JP6337944B2 - Coated tool - Google Patents

Coated tool Download PDF

Info

Publication number
JP6337944B2
JP6337944B2 JP2016201280A JP2016201280A JP6337944B2 JP 6337944 B2 JP6337944 B2 JP 6337944B2 JP 2016201280 A JP2016201280 A JP 2016201280A JP 2016201280 A JP2016201280 A JP 2016201280A JP 6337944 B2 JP6337944 B2 JP 6337944B2
Authority
JP
Japan
Prior art keywords
dlc film
film
substrate
gas
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016201280A
Other languages
Japanese (ja)
Other versions
JP2017013136A (en
Inventor
サーレ アブスアイリキ
サーレ アブスアイリキ
謙一 井上
謙一 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Publication of JP2017013136A publication Critical patent/JP2017013136A/en
Application granted granted Critical
Publication of JP6337944B2 publication Critical patent/JP6337944B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/20Making tools by operations not covered by a single other subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/01Selection of materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation

Description

本発明は、例えばプレス加工用の金型、鍛造用の金型や、鋸刃等の切断工具、又はドリル等の切削工具などの、ダイヤモンドライクカーボン皮膜(以下、「DLC皮膜」ともいう。)を被覆した被覆工具に関するものである。   The present invention is, for example, a diamond-like carbon film (hereinafter also referred to as “DLC film”) such as a press mold, a forging mold, a cutting tool such as a saw blade, or a cutting tool such as a drill. It is related with the coated tool which coat | covered.

アルミニウム、銅および樹脂等の被加工材を金型で成形加工する場合、被加工材の一部が金型の表面に付着することでカジリ、キズ等の製品異常が発生する場合がある。この問題を解決するために、金型の表面にDLC皮膜を被覆した被覆金型が実用されている。水素を実質的に含有しないDLC皮膜(Tetrahedral amorphous carbon皮膜:ta−C皮膜)は、高硬度で耐摩耗性に優れるため、被覆金型に広く適用されている。
しかしながら、水素を実質的に含有しない高硬度なDLC皮膜は、グラファイトターゲットを用いたアークイオンプレーティング法で形成されており、ドロップレットといわれる、大きさが数マイクロメートルの粒子(グラファイト球)が不可避的にDLC皮膜に混入し、DLC皮膜の表面粗さが悪化する。
When a workpiece such as aluminum, copper, or resin is molded with a mold, product abnormalities such as galling or scratching may occur due to part of the workpiece adhering to the surface of the mold. In order to solve this problem, a coated mold in which a DLC film is coated on the surface of the mold has been put into practical use. A DLC film substantially free of hydrogen (Tetrahedral amorphous carbon film: ta-C film) is widely applied to coating dies because it has high hardness and excellent wear resistance.
However, a high-hardness DLC film that does not substantially contain hydrogen is formed by an arc ion plating method using a graphite target, and particles (graphite spheres) having a size of several micrometers, called droplets, are formed. Inevitably mixed into the DLC film, the surface roughness of the DLC film deteriorates.

このような課題に対して、特許文献1には、ドロップレットを捕集する機構を備えたフィルタードアークイオンプレーティング法を適用することで、平滑で高硬度な水素を実質的に含有しないDLC皮膜を被覆できることが開示されている。   In order to solve such a problem, Patent Document 1 applies a filtered arc ion plating method provided with a mechanism for collecting droplets, so that DLC that is substantially free of smooth and hard hydrogen is contained. It is disclosed that the coating can be coated.

特開2008−297171号公報JP 2008-297171 A

特許文献1のような、高硬度で平滑な表面状態のDLC皮膜を適用することで、工具特性の改善が期待される。しかしながら、高硬度なDLC皮膜は、基材との密着性が乏しい傾向にある。   By applying a DLC film having a high hardness and a smooth surface state as in Patent Document 1, an improvement in tool characteristics is expected. However, a high hardness DLC film tends to have poor adhesion to the substrate.

本発明者の検討によると、特に、炭化物が多いSKD11等の冷間工具鋼(例えば、炭素含率が1質量%以上の高炭素鋼)等を基材に用いた場合には、マトリックスと炭化物の間に隙間が生じ、その隙間を起点にしてDLC皮膜の剥離が発生し易い傾向があり、被覆直後のDLC皮膜に剥離が発生する場合があることを確認した。   According to the study by the present inventor, especially when cold tool steel such as SKD11 with a large amount of carbide (for example, high carbon steel having a carbon content of 1% by mass or more) is used as a base material, the matrix and carbide. It was confirmed that there was a gap between the DLC films, and the DLC film was likely to be peeled off starting from the gaps.

本発明は、以上のような事情に鑑みなされたものであって、密着性に優れた被覆工具およびその製造方法に関するものである。   This invention is made | formed in view of the above situations, Comprising: It is related with the coated tool excellent in adhesiveness, and its manufacturing method.

