hardness is 9000 or more, and density is 3.51 g / cm 3 or more. On the other hand, the graphite film is obtained by vacuum evaporation or thermal decomposition of hydrocarbon gas. The former is synthesized at a low temperature of 500 ° C. or lower, and the latter is synthesized at a high temperature of 1000 ° C. or higher. The crystal structure of graphite is hexagonal crystalline. Knoop hardness is very soft, 200 or less, and the density is about 2.25 g / cm 3 .

ダイヤモンド状炭素膜は、ダイヤモンドとグラファイトまたはダイヤモンドと炭素系樹脂との中間をなすものとされるが、その範囲は明確ではない。その製法には、プラズマCVD法、イオン化蒸着法、スパッタ法など種々の手法が存在するが、いずれも合成温度が400℃以下と低いことが共通する。プラズマCVD法やイオン化蒸着法などでは、炭化水素ガスを原料とし、膜質を制御するため水素ガスを添加することが多い。また、スパッタ法などでは、スパッタ用にアルゴンなどの希ガスを用い、膜質の制御のため水素や炭化水素ガスを添加することが一般的である。その構造、組成および物性は次のとおりである。   The diamond-like carbon film is assumed to be intermediate between diamond and graphite or diamond and carbon-based resin, but the range is not clear. There are various methods such as a plasma CVD method, an ionized vapor deposition method, and a sputtering method, all of which have a low synthesis temperature of 400 ° C. or lower. In plasma CVD or ionized vapor deposition, hydrocarbon gas is used as a raw material, and hydrogen gas is often added to control film quality. Further, in the sputtering method or the like, it is common to use a rare gas such as argon for sputtering and to add hydrogen or hydrocarbon gas for controlling the film quality. Its structure, composition and physical properties are as follows.

その構造は非晶質で、ダイヤモンド構造を反映したsp3構造と、グラファイト構造を反映したsp2構造、水素との結合などが混ざったものであると考えられている。電子線回折やX線回折では、非晶質構造を反映したハローパターンが得られ、ラマン分光分析では1300〜1600cm-1付近に広いピークと肩を持った構造を示す。このように非晶質であるため、得られる膜は平滑である。その組成は、一般には水素を10〜40原子%程度含有しており、例えば特公平5−58068号公報には水素含有量が20〜30原子%のものが開示されている。さらに、硬度を向上させるなどの目的で水素含有量数〜10原子%程度まで低下させたものが提案されており、特開平3−158455号公報や特開平9−128708号公報には水素含有量数原子%のものが開示されている。水素以外にも各種元素の添加が試みられており、金属や窒素、ハロゲン原子などを添加した例が報告されている。また、スパッタ法など固体炭素を原料とする場合は、アルゴンなどの希ガス元素雰囲気下で成膜が行われるため、膜中に希ガス元素が取り込まれる。さらに、特開2000−80473号公報では希ガス元素を積極的に取り込ませて応力や硬度、耐磨耗性などを制御する例を提示している。 The structure is amorphous, and is considered to be a mixture of an sp3 structure reflecting a diamond structure, an sp2 structure reflecting a graphite structure, and a bond with hydrogen. In electron diffraction and X-ray diffraction, a halo pattern reflecting an amorphous structure is obtained, and a Raman spectroscopic analysis shows a structure having a broad peak and shoulder in the vicinity of 1300 to 1600 cm −1 . Since it is amorphous in this way, the obtained film is smooth. The composition generally contains about 10 to 40 atomic% of hydrogen. For example, Japanese Patent Publication No. 5-58068 discloses a hydrogen content of 20 to 30 atomic%. Further, for the purpose of improving the hardness and the like, a hydrogen content reduced to about 10 to 10 atomic% has been proposed. Japanese Patent Application Laid-Open Nos. 3-158455 and 9-128708 disclose hydrogen content. Several atomic percent is disclosed. Addition of various elements in addition to hydrogen has been attempted, and examples of adding metals, nitrogen, halogen atoms, etc. have been reported. In addition, when solid carbon is used as a raw material, such as sputtering, since the film formation is performed in an atmosphere of a rare gas element such as argon, the rare gas element is taken into the film. Furthermore, Japanese Patent Application Laid-Open No. 2000-80473 provides an example in which a rare gas element is actively incorporated to control stress, hardness, wear resistance, and the like.

その物性に関しては、ヌープ硬度が一般に1000〜2000、密度が1.5〜2.5g/cm3であって広い範囲を有する。例えば、特開平9−128708号公報には密度1.5〜2.2g/cm3のものが開示されている。前記した炭素系の膜のうち、ダイヤモンドやダイヤモンド状炭素膜は、耐磨耗性が高く、摩擦係数が小さく、焼き付けが小さいという特徴を有しており、このために工具や金型、機械部品などへの適用が試みられている。 Regarding its physical properties, Knoop hardness is generally 1000 to 2000, and density is 1.5 to 2.5 g / cm 3 , which has a wide range. For example, JP-A-9-128708 discloses a material having a density of 1.5 to 2.2 g / cm 3 . Among the carbon-based films described above, diamond and diamond-like carbon films are characterized by high wear resistance, low friction coefficient, and low seizure. For this reason, tools, molds, and machine parts are used. Attempts have been made to apply to the above.

ダイヤモンドやダイヤモンド状炭素膜を工具、金型、機械部品などに適用しようとするとき、以下の点が問題になる。ダイヤモンド膜に関する問題点としては、成膜温度が700℃以上の高温であること、また成膜したままの状態では表面粗さがきわめて大きいことなどが挙げられる。処理温度が高いことは、適用できる部材の材料が限定されることであり、具体的にはセラミックスや超硬合金などに限定され、鉄系材料などの汎用的で安価な材料に適用できないという問題がある。また、表面粗さが大きいため、工具、金型、機械部品など多くの用途においてはそのままで使用することができず研磨工程が必要不可欠になる。   When diamond or diamond-like carbon film is applied to tools, molds, machine parts, etc., the following points are problematic. Problems relating to the diamond film include that the film formation temperature is a high temperature of 700 ° C. or higher, and that the surface roughness is extremely large when the film is formed. The high processing temperature means that the applicable material of the member is limited. Specifically, the material is limited to ceramics and cemented carbide, and cannot be applied to general-purpose and inexpensive materials such as iron-based materials. There is. In addition, since the surface roughness is large, it cannot be used as it is in many applications such as tools, molds and machine parts, and a polishing process becomes indispensable.