本発明者は、高硬度のDLC皮膜の密着性を改善できる具体的な皮膜構造と、それを実現するのに有効な被覆方法があることを見出し、本発明に到達した。
前記課題を達成するための具体的手段は、以下の通りである。
すなわち、本発明は、基材の表面にDLC(ダイヤモンドライクカーボン)皮膜を被覆した被覆工具であって、前記DLC皮膜のナノインデンテーション硬度は50GPa以上100GPa以下であり、前記DLC皮膜は基材側から厚み方向(表面側)に向かって水素原子及び窒素原子の含有量が減少しており、前記DLC皮膜の表面は、水素原子の含有量が0.5原子%以下であり、窒素原子の含有量が2原子%以下である、密着性に優れる被覆工具である。
The present inventor has found that there is a specific film structure capable of improving the adhesion of a high-hardness DLC film and a coating method effective for realizing it, and has reached the present invention.
Specific means for achieving the above object are as follows.
That is, the present invention is a coated tool in which a surface of a base material is coated with a DLC (diamond-like carbon) film, and the DLC film has a nanoindentation hardness of 50 GPa or more and 100 GPa or less, and the DLC film is formed on the substrate side. The content of hydrogen atoms and nitrogen atoms decreases in the thickness direction (surface side) from the surface, and the surface of the DLC film has a hydrogen atom content of 0.5 atomic% or less and contains nitrogen atoms. This is a coated tool having an amount of 2 atomic% or less and excellent adhesion.

前記DLC皮膜の表面粗さは、算術平均粗さRaが0.03μm以下であり、最大高さ粗さRzが0.5μm以下であることが好ましい。
前記DLC皮膜の基材の表面は、水素原子の含有量が0.7原子%以上7原子%以下であり、窒素原子の含有量が2原子%超10原子%以下であることが好ましい。
また、ダイヤモンドライクカーボン皮膜の膜厚は、0.1μm〜1.5μmの範囲であるのが好ましい。
基材としては、炭素含率が1質量%以上の高炭素鋼又は超硬合金であることが好適である。
As for the surface roughness of the DLC film, the arithmetic average roughness Ra is preferably 0.03 μm or less, and the maximum height roughness Rz is preferably 0.5 μm or less.
The surface of the substrate of the DLC film preferably has a hydrogen atom content of 0.7 atom% to 7 atom% and a nitrogen atom content of more than 2 atom% and not more than 10 atom%.
The film thickness of the diamond-like carbon film is preferably in the range of 0.1 μm to 1.5 μm.
The substrate is preferably a high carbon steel or cemented carbide having a carbon content of 1% by mass or more.

また、本発明の被覆工具の製造方法は、フィルタードアークイオンプレーティング法で基材の表面にDLC(ダイヤモンドライクカーボン)皮膜を被覆する被覆工具の製造方法であって、
炉内に水素原子を含む混合ガスを導入し、前記基材の表面をガスボンバード処理する工程と、次いで、ガスボンバード処理後の前記炉内に窒素ガスを導入し、炉内に導入する前記窒素ガスの流量を減少させながら、グラファイトターゲットを用いてDLC皮膜を前記基材の表面に被覆する工程と、を含む方法である。
前記混合ガスは、アルゴンガスと、混合ガス総質量に対して4質量%以上の水素ガスと、を含有する混合ガスであることが好ましい。
前記被覆する工程は、炉内に導入する前記窒素ガスの流量を減少させながらダイヤモンドライクカーボン皮膜を被覆した後、さらに窒素ガスの導入を止めて(窒素ガスの導入量を0sccmまで減少させて)ダイヤモンドライクカーボン皮膜を被覆するものであることが好ましい。
また、前記被覆する工程において、炉内に導入する窒素ガスの流量は、5sccm以上30sccm以下とすることが好ましい。
The method for producing a coated tool of the present invention is a method for producing a coated tool for coating a surface of a substrate with a DLC (diamond-like carbon) film by a filtered arc ion plating method,
A step of introducing a mixed gas containing hydrogen atoms into the furnace and performing a gas bombardment treatment on the surface of the substrate; and then introducing nitrogen gas into the furnace after the gas bombardment treatment and introducing the nitrogen into the furnace Covering the surface of the substrate with a DLC film using a graphite target while reducing the gas flow rate.
The mixed gas is preferably a mixed gas containing argon gas and 4% by mass or more of hydrogen gas with respect to the total mass of the mixed gas.
In the coating step, after the diamond-like carbon film is coated while reducing the flow rate of the nitrogen gas introduced into the furnace, the introduction of nitrogen gas is further stopped (the amount of nitrogen gas introduced is reduced to 0 sccm). It is preferable to coat a diamond-like carbon film.
In the coating step, the flow rate of nitrogen gas introduced into the furnace is preferably 5 sccm or more and 30 sccm or less.

本発明によれば、密着性に優れた被覆工具およびその製造方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the coating tool excellent in adhesiveness and its manufacturing method are provided.