ダイヤモンド状炭素膜に関しては、成膜温度が低く、表面粗さが小さい点においてはダイヤモンド膜よりも利用しやすいといえる。しかし、その一方で硬度が十分に高くないこと、耐熱性が低いことなどが問題点である。ダイヤモンド状炭素膜の一般的なヌープ硬度は、前述のように約1000〜2000であって、ダイヤモンドのヌープ硬度約10000に比べて、1/10〜1/5である。耐磨耗性などを要求する場合、更なる高硬度の材料が望まれている。また、ダイヤモンド状炭素膜の大気中での耐熱性は、一般に350〜450℃の範囲である。これより高い温度に曝されると、膜中の水素が脱離したり、酸化が進んだりして、硬度が大幅に低下する。従って、使用温度が高い工具や金型、機械部品などに適用できないという問題がある。   A diamond-like carbon film can be said to be easier to use than a diamond film in that the film formation temperature is low and the surface roughness is small. However, on the other hand, the problem is that the hardness is not sufficiently high and the heat resistance is low. As described above, the general Knoop hardness of the diamond-like carbon film is about 1000 to 2000, which is 1/10 to 1/5 of the Knoop hardness of diamond of about 10,000. When the wear resistance is required, a material with higher hardness is desired. The heat resistance of the diamond-like carbon film in the atmosphere is generally in the range of 350 to 450 ° C. When exposed to a temperature higher than this, hydrogen in the film is desorbed or oxidation proceeds, and the hardness is greatly reduced. Therefore, there is a problem that it cannot be applied to tools, molds, machine parts and the like having high operating temperatures.

本発明の目的は、上記のように、ダイヤモンド膜あるいはダイヤモンド状炭素膜にはその利用にあたって一長一短を有することから、これらに代わる新しい炭素膜を提供しようとするものである。   As described above, the object of the present invention is to provide a new carbon film instead of the diamond film or the diamond-like carbon film because it has advantages and disadvantages in its use.

本発明者らは、上記課題を解決するために種々検討を重ねた結果、以下の1)〜5)項に記載の発明を完成したものである。
1)カソードアークイオンプレーティング法で、等方性グラファイトを原料とし、真空度0.05Pa以下の雰囲気下で、合成温度100〜300℃で成膜された、密度が2.8g/cm3以上3.3g/cm3以下、スピン密度が1×1018spins/cm3以上1×1021spins/cm3以下、ヌープ硬度が1500以上6000以下である炭素膜。
2)水素および希ガス元素を含むガスを雰囲気に導入せずに成膜された上記1)に記載の炭素膜。
3)炭素濃度が99.5原子%以上、水素濃度が0.5原子%以下、希ガス元素濃度が0.5原子%以下の炭素膜であることを特徴とする上記1)または2)項に記載の炭素膜。
As a result of various studies to solve the above-mentioned problems, the present inventors have completed the inventions described in the following items 1) to 5).
1) Cathode arc ion plating method using isotropic graphite as a raw material and a film was formed at a synthesis temperature of 100 to 300 ° C. in an atmosphere with a degree of vacuum of 0.05 Pa or less. The density was 2.8 g / cm 3 or more. A carbon film having 3.3 g / cm 3 or less, a spin density of 1 × 10 18 spins / cm 3 or more and 1 × 10 21 spins / cm 3 or less, and a Knoop hardness of 1500 or more and 6000 or less.
2) The carbon film according to 1), which is formed without introducing a gas containing hydrogen and a rare gas element into the atmosphere.
3) Item 1) or 2) above, wherein the carbon film has a carbon concentration of 99.5 atomic% or more, a hydrogen concentration of 0.5 atomic% or less, and a rare gas element concentration of 0.5 atomic% or less. The carbon film described in 1.

4)炭素濃度が99.9原子%以上で水素および希ガス濃度がHFS/RBSの検出限界以下の炭素膜であることを特徴とする上記1)から3)項のいずれかに記載の炭素膜。   4) The carbon film according to any one of the above items 1) to 3), wherein the carbon film has a carbon concentration of 99.9 atomic% or more and a hydrogen and rare gas concentration is below the detection limit of HFS / RBS. .

5)ヌープ硬度が2000以上6000以下であることを特徴とする上記1)から4)項のいずれかに記載の炭素膜。   5) The carbon film according to any one of 1) to 4) above, wherein the Knoop hardness is 2000 or more and 6000 or less.

上記の本発明の炭素膜は、硬度が高く耐熱性があり、この炭素膜で被覆した工具、金型、機械部品、電気・電子部品あるいは光学部品などの本発明の炭素膜被覆部材は優れた耐磨耗性と耐久性を有する。本発明の炭素膜は、上記1)項記載のとおり、カソードアークイオンプレーティング法で、等方性グラファイトを原料とし、真空度0.05Pa以下の雰囲気下で、合成温度100〜300℃で成膜さ成膜方法によって成膜することができる。この方法によると比較的、低温下において成膜することが可能であり、広範な被覆対象部材に工業的有利に実施できる。   The carbon film of the present invention has high hardness and heat resistance, and the carbon film-coated member of the present invention such as a tool, a mold, a machine part, an electric / electronic part or an optical part coated with the carbon film is excellent. Abrasion resistance and durability. As described in the above 1), the carbon film of the present invention is formed by the cathode arc ion plating method using isotropic graphite as a raw material in a synthesis temperature of 100 to 300 ° C. in an atmosphere with a vacuum degree of 0.05 Pa or less. The film can be formed by a film forming method. According to this method, it is possible to form a film at a relatively low temperature, and it can be industrially advantageously applied to a wide range of members to be coated.

本発明の炭素膜は、前記1)項のとおり、密度が2.8g/cm3以上3.3g/cm3以下であることを特徴とする。ダイヤモンドの密度は3.529g/cm3であり、その一方で一般のダイヤモンド炭素膜の密度は1.5〜2.5g/cm3程度である。本発明の炭素膜は、これらの中間領域の密度を有するものである。密度が本発明でいう範囲に達しないときすなわち2.8g/cm3未満では十分な耐熱性や硬度が得られず、一方密度が3.3g/cm3を超えると数百℃の前半という低温での合成が困難であり現実てきではない。耐熱性、硬度および生産の安定性等の観点からみて、本発明の炭素膜は密度が2.9g/cm3以上3.2g/cm3以下であることがより好ましい。 The carbon film of the present invention is characterized in that the density is 2.8 g / cm 3 or more and 3.3 g / cm 3 or less as described in the above item 1). The density of diamond is 3.529 g / cm 3 , while the density of a general diamond carbon film is about 1.5 to 2.5 g / cm 3 . The carbon film of the present invention has a density of these intermediate regions. When the density does not reach the range in the present invention, that is, when the density is less than 2.8 g / cm 3 , sufficient heat resistance and hardness cannot be obtained, while when the density exceeds 3.3 g / cm 3 , the low temperature of the first half of several hundred ° C. It is difficult to synthesize in the real world. From the viewpoints of heat resistance, hardness, production stability, etc., the carbon film of the present invention preferably has a density of 2.9 g / cm 3 or more and 3.2 g / cm 3 or less.

本発明の炭素膜は、前記1)項のとおり、スピン密度が1×1018spins/cm3以上1×1021spins/cm3以下である。スピン密度とは不対電子の密度に対応するパラメーターである。スピン密度が大きいほど未結合手、すなわち欠陥が多いことを示す。ダイヤモンドのスピン密度は一般に1×1017spins/cm3以下であり、このことは炭素原子1個につき約5.7×10-7個以下の不対電子があることに対応する。本発明の炭素膜は、スピン密度が1×1018spins/cm3以上1×1021spins/cm3以下であることが好ましく、このことは密度が3.0g/cm3の場合、炭素原子1個につき約6.7×10-6以上6.7×10-2個以下の不対電子を有することに対応する。スピン密度は小さいほど高硬度で耐熱性も高くなるが、現実的にはスピン密度が1×1018spins/cm3に達しない炭素膜は数百℃の前半という低温での合成が困難であり好ましくない。また、スピン密度が1×1021spins/cm3を超えた炭素膜は、不対電子が多く、すなわち欠陥が多くなってくることになり、硬度が小さくなり耐熱性にも劣ってくるので好ましくない。耐熱性、硬度および生産の安定性等の観点からみて、本発明の炭素膜はスピン密度が1×1019spins/cm3以上8×1020spins/cm3以下であることがより好ましい。 The carbon film of the present invention has a spin density of 1 × 10 18 spins / cm 3 or more and 1 × 10 21 spins / cm 3 or less as described in 1) above. The spin density is a parameter corresponding to the density of unpaired electrons. A higher spin density indicates more dangling bonds, that is, more defects. The spin density of diamond is generally 1 × 10 17 spins / cm 3 or less, which corresponds to about 5.7 × 10 −7 or less unpaired electrons per carbon atom. The carbon film of the present invention preferably has a spin density of 1 × 10 18 spins / cm 3 or more and 1 × 10 21 spins / cm 3 or less, which means that when the density is 3.0 g / cm 3 , This corresponds to having about 6.7 × 10 −6 or more and 6.7 × 10 −2 or less unpaired electrons. The lower the spin density, the higher the hardness and the higher the heat resistance, but in reality, it is difficult to synthesize a carbon film whose spin density does not reach 1 × 10 18 spins / cm 3 at the low temperature of the first half of several hundred degrees Celsius. It is not preferable. In addition, a carbon film having a spin density exceeding 1 × 10 21 spins / cm 3 is preferable because it has many unpaired electrons, that is, defects increase, hardness decreases and heat resistance deteriorates. Absent. From the viewpoint of heat resistance, hardness, production stability, etc., the carbon film of the present invention preferably has a spin density of 1 × 10 19 spins / cm 3 or more and 8 × 10 20 spins / cm 3 or less.

本発明の炭素膜は、前記3)項のとおり、炭素濃度が99.5原子%以上、水素濃度が0.5原子%以下、希ガス元素濃度が0.5原子%以下であることが好ましい。一般のダイヤモンド状炭素膜は、水素が数〜数十原子%含まれている。水素は1個の結合手しか持たないため、炭素原子と結合するとそこで炭素原子同士の結合の連続性が途切れてしまうことになる。こうした水素と炭素との結合は、炭素膜の硬度低下と耐熱性の低下につながる。   The carbon film of the present invention preferably has a carbon concentration of 99.5 atomic% or more, a hydrogen concentration of 0.5 atomic% or less, and a rare gas element concentration of 0.5 atomic% or less as described in the above item 3). . A general diamond-like carbon film contains several to several tens of atomic percent of hydrogen. Since hydrogen has only one bond, when it is bonded to a carbon atom, the continuity of the bond between the carbon atoms is interrupted there. Such a bond between hydrogen and carbon leads to a decrease in hardness and heat resistance of the carbon film.