図1は、本発明例である試料No.1について、DLC皮膜のグロー放電発光分光分析結果を示すグラフである。1 shows a sample No. 1 as an example of the present invention. 1 is a graph showing the results of glow discharge optical emission spectrometry of a DLC film for 1. 図2は、本発明例である試料No.2について、DLC皮膜のグロー放電発光分光分析結果を示すグラフである。FIG. 2 shows a sample No. as an example of the present invention. 2 is a graph showing the results of glow discharge emission spectroscopic analysis of a DLC film. 図3は、本発明例である試料No.3について、DLC皮膜のグロー放電発光分光分析結果を示すグラフである。3 shows a sample No. which is an example of the present invention. 3 is a graph showing the results of glow discharge emission spectroscopic analysis of a DLC film. 図4は、比較試料No.1について、DLC皮膜のグロー放電発光分光分析結果を示すグラフである。FIG. 1 is a graph showing the results of glow discharge optical emission spectrometry of a DLC film for 1. 図5は、比較試料No.2について、DLC皮膜のグロー放電発光分光分析結果を示すグラフである。FIG. 2 is a graph showing the results of glow discharge emission spectroscopic analysis of a DLC film. 図6は、比較試料No.3について、DLC皮膜のグロー放電発光分光分析結果を示すグラフである。FIG. 3 is a graph showing the results of glow discharge emission spectroscopic analysis of a DLC film. 図7は、本発明例である試料No.1について、DLC皮膜のオージェ電子分光分析結果を示すグラフである。7 shows a sample No. 1 as an example of the present invention. 1 is a graph showing the results of Auger electron spectroscopy analysis of a DLC film. 図8は、本発明例である試料No.3について、DLC皮膜のオージェ電子分光分析結果を示すグラフである。8 shows a sample No. which is an example of the present invention. 3 is a graph showing the results of Auger electron spectroscopy analysis of the DLC film. 図9は、比較試料No.3について、DLC皮膜のオージェ電子分光分析結果を示すグラフである。FIG. 3 is a graph showing the results of Auger electron spectroscopy analysis of the DLC film. 図10は、実施例で用いたT字型フィルタードアーク成膜装置の概略図である。FIG. 10 is a schematic view of a T-shaped filtered arc film forming apparatus used in the examples. 図11は、本発明例である試料No.1〜No.3のDLC皮膜の光学顕微鏡による表面観察写真である。11 shows a sample No. which is an example of the present invention. 1-No. 3 is a surface observation photograph of the DLC film of No. 3 by an optical microscope. 図12は、比較試料No.1〜No.6のDLC皮膜の光学顕微鏡による表面観察写真である。FIG. 1-No. 6 is a surface observation photograph of the DLC film of No. 6 with an optical microscope. 図13は、ボールオンディスク試験後の本発明例である各試料の光学顕微鏡による表面観察写真である。FIG. 13 is a surface observation photograph of each sample, which is an example of the present invention after the ball-on-disk test, using an optical microscope. 図14は、ボールオンディスク試験後の各比較試料の光学顕微鏡による表面観察写真である。FIG. 14 is a surface observation photograph by an optical microscope of each comparative sample after the ball-on-disk test.

本発明の被覆工具は、基材の表面にダイヤモンドライクカーボン皮膜を被覆した被覆工具であり、皮膜表面から測定したナノインデンテーション硬度を50GPa以上100GPa以下とする。本発明の被覆工具は、皮膜表面から測定したナノインデンテーション硬度が50GPa以上の高硬度なDLC皮膜を基材上に有するものである。ナノインデンテーション硬度が50GPaを下回る低硬度であると、耐摩耗性が低下するため、工具寿命が十分でないものとなる。一方、皮膜の硬さが100GPaよりも高硬度になると、残留応力が高くなり過ぎて、基材との密着性が低下する。   The coated tool of the present invention is a coated tool in which the surface of a base material is coated with a diamond-like carbon film, and the nanoindentation hardness measured from the film surface is 50 GPa or more and 100 GPa or less. The coated tool of the present invention has a DLC film having a high hardness having a nanoindentation hardness of 50 GPa or more measured from the film surface on a substrate. When the nanoindentation hardness is low and lower than 50 GPa, the wear resistance is lowered, and the tool life is not sufficient. On the other hand, when the hardness of the film is higher than 100 GPa, the residual stress becomes too high, and the adhesion with the substrate is lowered.

本発明におけるDLC皮膜のナノインデンテーション硬度としては、耐摩耗性が良好で基材との密着により優れたものとなる点で、55GPa以上がより好ましく、60GPa以上がさらに好ましい。また、DLC皮膜のナノインデンテーション硬度は、95GPa以下がより好ましく、90GPa以下がさらに好ましい。   The nanoindentation hardness of the DLC film in the present invention is more preferably 55 GPa or more, and even more preferably 60 GPa or more, from the viewpoint of good wear resistance and excellent adhesion to the substrate. The nanoindentation hardness of the DLC film is more preferably 95 GPa or less, and still more preferably 90 GPa or less.

ナノインデンテーション硬度とは、探針を試料(DLC皮膜)に押し込んで塑性変形させた際の塑性硬さのことであり、押し込み荷重と押し込み深さ(変位)とから荷重−変位曲線を求めて、硬度を算出する。具体的には、株式会社エリオニクス製のナノインデンテーション装置を用い、押込み荷重9.8mN、最大荷重保持時間1秒、荷重負荷後の除去速度0.49mN/秒の測定条件で皮膜表面の硬度を10点測定し、値の大きい2点と値の小さい2点を除いた6点の平均値から求められる。   Nanoindentation hardness is the plastic hardness when a probe is pressed into a sample (DLC film) and plastically deformed. A load-displacement curve is obtained from the indentation load and indentation depth (displacement). Calculate the hardness. Specifically, using a nanoindentation device manufactured by Elionix Co., Ltd., the hardness of the coating surface was measured under the measurement conditions of an indentation load of 9.8 mN, a maximum load holding time of 1 second, and a removal rate after loading of 0.49 mN / second. Ten points are measured and obtained from an average value of six points excluding two points having a large value and two points having a small value.