また、炭素膜の合成中にアルゴン、ネオン、ヘリウム、キセノンなどの希ガスを使用すると、希ガス原子が膜中に多く取り込まれやすい。取り込まれた希ガス原子は特に結合手は形成しないものの欠陥の原因となりやすい。欠陥の存在は、硬度低下と耐熱性を下げる方向に作用する。以上のことから、水素や希ガス元素含有量が少ないほど、炭素原子同士の結合が多く耐熱性に強い膜となり得る。炭素濃度が99.5原子%未満では不純物に起因する欠陥が増え、硬度、耐熱性が低下するので好ましくない。水素濃度が0.5原子%を超えると炭素同士の結合の連続性が途切れる箇所が多くなり、硬度、耐熱性が低下し好ましくない。希ガス元素濃度が0.5原子%を超えると欠陥が形成され、硬度、耐熱性が低下し好ましくない。本発明の炭素膜は、実質的に炭素元素のみから形成されていることが好ましい。すなわち、前記3)項でいう炭素膜をさらに特定した前記4)項記載の炭素膜であることが好ましく、実質的に炭素のみからなり、水素、希ガス元素が不純物レベルでしか検出されない炭素膜は極めて安定性が高くなる。ここでいう不純物レベルとは不可避混入レベルを意味する。具体的には、ppmオーダーの濃度をさす。実際には、成膜中に水素や希ガス元素、あるいは水素を含む材料を積極的に導入しないことによって得られるものである。   In addition, when a rare gas such as argon, neon, helium, or xenon is used during the synthesis of the carbon film, a large amount of rare gas atoms are easily taken into the film. Incorporated noble gas atoms do not form bonds, but tend to cause defects. The presence of defects acts in the direction of decreasing hardness and decreasing heat resistance. From the above, the smaller the hydrogen or rare gas element content, the more the bonds between carbon atoms and the stronger the heat resistance. If the carbon concentration is less than 99.5 atomic%, defects due to impurities increase and the hardness and heat resistance decrease, which is not preferable. If the hydrogen concentration exceeds 0.5 atomic%, the number of locations where the continuity of carbon-carbon bonds is interrupted increases, and the hardness and heat resistance deteriorate, which is not preferable. When the rare gas element concentration exceeds 0.5 atomic%, defects are formed, and the hardness and heat resistance are lowered, which is not preferable. The carbon film of the present invention is preferably formed substantially only from carbon elements. That is, the carbon film described in the above item 4), which further specifies the carbon film described in the above item 3), is preferably a carbon film that substantially consists of carbon and hydrogen and rare gas elements are detected only at the impurity level. Is extremely stable. The impurity level here means an inevitable contamination level. Specifically, it refers to a concentration on the order of ppm. Actually, it is obtained by not actively introducing hydrogen, a rare gas element, or a material containing hydrogen during film formation.

本発明の炭素膜は、前記5)のとおり、ヌープ硬度が2000以上6000以下であることが好ましい。炭素膜は、一般にグラファイト成分が増加すると耐熱性は低下する。グラファイト成分が少ないための条件としては、ヌープ硬度が200以上であることが好ましい。一方、ヌープ硬度が6000を超えるものは数百℃の前半という低温では実質的得ることが困難であり好ましくない。ここでいうヌープ硬度は、Siウエハ上に膜厚1.0μm以上2.0μm以下の膜厚で被覆した炭素膜を荷重50g以上100g以下で測定したときの値とする。   The carbon film of the present invention preferably has a Knoop hardness of 2000 or more and 6000 or less as described in 5) above. In general, the heat resistance of a carbon film decreases as the graphite component increases. As a condition for reducing the graphite component, the Knoop hardness is preferably 200 or more. On the other hand, a Knoop hardness exceeding 6000 is not preferable because it is difficult to obtain substantially at a low temperature of the first half of several hundred degrees Celsius. The Knoop hardness here is a value when a carbon film coated with a film thickness of 1.0 μm or more and 2.0 μm or less on a Si wafer is measured with a load of 50 g or more and 100 g or less.

本発明の炭素膜は、カソードアークイオンプレーティング法により、原料炭素として等方性グラファイトを用いて、真空度0.05Pa以下の雰囲気下で、成膜することにより得られる。ここで、水素または希ガスを含むガスを導入せず成膜することが好ましい。現在工業的に多く適用されている炭素膜の成膜方法は、プラズマCVD法やイオンビーム蒸着法、スパッタリング法などにより行われている。これらの手法では、原料や補助原料に、炭化水素や水素、希ガス元素などが使用される。従って、膜中に水素や希ガス元素が取り込まれやすい。一方、カソードアークイオンプレーティング法は、固体炭素を原料とする。従って、合成時に水素、希ガス元素、あるいは水素を含む材料などを原料または補助原料として使用せずに、真空度0.05Pa以下の雰囲気下で炭素膜の合成を行うことにより、水素や希ガス元素を含まない炭素膜を得ることができる。雰囲気が0.05Paより大きいと、残留ガスに含まれる水などの成分が膜中に多く取り込まれるので、所期目的の炭素膜が得られない。本成膜方法で原料となる固体炭素は、例えば高純度化処理を施した等方性グラファイト、CVD法で合成された熱分解炭素、熱硬化性樹脂などを炭素化したグラッシ―カーボン、ダイヤモンド焼結体、樹脂等が用いられる。本発明におけるカソードアークイオンプレーティング法による成膜は、例えば、通常のカソードや、磁場収束型のカソード、磁場偏向型カソードなどを用いて合成できる。合成温度100〜300℃、合成時間5〜120分条件で実施できる。   The carbon film of the present invention can be obtained by film formation under an atmosphere of a vacuum degree of 0.05 Pa or less using isotropic graphite as raw material carbon by a cathode arc ion plating method. Here, it is preferable to form the film without introducing a gas containing hydrogen or a rare gas. Currently, carbon film deposition methods that are widely applied industrially are performed by plasma CVD, ion beam deposition, sputtering, and the like. In these methods, hydrocarbons, hydrogen, rare gas elements, etc. are used as raw materials and auxiliary raw materials. Accordingly, hydrogen and rare gas elements are easily taken into the film. On the other hand, the cathode arc ion plating method uses solid carbon as a raw material. Therefore, hydrogen or a rare gas is synthesized by synthesizing a carbon film in an atmosphere having a degree of vacuum of 0.05 Pa or less without using hydrogen, a rare gas element, or a material containing hydrogen as a raw material or an auxiliary material at the time of synthesis. A carbon film containing no element can be obtained. If the atmosphere is higher than 0.05 Pa, a large amount of components such as water contained in the residual gas is taken into the film, so that the intended carbon film cannot be obtained. The solid carbon used as a raw material in this film-forming method is, for example, isotropic graphite subjected to a high-purity treatment, pyrolytic carbon synthesized by a CVD method, glassy carbon obtained by carbonizing a thermosetting resin, or diamond firing. A ligature, resin, etc. are used. The film formation by the cathode arc ion plating method in the present invention can be synthesized using, for example, a normal cathode, a magnetic field focusing type cathode, a magnetic field deflection type cathode, or the like. The synthesis can be performed under conditions of a synthesis temperature of 100 to 300 ° C. and a synthesis time of 5 to 120 minutes.

本発明の炭素膜は、所望の部材に被覆することにより、硬度および耐熱性を付与することができる。このような適用部材の具体例としては、工具、各種金型、機械部品、電気・電子部品などが挙げられる。   The carbon film of the present invention can impart hardness and heat resistance by coating a desired member. Specific examples of such application members include tools, various molds, mechanical parts, and electrical / electronic parts.

本発明の炭素膜被覆部材における炭素膜の厚みは、その対象部材などにより適宜決められるが、通常は10nm〜3μm、好ましくは0.05μm〜2μmである。この膜厚が薄すぎると耐磨耗性の向上が不十分になり耐久性を付与するための満足な効果が得られない。一方、あまりに厚すぎると膜の剥離が生じやすくなり寿命の低下が起こることがある。   The thickness of the carbon film in the carbon film-coated member of the present invention is appropriately determined depending on the target member and the like, but is usually 10 nm to 3 μm, preferably 0.05 μm to 2 μm. When this film thickness is too thin, the improvement in wear resistance is insufficient and a satisfactory effect for imparting durability cannot be obtained. On the other hand, if it is too thick, the film tends to be peeled off and the life may be shortened.

次に、本発明を実施例および比較例によってさらに具体的に説明する。
<実施例1〜4および比較例1〜6、9〜12>
Si基板上に、各種手法で膜厚0.8〜1.1μmの炭素膜を被覆し、密度、スピン密度、炭素・水素・希ガス濃度と、ヌープ硬度および硬度低下開始温度を測定した。成膜は、プラズマCVD法(比較例1、5)、レーザーアブレーション法(比較例9、10、11、12)、カソードアークイオンプレーティング法(実施例1、2、3、4)、フィラメントCVD法(比較例2)、マイクロ波CVD法(比較例3)、イオンビーム蒸着法(比較例4)および非平衡型マグネトロンスパッタリング法(比較例6)について、それぞれ次のようにして行った。
Next, the present invention will be described more specifically with reference to examples and comparative examples.
<Examples 1-4 and Comparative Examples 1-6, 9-12>
A carbon film having a film thickness of 0.8 to 1.1 μm was coated on the Si substrate by various methods, and the density, spin density, carbon / hydrogen / rare gas concentration, Knoop hardness, and hardness decrease start temperature were measured. Films are formed by plasma CVD (Comparative Examples 1 and 5), laser ablation (Comparative Examples 9, 10, 11, and 12), cathode arc ion plating (Examples 1, 2, 3, and 4), and filament CVD. A method (Comparative Example 2), a microwave CVD method (Comparative Example 3), an ion beam deposition method (Comparative Example 4) and a non-equilibrium magnetron sputtering method (Comparative Example 6) were performed as follows.

・プラズマCVD法では、原料にアセチレンガスを適用した。すなわち、雰囲気中にアセチレンガスを導入し、13.56MHzの高周波を基板に印加して炭素膜の成膜を行った。成膜時間は80分とした。
・レーザーアブレーション法では、原料にグラッシーカーボンを適用した。ターゲットにエキシマレーザーを照射して、そのエネルギーで表面の炭素を蒸発・プラズマ化し、負に印加した基板上に成膜した。成膜時間は50分とした。
-In the plasma CVD method, acetylene gas was applied as a raw material. That is, acetylene gas was introduced into the atmosphere, and a high frequency of 13.56 MHz was applied to the substrate to form a carbon film. The film formation time was 80 minutes.
・ In the laser ablation method, glassy carbon was applied as a raw material. The target was irradiated with an excimer laser, and the carbon on the surface was vaporized / plasmaized with that energy, and a film was formed on a negatively applied substrate. The film formation time was 50 minutes.

・カソードアークイオンプレーティング法では、原料に等方性グラファイトを適用した。ターゲットに負の電位を印加してアーク放電を発生させ、そのエネルギーで炭素を蒸発・プラズマ化し、負に印加した基板上に炭素膜を成膜した。成膜時間は300分とした。
・フィラメントCVD法では、1%メタン、99%水素を原料として適用した。Wフィラメントでメタンおよび水素を分解させ、基板上に炭素膜(ダイヤモンド膜)を析出させた。成膜時間は200分とした。
・ In the cathode arc ion plating method, isotropic graphite was used as the raw material. A negative potential was applied to the target to generate an arc discharge, carbon was evaporated and plasmad with the energy, and a carbon film was formed on the negatively applied substrate. The film formation time was 300 minutes.
In the filament CVD method, 1% methane and 99% hydrogen were applied as raw materials. Methane and hydrogen were decomposed with a W filament, and a carbon film (diamond film) was deposited on the substrate. The film formation time was 200 minutes.

・マイクロ波CVD法では、1%メタン、99%水素を原料として適用した。2.45GHzのマイクロ波でメタンおよび水素を分解させ、基板上に炭素膜(ダイヤモンド膜)を析出させた。
・イオンビーム蒸着法では、ベンゼンガスを原料に適用した。イオン化したベンゼンイオンを加速し基板に照射して炭素膜を析出させた。成膜時間は60分とした。
In the microwave CVD method, 1% methane and 99% hydrogen were applied as raw materials. Methane and hydrogen were decomposed with 2.45 GHz microwaves to deposit a carbon film (diamond film) on the substrate.
・ In the ion beam deposition method, benzene gas was applied as a raw material. Ionized benzene ions were accelerated and irradiated onto the substrate to deposit a carbon film. The film formation time was 60 minutes.