高硬度なDLC皮膜は、内部応力が極めて高く基材との密着性が乏しい傾向にある。そのため、従来からDLC皮膜よりも硬度が低い中間皮膜を設けることで基材とDLC皮膜との密着性を確保する技術が提案されている。しかし、本発明者の検討によれば、基材とDLC皮膜との間に金属、炭化物または窒化物等の中間皮膜を介在させた場合、中間皮膜の表面欠陥を起点としてDLC皮膜が優先的に剥離するため、密着性を改善するには十分でないことを確認した。
一方、水素原子または窒素原子を含有するDLC皮膜は、硬度及び残留応力が低下することが知られている。DLC皮膜に含まれる水素原子の含有量が多くなると、硬度及び残留応力は低下する。例えば、DLC被膜を被覆金型の被覆用材料として適用した場合、成形中の温度上昇によってDLC皮膜に含まれる水素が蒸発し、金型に空隙等の欠陥が生じて、金型寿命が低下する。また、DLC皮膜に含まれる窒素原子の含有量が多くなる場合も、硬度及び残留応力は低下する。非鉄系材料を加工した場合、溶着が発生し易くなる。そのため、水素原子または窒素原子を過多に含有するDLC皮膜を介在させて密着性が向上させたとしても、工具特性は改善され難い。
High hardness DLC films tend to have very high internal stress and poor adhesion to the substrate. Therefore, conventionally, a technique has been proposed in which an intermediate film having a lower hardness than the DLC film is provided to ensure adhesion between the base material and the DLC film. However, according to the study of the present inventor, when an intermediate film such as a metal, carbide or nitride is interposed between the base material and the DLC film, the DLC film is preferentially started from the surface defect of the intermediate film. In order to peel, it confirmed that it was not enough to improve adhesiveness.
On the other hand, it is known that a DLC film containing hydrogen atoms or nitrogen atoms has reduced hardness and residual stress. As the content of hydrogen atoms contained in the DLC film increases, the hardness and residual stress decrease. For example, when a DLC film is applied as a coating material for a coating mold, hydrogen contained in the DLC film evaporates due to a temperature rise during molding, resulting in defects such as voids in the mold, resulting in a decrease in mold life. . Also, when the content of nitrogen atoms contained in the DLC film increases, the hardness and residual stress decrease. When a non-ferrous material is processed, welding is likely to occur. Therefore, even if the adhesion is improved by interposing a DLC film containing excessive hydrogen atoms or nitrogen atoms, the tool characteristics are hardly improved.

そこで、本発明者は、基材の直上にDLC皮膜を設け、そのDLC皮膜の厚み方向における皮膜構造を連続的に変化させて残留応力を低下する手法を検討した。その結果、水素及び窒素の元素を厚み方向に均一に含有させず、DLC皮膜の基材側から表面側に向かう厚み方向に水素原子及び窒素原子の含有量を共に減少させると、残留応力が低下し、炭化物が多い冷間工具鋼を基材に用いた場合にも剥離が発生せず、密着性が改善されることを確認した。
但し、基材から離れた表面のDLC皮膜に含まれる水素原子または窒素原子の含有量が多くなると、被加工材の溶着が発生し、工具寿命が低下し易くなる。そこで、本発明の被覆工具では、DLC皮膜の基材側から表面側に向かう厚み方向に水素原子及び窒素原子の含有量を減少させていき、DLC皮膜の表面において水素原子の含有量を0.5原子%以下とし、窒素の含有量を2原子%以下とした。すなわち、これは、本発明の被覆工具は、基材側の表面の水素原子の含有量が0.5原子%を超えており、基材側の表面の窒素原子の含有量が2原子%を超えていることを示す。
このような皮膜構造を有することで、基材の直上に設けた高硬度なDLC皮膜が基材に対して高い密着性を有し、被加工材の溶着も抑制することができる。
本発明の被覆工具は、被覆金型に適用することで金型寿命を大幅に向上できるので好ましい。
In view of this, the present inventor has studied a method of reducing the residual stress by providing a DLC film directly on the substrate and continuously changing the film structure in the thickness direction of the DLC film. As a result, if the hydrogen and nitrogen elements are not uniformly contained in the thickness direction but the contents of hydrogen atoms and nitrogen atoms are reduced in the thickness direction from the base material side to the surface side of the DLC film, the residual stress decreases. And when cold tool steel with many carbides was used for a base material, peeling did not generate | occur | produce but it confirmed that adhesiveness was improved.
However, when the content of hydrogen atoms or nitrogen atoms contained in the DLC film on the surface away from the base material increases, welding of the work material occurs, and the tool life tends to be reduced. Therefore, in the coated tool of the present invention, the content of hydrogen atoms and nitrogen atoms is decreased in the thickness direction from the substrate side to the surface side of the DLC film, and the hydrogen atom content on the surface of the DLC film is reduced to 0. The content of nitrogen was 5 atomic% or less, and the nitrogen content was 2 atomic% or less. That is, in the coated tool of the present invention, the content of hydrogen atoms on the surface on the substrate side exceeds 0.5 atomic%, and the content of nitrogen atoms on the surface on the substrate side is 2 atomic%. Indicates that it has exceeded.
By having such a film structure, the high-hardness DLC film provided immediately above the substrate has high adhesion to the substrate, and welding of the workpiece can also be suppressed.
The coated tool of the present invention is preferable because it can greatly improve the mold life by being applied to the coated mold.