・非平衡型マグネトロンスパッタリング法では、原料に上記の炭素ターゲットを適用した。すなわち、雰囲気中にはアルゴンガスを導入し、ターゲットに負の直流電圧を印加して放電を派生させた。ターゲット表面よりスパッタされプラズマ中で活性化した炭素イオンが、負に印加した基板上に照射され炭素膜を形成した。成膜時間は60分とした。炭素膜の物性等は、次の方法により測定した。
・密度:成膜前後の基材の重量変化と膜厚から導出した。
・スピン密度:ESR法で導出した。
・炭素・水素・希ガス濃度:SIMS、HFS、RBS法を適用した。
・ヌープ硬度:荷重50gまたは100gで測定を行った。
・硬度低下開始温度:電気炉にて大気中で加熱し、所定の温度で1時間保持した後、室温まで冷却し、20%以上の硬度低下が観測された温度を開始温度とした。
In the nonequilibrium type magnetron sputtering method, the above carbon target was applied as a raw material. That is, argon gas was introduced into the atmosphere, and a negative DC voltage was applied to the target to induce discharge. Carbon ions sputtered from the target surface and activated in plasma were irradiated onto the negatively applied substrate to form a carbon film. The film formation time was 60 minutes. The physical properties of the carbon film were measured by the following method.
Density: Derived from the weight change and film thickness of the substrate before and after film formation.
Spin density: derived by ESR method.
Carbon / hydrogen / rare gas concentrations: SIMS, HFS, and RBS methods were applied.
Knoop hardness: measured with a load of 50 g or 100 g.
Hardness reduction start temperature: Heated in the air in an electric furnace, held at a predetermined temperature for 1 hour, cooled to room temperature, and the temperature at which a hardness reduction of 20% or more was observed was taken as the start temperature.

測定結果を表1、表2および表3に示す。   The measurement results are shown in Table 1, Table 2, and Table 3.

Figure 2008106361
Figure 2008106361

Figure 2008106361
Figure 2008106361

Figure 2008106361
Figure 2008106361

表1の結果から密度が高いほど、表2の結果からスピン密度が小さいほど、表3の結果から水素および希ガス濃度が小さいほど、硬度および耐熱性が大きくなることを示している。
<実施例5,6および比較例7、8、13>
超硬合金製平板に、プラズマCVD法(比較例7)、レーザーアブレーション法(比較例13)、カソードアークイオンプレーティング法(実施例5、6)および非平衡型マグネトロンスパッタリング法(比較例8)の各方法よって炭素膜を被覆した。
From the results in Table 1, the higher the density, the lower the spin density from the results in Table 2, and the lower the hydrogen and rare gas concentrations from the results in Table 3, the greater the hardness and heat resistance.
<Examples 5 and 6 and Comparative Examples 7, 8, and 13>
Plasma CVD method (Comparative Example 7), laser ablation method (Comparative Example 13), cathode arc ion plating method (Examples 5 and 6) and non-equilibrium magnetron sputtering method (Comparative Example 8) The carbon film was coated by each of the methods.

得られた各炭素膜について、ピン・オン・ディスクタイプの摩擦磨耗試験機で磨耗量の比較試験を実施した。ここで、ピンには先端径R3mmのSUJ2を、ディスクには炭素膜を被覆した超硬合金を適用し、荷重は10N、回転速度は100mm/sec、温度は室温、雰囲気は大気とした。ディスクの磨耗量を相対値で比較した。また、リング・オン・ディスクタイプの摩擦磨耗試験機で耐久試験を実施した。ここで、相手材のリングに外径50mmのSUJ2を、プレートに炭素膜を被覆した超硬合金を適用し、リングの外周の一点が常時プレートの同じ場所にあるように配置しリングを回転させて試験を行った。なお、荷重は50N、回転速度は3000mm/sec、温度は摩擦熱の温度、雰囲気は大気とした。摩擦抵抗をモニターし、抵抗値が大きく変化する時点を膜のなくなった時点と判断して寿命比較を相対値で比較した。   Each of the obtained carbon films was subjected to a wear amount comparison test using a pin-on-disk type friction wear tester. Here, SUJ2 having a tip diameter of R3 mm was applied to the pin, a cemented carbide coated with a carbon film was applied to the disk, the load was 10 N, the rotation speed was 100 mm / sec, the temperature was room temperature, and the atmosphere was air. The amount of wear of the disc was compared with a relative value. In addition, a durability test was conducted with a ring-on-disk type frictional wear tester. Here, SUJ2 with an outer diameter of 50 mm is applied to the ring of the counterpart material, and a cemented carbide with a carbon film coated on the plate is applied, and the ring is placed so that one point on the outer periphery is always in the same place on the plate, and the ring is rotated The test was conducted. The load was 50 N, the rotation speed was 3000 mm / sec, the temperature was the frictional heat temperature, and the atmosphere was air. The frictional resistance was monitored, and the point of time when the resistance value changed greatly was judged as the point of time when the film disappeared, and the lifespan comparison was made with relative values.

さらに、同一ロットのテストピースで、密度、スピン密度、各種元素濃度、ヌープ硬度を測定した。上記の測定結果等をまとめて表4に示す。   Further, the density, spin density, various element concentrations, and Knoop hardness were measured with test pieces of the same lot. The above measurement results are summarized in Table 4.

Figure 2008106361
Figure 2008106361



これらの結果から、実施例5および6の炭素膜は、比較例7および8のものに比べて、耐磨耗性が高くかつ耐久性に優れていることを示している。すなわち、密度が高いほど、スピン密度が小さいほど、炭素濃度が高く水素・希ガス元素濃度が小さいほど、また硬度が高いほど、耐磨耗性が高く耐久性に優れていることがわかる。
<実施例7>
超硬合金製ドリルに、カソードアークイオンプレーティング法により、炭素膜を被覆した(本発明)。この炭素膜は、密度を3.11g/cm3、スピン密度を2.0×1020spins/cm3、炭素濃度を99.9原子%以上で水素および希ガス元素濃度はHFS/RBSの検出限界以下、およびヌープ硬度1500とした。


From these results, it is shown that the carbon films of Examples 5 and 6 have higher wear resistance and superior durability than those of Comparative Examples 7 and 8. That is, it can be seen that the higher the density, the lower the spin density, the higher the carbon concentration, the lower the hydrogen / rare gas element concentration, and the higher the hardness, the higher the wear resistance and the higher the durability.
<Example 7>
A carbide film drill was coated with a carbon film by the cathode arc ion plating method (the present invention). This carbon film has a density of 3.11 g / cm 3 , a spin density of 2.0 × 10 20 spins / cm 3 , a carbon concentration of 99.9 atomic% or more, and hydrogen and rare gas element concentrations of HFS / RBS. Below the limit and Knoop hardness 1500.