中でも、上記と同様の理由から、DLC皮膜の表面での水素原子の含有量としては、0.4原子%以下が好ましく、0.3原子%以下がより好ましい。
また、DLC皮膜の表面での窒素原子の含有量としては、1.5原子%以下が好ましく、1.0原子%以下がより好ましい。
Among these, for the same reason as described above, the hydrogen atom content on the surface of the DLC film is preferably 0.4 atomic% or less, and more preferably 0.3 atomic% or less.
Moreover, as content of the nitrogen atom in the surface of a DLC film, 1.5 atomic% or less is preferable and 1.0 atomic% or less is more preferable.

なお、本発明における皮膜の「表面」とは、被加工材と接触する表面およびその近傍のことをいう。また、本発明における「基材側の表面」とは、基材と接する皮膜の表面およびその界面近傍のことをいう。   The “surface” of the coating in the present invention refers to the surface in contact with the workpiece and the vicinity thereof. In addition, the “surface on the substrate side” in the present invention refers to the surface of the film in contact with the substrate and the vicinity of the interface.

水素原子の含有量は、弾性反跳粒子検出法(ERDA分析) により求めることができる。また、窒素原子の含有量は、オージェ電子分光法(AES分析)により求めることができる。   The hydrogen atom content can be determined by the elastic recoil detection method (ERDA analysis). The nitrogen atom content can be determined by Auger electron spectroscopy (AES analysis).

DLC皮膜では、基材側における水素含有量が多くなり過ぎると、基材側から表面側に向かって水素含有量を減少させても、DLC皮膜の全体に含まれる水素含有量が多くなる。結果、硬度の低下および工具使用中での水素の蒸発による工具特性の低下を招来する。基材側の水素含有量を高めるには、アセチレン(C)等の炭化水素系のガスを導入することが有効である。しかし、炭化水素系のガスを多量に導入すると、炉内に付着するススが多くなり、装置メンテナンスが困難となる。
そのため、DLC皮膜の基材側の表面は、水素含有量を0.7原子%以上7原子%以下とすることが好ましい。より好ましい水素含有量は、0.7原子%以上3原子%以下であり、更には0.7原子%以上2原子%以下である。
また、DLC皮膜では、基材側における窒素含有量が多くなり過ぎると、基材側から表面側に向かって窒素含有量を減少させても、DLC皮膜の全体に含まれる窒素含有量が多くなる。結果、硬度の低下による耐摩耗性の低下および非鉄系材料を加工した場合に溶着が発生し易くなる。
そのため、DLC皮膜の基材側の表面は、窒素含有量を2原子%超10原子%以下とすることが好ましい。より好ましい窒素含有量は、2原子%超8原子%以下であり、更には2原子%超5原子%以下である。
In the DLC film, if the hydrogen content on the substrate side is excessive, the hydrogen content contained in the entire DLC film increases even if the hydrogen content is decreased from the substrate side toward the surface side. As a result, a decrease in hardness and a decrease in tool characteristics due to evaporation of hydrogen during tool use are caused. In order to increase the hydrogen content on the substrate side, it is effective to introduce a hydrocarbon-based gas such as acetylene (C 2 H 2 ). However, if a large amount of hydrocarbon-based gas is introduced, soot adhering to the furnace increases, and apparatus maintenance becomes difficult.
Therefore, the surface of the DLC film on the base material side preferably has a hydrogen content of 0.7 atomic% or more and 7 atomic% or less. A more preferable hydrogen content is 0.7 atom% or more and 3 atom% or less, and further 0.7 atom% or more and 2 atom% or less.
In addition, in the DLC film, if the nitrogen content on the base material side increases too much, the nitrogen content contained in the entire DLC film increases even if the nitrogen content decreases from the base material side toward the surface side. . As a result, wear resistance decreases due to a decrease in hardness, and welding tends to occur when non-ferrous materials are processed.
Therefore, the surface of the DLC film on the substrate side preferably has a nitrogen content of more than 2 atomic% and not more than 10 atomic%. More preferable nitrogen content is more than 2 atomic% and 8 atomic% or less, and further more than 2 atomic% and 5 atomic% or less.

DLC皮膜の表面にドロップレットや不純物等が存在すると、これらを起点として被加工材が溶着してカジリ等が発生する。一般的な表面粗さである算術平均粗さRa(JIS−B−0601−2001に準拠)、最大高さ粗さRz(JIS−B−0601−2001に準拠)で測定した場合、Raが0.03μm以下、Rzが0.5μm以下の平滑性を有すると、被加工材の溶着の起点となる表面欠陥を低減することができる点で好ましい。より好ましくは、Raは0.02μm以下である。また、より好ましくは、Rzが0.3μm以下である。   If droplets, impurities or the like are present on the surface of the DLC film, the workpieces are welded starting from these to cause galling or the like. When measured with an arithmetic average roughness Ra (conforming to JIS-B-0601-2001) and maximum height roughness Rz (conforming to JIS-B-0601-2001), which are general surface roughnesses, Ra is 0. When the surface has a smoothness of 0.03 μm or less and Rz of 0.5 μm or less, it is preferable in that a surface defect that is a starting point of welding of the workpiece can be reduced. More preferably, Ra is 0.02 μm or less. More preferably, Rz is 0.3 μm or less.

DLC皮膜の膜厚が薄くなり過ぎると、工具としての耐久性が不足する。また、DLC皮膜の膜厚が厚くなり過ぎると、皮膜表面の面粗度が悪化する傾向にある。膜厚が厚くなり過ぎる場合、DLC皮膜が部分剥離する可能性も大きくなる。そのため、DLC皮膜の膜厚は、0.1μm〜1.5μmとすることが好ましく、0.1μm〜1.2μmとすることがより好ましい。被覆工具に十分な耐摩耗性を付与するには、DLC皮膜の膜厚は0.2μm以上であることが好ましい。平滑な表面粗さと優れた耐摩耗性を同時に達成するには、DLC皮膜の膜厚を0.5μm〜1.2μmにすることがより好ましい。   When the film thickness of the DLC film becomes too thin, the durability as a tool is insufficient. Moreover, when the film thickness of the DLC film becomes too thick, the surface roughness of the film surface tends to deteriorate. When the film thickness becomes too thick, the possibility that the DLC film partially peels increases. Therefore, the film thickness of the DLC film is preferably 0.1 μm to 1.5 μm, and more preferably 0.1 μm to 1.2 μm. In order to give sufficient wear resistance to the coated tool, the thickness of the DLC film is preferably 0.2 μm or more. In order to achieve smooth surface roughness and excellent wear resistance at the same time, the film thickness of the DLC film is more preferably 0.5 μm to 1.2 μm.

基材としては、特に制限されるものではなく、用途や目的等に応じて適宜選択することができる。例えば、超硬合金、冷間工具鋼、高速度工具鋼、プラスチック金型用鋼、熱間工具鋼等を適用することができる。基材の中でも、密着性の向上効果が高い点で、母材の炭化物が多くて皮膜剥離が発生し易い、炭素含有量が1質量%以上の高炭素鋼や超硬合金が好ましい。高炭素鋼の例としては、例えば、JIS−SKD11等が挙げられる。   The base material is not particularly limited, and can be appropriately selected according to the use and purpose. For example, cemented carbide, cold tool steel, high speed tool steel, plastic mold steel, hot tool steel, etc. can be applied. Among the base materials, a high carbon steel or cemented carbide having a carbon content of 1% by mass or more, in which a large amount of carbide of the base material is likely to cause film peeling, is preferable in that the effect of improving adhesion is high. Examples of the high carbon steel include JIS-SKD11.

続いて、本発明の被覆工具の製造方法について説明する。
本発明の被覆工具の製造方法は、フィルタードアークイオンプレーティング法で基材の表面にダイヤモンドライクカーボン皮膜を被覆する被覆工具の製造方法である。具体的には、本発明の被覆工具の製造方法は、炉内に水素を含む混合ガスを導入し、前記基材の表面をガスボンバード処理する工程と、ガスボンバード処理後の前記炉内に窒素ガスを導入し、炉内に導入する前記窒素ガスの流量を減少させながら、グラファイトターゲットを用いてダイヤモンドライクカーボン皮膜を前記基材の表面に被覆する工程と、を設けて構成されている。
Then, the manufacturing method of the coated tool of this invention is demonstrated.
The method for producing a coated tool of the present invention is a method for producing a coated tool in which a surface of a substrate is coated with a diamond-like carbon film by a filtered arc ion plating method. Specifically, the method for producing a coated tool according to the present invention includes a step of introducing a gas mixture containing hydrogen into a furnace and performing a gas bombarding process on the surface of the base material, and a nitrogen gas in the furnace after the gas bombarding process. And a step of coating the surface of the base material with a diamond-like carbon film using a graphite target while reducing the flow rate of the nitrogen gas introduced into the furnace.

本発明の被覆工具におけるDLC皮膜は、従来知られているフィルタードアークイオンプレーティング装置で被覆することができる。特に、T字型フィルタードアークイオンプレーティング装置を用いれば、より平滑なDLC皮膜が被覆できるので好ましい。
DLC皮膜の窒素含有量を基材側から表面側に向けて減少させるためには、炉内に導入する窒素ガスの流量を減少させながら、グラファイトターゲットを用いてDLC皮膜を被覆することで達成できる。一方、DLC皮膜の水素含有量を基材側から表面側に向けて減少させるためには、DLC皮膜を被覆する前に、水素ガスを含む混合ガスによるガスボンバード処理を実施することが有効である。
The DLC film in the coated tool of the present invention can be coated with a conventionally known filtered arc ion plating apparatus. In particular, the use of a T-shaped filtered arc ion plating apparatus is preferable because a smoother DLC film can be coated.
In order to reduce the nitrogen content of the DLC film from the substrate side to the surface side, it can be achieved by coating the DLC film with a graphite target while reducing the flow rate of nitrogen gas introduced into the furnace. . On the other hand, in order to reduce the hydrogen content of the DLC film from the substrate side to the surface side, it is effective to perform a gas bombardment treatment with a mixed gas containing hydrogen gas before coating the DLC film. .