一方、同じ超硬合金製ドリルに、プラズマCVD法で炭素膜を被覆した(対照)。この炭素膜は、密度が2.05g/cm3、スピン密度が2.5×1021spins/cm3、炭素濃度が71原子%、水素濃度が27原子%、希ガス元素濃度が0.5原子%以下、ヌープ硬度が1500であった。上記の各ドリルを、Si15%含有アルミ合金の乾式穴あけ加工に供したところ、本発明のドリルは未コートドリル寿命の10倍もの時間にわたって加工を行っても異常は見られなかった。これに対して、対照のドリルは未コートドリル寿命の1.5倍の時間、加工を行った時点で膜はほぼ完全に消失していた。 On the other hand, the same cemented carbide drill was coated with a carbon film by plasma CVD (control). This carbon film has a density of 2.05 g / cm 3 , a spin density of 2.5 × 10 21 spins / cm 3 , a carbon concentration of 71 atomic%, a hydrogen concentration of 27 atomic%, and a rare gas element concentration of 0.5. The atomic% or less and Knoop hardness were 1500. When each of the above drills was subjected to dry drilling of an aluminum alloy containing 15% Si, the drill of the present invention showed no abnormality even when it was processed over 10 times the uncoated drill life. In contrast, in the control drill, the film disappeared almost completely when it was processed for 1.5 times the uncoated drill life.

<実施例8>
SDK11製のマグネシウム合金による射出成型金型の成型面に、実施例7におけると同様にして2種類の炭素膜を被覆して射出成型を行った。未コートの金型では、毎回離型剤を塗布しなければマグネシウム合金が固着した。プラズマCVD法の炭素膜を被覆した金型では、数回の成型は離型剤を塗布しなくても固着なしに成型できたが、10回成型した段階では被膜はなくなっており固着が発生した。一方、本発明によりカソードアークイオンプレーティング法の炭素膜を被覆した金型では、1000回の成型を終えても被膜は残っており良好な成型特性を示した。
<Example 8>
In the same manner as in Example 7, two types of carbon films were coated on the molding surface of an SDK11 magnesium alloy injection mold, and injection molding was performed. In the uncoated mold, the magnesium alloy was fixed unless a release agent was applied each time. With a mold coated with a plasma CVD carbon film, several times of molding could be done without fixing without applying a release agent, but at the stage of molding 10 times, the coating disappeared and sticking occurred. . On the other hand, in the mold coated with the carbon film of the cathode arc ion plating method according to the present invention, the film remained even after 1000 times of molding and showed good molding characteristics.

<実施例9>
自動車エンジンのピストンリングに、実施例7におけると同様にして2種類の炭素膜を被覆し、実車のエンジンに組み込んで走行試験を行って耐久性を調査した。その結果、プラズマCVD法の炭素膜を被覆したピストンリングは、1時間の走行試験で炭素膜は完全に消失していた。一方、本発明によりカソードアークイオンプレーティング法の炭素膜を被覆したピストンリングでは、500時間の走行試験後も異常はみられなかった。
<Example 9>
The piston ring of the automobile engine was coated with two types of carbon films in the same manner as in Example 7, and the running test was conducted by incorporating it into the engine of an actual vehicle to investigate the durability. As a result, in the piston ring coated with the plasma CVD carbon film, the carbon film completely disappeared after a one-hour running test. On the other hand, in the piston ring coated with the carbon film of the cathode arc ion plating method according to the present invention, no abnormality was observed even after a running test for 500 hours.

<実施例10>
カソードアークイオンプレーティング法で成膜時の雰囲気を変えてDLCの成膜を行い、被膜部材の寿命を調べた。カソードアークイオンプレーティング法において、真空度が0.001Paで特にガスを導入せずに成膜した炭素膜は、密度3.05g/cm3、スピン密度4×1020spins/cm3、炭素濃度99.5原子%以上、水素濃度と希ガス元素濃度5ppm以下、およびヌープ硬度1800であった(本発明)。一方、アルゴンを10mTorr導入して被覆した炭素膜は、密度2.44g/cm3、スピン密度3×1021spins/cm3、炭素濃度99.5原子%以上、希ガス元素濃度0.5原子%以下、およびヌープ硬度1800であった(対照)。これらの2種の炭素膜をそれぞれアルミ合金穴あけドリルに被覆して寿命を調べたところ、本発明の炭素膜を被覆したドリルは対照被膜を被覆したものに比べて5倍以上の寿命を示した。
<Example 10>
The DLC film was formed by changing the atmosphere during film formation by the cathode arc ion plating method, and the life of the coating member was examined. In the cathodic arc ion plating method, a carbon film formed with a vacuum degree of 0.001 Pa and no gas introduced has a density of 3.05 g / cm 3 , a spin density of 4 × 10 20 spins / cm 3 , and a carbon concentration. The hydrogen concentration and the rare gas element concentration were 5 ppm or less, and the Knoop hardness was 1800 (invention). On the other hand, a carbon film coated by introducing 10 mTorr of argon has a density of 2.44 g / cm 3 , a spin density of 3 × 10 21 spins / cm 3 , a carbon concentration of 99.5 atomic% or more, and a rare gas element concentration of 0.5 atoms. % And Knoop hardness of 1800 (control). When these two types of carbon films were each coated on an aluminum alloy drill, the life was examined. The drill coated with the carbon film of the present invention showed a lifespan more than five times that of the control film. .