DLC皮膜を被覆する前の基材において、従来のアルゴンガスによるガスボンバード処理を行った場合、皮膜と基材との界面に酸素が多く存在してしまい密着性が劣ってしまう。この界面に存在する酸素は、専ら基材表面に最初から形成されている酸化膜に起因するものであり、アルゴンガスによるガスボンバード処理では除去しきれていない残存元素である。これに対して、水素を含んだ混合ガスを用いて基材の表面をガスボンバード処理することで、基材の表面にある酸化膜が水素イオンと反応して還元され、ガスボンバード処理により酸化膜および表面の汚れを除去することが可能となる。
水素を含んだ混合ガスで基材の表面をガスボンバード処理した後には炉内に水素が残存している。そのため、ガスボンバード処理の終了後に、窒素ガスのみを炉内に導入して、ガス流量を減少させながらグラファイトターゲットに電力を投入してDLC皮膜を被覆することで、過多の水素がDLC皮膜中に含有されず、水素及び窒素が基材側から表面側に向けて減少した皮膜構成を達成することができる。
When a conventional gas bombardment process using an argon gas is performed on the base material before coating the DLC film, a large amount of oxygen is present at the interface between the film and the base material, resulting in poor adhesion. Oxygen present at the interface originates from the oxide film formed on the substrate surface from the beginning, and is a residual element that has not been removed by the gas bombardment with argon gas. In contrast, by performing gas bombardment on the surface of the substrate using a mixed gas containing hydrogen, the oxide film on the surface of the substrate is reduced by reacting with hydrogen ions, and the oxide film is formed by gas bombardment treatment. And it becomes possible to remove dirt on the surface.
Hydrogen remains in the furnace after the gas bombardment of the surface of the substrate with a mixed gas containing hydrogen. Therefore, after the gas bombardment process is completed, only nitrogen gas is introduced into the furnace, and power is applied to the graphite target while reducing the gas flow rate to coat the DLC film, so that excessive hydrogen is contained in the DLC film. It is not contained, and a film configuration in which hydrogen and nitrogen are reduced from the substrate side toward the surface side can be achieved.

水素ガスを含む混合ガスは、アルゴンガスと、混合ガス総質量に対して4質量%以上の水素ガスと、を含有する混合ガスであることが好ましい。水素濃度が4質量%以上であると、混合ガスによるガスボンバード処理で酸化膜を除去するのにより適している。また、ガスボンバード処理後に炉内に残留する水素が少なくなり、DLC皮膜の基材側に水素が含有され難い。
ガスボンバード処理する際には、高硬度なDLC皮膜の密着性を高める点で、基材に印加する負圧のバイアス電圧を−2500V〜−1500Vとすることが好ましい。基材に印加する負圧のバイアス電圧が小さいと、ガスイオンの衝突エネルギーが低いため、エッチング効果が小さくなり、高硬度なDLC皮膜の密着性が低下する傾向にある。また、基材に印加する負圧のバイアス電圧が大きいと、プラズマが不安定になって異常放電を起こしてしまうことがある。異常放電が発生すると、工具表面に異常放電(アーキング)痕が形成されるため、工具表面に凹凸が発生する場合がある。
基材表面の酸化物を均一に除去するためには、混合ガスによるガスボンバード処理を30分以上することが好ましい。
混合ガスによるガスボンバード処理後には、アセチレン等の炭化水素ガスを炉内に導入し、基材側の水素含有量を増加させてもよい。
The mixed gas containing hydrogen gas is preferably a mixed gas containing argon gas and 4% by mass or more of hydrogen gas with respect to the total mass of the mixed gas. When the hydrogen concentration is 4% by mass or more, it is more suitable to remove the oxide film by gas bombardment with a mixed gas. Further, the amount of hydrogen remaining in the furnace after the gas bombardment treatment is reduced, and it is difficult for hydrogen to be contained on the base material side of the DLC film.
When performing the gas bombardment treatment, it is preferable that the negative bias voltage applied to the substrate is -2500V to -1500V in order to improve the adhesion of the high hardness DLC film. When the negative bias voltage applied to the substrate is low, the gas ion collision energy is low, and therefore the etching effect is reduced, and the adhesion of the high hardness DLC film tends to be reduced. In addition, if the negative bias voltage applied to the substrate is large, the plasma may become unstable and abnormal discharge may occur. When abnormal discharge occurs, abnormal discharge (arcing) traces are formed on the tool surface, and unevenness may occur on the tool surface.
In order to remove the oxide on the surface of the substrate uniformly, it is preferable to perform gas bombardment treatment with a mixed gas for 30 minutes or more.
After the gas bombardment with the mixed gas, a hydrocarbon gas such as acetylene may be introduced into the furnace to increase the hydrogen content on the substrate side.