Claims (5)

カソードアークイオンプレーティング法で、等方性グラファイトを原料とし、真空度0.05Pa以下の雰囲気下で、合成温度100〜300℃で成膜された、密度が2.8g/cm3以上3.3g/cm3以下、スピン密度が1×1018spins/cm3以上1×1021spins/cm3以下、ヌープ硬度が1500以上6000以下である炭素膜。 2. A cathode arc ion plating method using isotropic graphite as a raw material, and a film was formed at a synthesis temperature of 100 to 300 ° C. in an atmosphere having a degree of vacuum of 0.05 Pa or less, and the density was 2.8 g / cm 3 or more. A carbon film having 3 g / cm 3 or less, a spin density of 1 × 10 18 spins / cm 3 or more and 1 × 10 21 spins / cm 3 or less, and a Knoop hardness of 1500 or more and 6000 or less. 水素および希ガス元素を含むガスを雰囲気に導入せずに成膜された請求項1に記載の炭素膜。   The carbon film according to claim 1, which is formed without introducing a gas containing hydrogen and a rare gas element into the atmosphere. 炭素濃度が99.5原子%以上、水素濃度が0.5原子%以下、希ガス元素濃度が0.5原子%以下の炭素膜であることを特徴とする請求項1または2に記載の炭素膜。   3. The carbon according to claim 1, wherein the carbon film has a carbon concentration of 99.5 atomic% or more, a hydrogen concentration of 0.5 atomic% or less, and a rare gas element concentration of 0.5 atomic% or less. film. 炭素濃度が99.9原子%以上で水素および希ガス濃度がHFS/RBSの検出限界以下の炭素膜であることを特徴とする請求項1から3のいずれかに記載の炭素膜。   The carbon film according to any one of claims 1 to 3, wherein the carbon film is a carbon film having a carbon concentration of 99.9 atomic% or more and a hydrogen and rare gas concentration of not more than a detection limit of HFS / RBS. ヌープ硬度が2000以上6000以下であることを特徴とする請求項1から4のいずれかに記載の炭素膜。   The carbon film according to any one of claims 1 to 4, wherein Knoop hardness is 2000 or more and 6000 or less.
JP2007271447A 2007-10-18 2007-10-18 Carbon film Pending JP2008106361A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007271447A JP2008106361A (en) 2007-10-18 2007-10-18 Carbon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007271447A JP2008106361A (en) 2007-10-18 2007-10-18 Carbon film

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001342218A Division JP2003147508A (en) 2001-11-07 2001-11-07 Carbon film, method of depositing carbon film, and carbon film-coated member

Publications (1)

Publication Number Publication Date
JP2008106361A true JP2008106361A (en) 2008-05-08

Family

ID=39439967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007271447A Pending JP2008106361A (en) 2007-10-18 2007-10-18 Carbon film

Country Status (1)

Country Link
JP (1) JP2008106361A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101262173B1 (en) 2010-03-31 2013-05-14 광주과학기술원 Conductive film patterning method, and fabricating method of flexible display device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0222458A (en) * 1988-07-08 1990-01-25 Matsushita Electric Ind Co Ltd Method for synthesizing thin film
JPH07215795A (en) * 1994-01-31 1995-08-15 Kyocera Corp Hard carbon film, hard carbon film-coated member and forming method of hard carbon film
JP2001192864A (en) * 1998-12-25 2001-07-17 Sumitomo Electric Ind Ltd Hard film and coated member
JP2002008217A (en) * 2000-06-21 2002-01-11 Hitachi Metals Ltd Head slider
JP2002322555A (en) * 2001-04-25 2002-11-08 Kobe Steel Ltd Diamond-like carbon multilayered film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0222458A (en) * 1988-07-08 1990-01-25 Matsushita Electric Ind Co Ltd Method for synthesizing thin film
JPH07215795A (en) * 1994-01-31 1995-08-15 Kyocera Corp Hard carbon film, hard carbon film-coated member and forming method of hard carbon film
JP2001192864A (en) * 1998-12-25 2001-07-17 Sumitomo Electric Ind Ltd Hard film and coated member
JP2002008217A (en) * 2000-06-21 2002-01-11 Hitachi Metals Ltd Head slider
JP2002322555A (en) * 2001-04-25 2002-11-08 Kobe Steel Ltd Diamond-like carbon multilayered film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101262173B1 (en) 2010-03-31 2013-05-14 광주과학기술원 Conductive film patterning method, and fabricating method of flexible display device

Similar Documents

Publication Publication Date Title
EP1598441B1 (en) Amorphous carbon film and process for producing the same
US5487922A (en) Surface preparation and deposition method for titanium nitride onto carbon-containing materials
JP6337944B2 (en) Coated tool
JP2003147508A (en) Carbon film, method of depositing carbon film, and carbon film-coated member
JPS60195094A (en) Production of diamond thin film
Sheng et al. Effect of unbonded hydrogen on amorphous carbon film deposited by PECVD with annealing treatment
JP4122387B2 (en) Composite hard coating, method for producing the same, and film forming apparatus
JP3225576B2 (en) Sliding machine parts coated with self-healing hard solid lubricant film
CN115044867A (en) TiAlWN coating and preparation method and application thereof
JP2013096004A (en) Coated tool having excellent peel resistance and method for manufacturing the same
Qasim et al. Enhanced oxygen-induced properties of bulk oxygenated amorphous carbon films deposited with an anode layer ion source
US8852406B2 (en) Method for synthesis of cubic boron nitride
Ding et al. Preferential orientation of titanium carbide films deposited by a filtered cathodic vacuum arc technique
JP2003082458A (en) Apparatus and method for forming amorphous carbon film
JP3281173B2 (en) High hardness thin film and method for producing the same
JP2008106361A (en) Carbon film
JP5360603B2 (en) Method for producing amorphous carbon-coated member
WO2023066510A1 (en) Method for forming hard and ultra-smooth a-c by sputtering
US20140255286A1 (en) Method for manufacturing cubic boron nitride thin film with reduced compressive residual stress and cubic boron nitride thin film manufactured using the same
Zhang et al. High-temperature oxidation resistant (Cr, Al) N films synthesized using pulsed bias arc ion plating
JP2004332003A (en) METHOD OF PRODUCING ALUMINA FILM CONSISTING MAINLY OF alpha TYPE CRYSTAL STRUCTURE, AND METHOD OF PRODUCING MEMBER COATED WITH ALUMINA FILM CONSISTING MAINLY OF alpha TYPE CRYSTAL STRUCTURE
JP2001192206A (en) Method for manufacturing amorphous carbon-coated member
Panjan et al. Carbon-containing Ti–C: H and Cr–C: H PVD hard coatings
CN110578114A (en) Doped graphite-like composite film, preparation method thereof and part containing doped graphite-like composite film
JP2006169614A (en) Metal-diamond-like-carbon (dlc) composite film, forming method therefor and sliding member

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101202

A02 Decision of refusal

Effective date: 20110331

Free format text: JAPANESE INTERMEDIATE CODE: A02