DLC皮膜の被覆時は、基材温度を200℃以下とすることが好ましい。200℃よりも高温になると、DLC皮膜のグラファイト化が進むため、硬度が低下する傾向にある。
また、DLC皮膜の被覆時には、基材に印加するバイアス電圧を−300V〜−50Vとすることが好ましい。基材に印加する負圧のバイアス電圧が−50V以下であると、カーボンイオンの衝突エネルギーが小さくならず維持しやすく、DLC皮膜にボイドなどの欠陥が発生し難くなる。また、基材に印加する負圧のバイアス電圧が−300V以上であると、成膜中に異常放電が起き難くなる。
基材に印加するバイアス電圧は、−200V〜−100Vがより好ましい。

DLC皮膜の被覆時は、基材温度を200℃以下とすることが好ましい。200℃よりも高温になると、DLC皮膜のグラファイト化が進むため、硬度が低下する傾向にある。
また、DLC皮膜の被覆時には、基材に印加するバイアス電圧、絶対値で50V〜300Vとすることが好ましい。基材に印加する負圧のバイアス電圧の絶対値が50V以上であると、カーボンイオンの衝突エネルギーが大きくなり、DLC皮膜にボイドなどの欠陥が発生し難くなる。また、基材に印加する負圧のバイアス電圧の絶対値が300V以下であると、成膜中での異常放電がより抑制される。
基材に印加するバイアス電圧は、−200V〜−100Vがより好ましい。
When coating the DLC film, the substrate temperature is preferably 200 ° C. or lower. When the temperature is higher than 200 ° C., the graphitization of the DLC film proceeds and the hardness tends to decrease.
Moreover, it is preferable that the bias voltage applied to the substrate is −300 V to −50 V when the DLC film is coated. When the negative bias voltage applied to the substrate is −50 V or less, the collision energy of carbon ions is not reduced and is easily maintained, and defects such as voids are less likely to occur in the DLC film. Further, when the negative bias voltage applied to the substrate is −300 V or more, abnormal discharge is less likely to occur during film formation.
The bias voltage applied to the substrate is more preferably -200V to -100V.

When coating the DLC film, the substrate temperature is preferably 200 ° C. or lower. When the temperature is higher than 200 ° C., the graphitization of the DLC film proceeds and the hardness tends to decrease.
Further, when the DLC film is coated, it is preferable that the bias voltage applied to the substrate is 50 V to 300 V in absolute value. When the absolute value of the negative bias voltage applied to the substrate is 50 V or more, the collision energy of carbon ions increases, and defects such as voids are less likely to occur in the DLC film. Further, when the absolute value of the negative bias voltage applied to the substrate is 300 V or less, abnormal discharge during film formation is further suppressed.
The bias voltage applied to the substrate is more preferably -200V to -100V.

ガスボンバード処理後に炉内に導入する窒素ガスの流量は、30sccm以下とすることが好ましい。ガスの流量が30sccmよりも大きくなると、DLC皮膜に含まれる窒素の含有量が増加して、硬度の低下による耐摩耗性の低下および非鉄系材料を加工した場合に、溶着が発生し易くなる。一方、炉内に導入する窒素ガスの流量が少なすぎると、DLC皮膜の残留圧縮応力を低下させるのに十分でない。そのため、ガスボンバード処理後に、炉内に導入する窒素ガスの流量は、DLC皮膜の残留圧縮応力の低下の観点から、5sccm以上とすることが好ましい。そして、DLC皮膜は、炉内に導入する窒素ガスの流量を段階的に減少させながら被覆し、その後窒素ガスの導入を止め、最終的には窒素ガスを導入せずにDLC皮膜を被覆することが好ましい。   The flow rate of nitrogen gas introduced into the furnace after the gas bombardment treatment is preferably 30 sccm or less. When the gas flow rate is higher than 30 sccm, the content of nitrogen contained in the DLC film increases, so that the wear resistance is reduced due to the decrease in hardness, and welding is likely to occur when non-ferrous materials are processed. On the other hand, if the flow rate of nitrogen gas introduced into the furnace is too small, it is not sufficient to reduce the residual compressive stress of the DLC film. For this reason, the flow rate of nitrogen gas introduced into the furnace after the gas bombardment treatment is preferably 5 sccm or more from the viewpoint of lowering the residual compressive stress of the DLC film. The DLC film is coated while gradually reducing the flow rate of the nitrogen gas introduced into the furnace, and then the introduction of the nitrogen gas is stopped, and finally the DLC film is coated without introducing the nitrogen gas. Is preferred.

本発明の被覆工具の製造方法では、フィルタードアークイオンプレーティング法で基材の表面にダイヤモンドライクカーボン皮膜を被覆する。フィルタードアークイオンプレーティング装置を用いるため、平滑なDLC皮膜が得られやすいが、膜厚が厚くなると表面粗さが低下する場合がある。その場合は、被覆後のDLC皮膜の表面を研摩処理することで、被覆工具において好ましい表面状態を達成することができる。
また、DLC皮膜を被覆する前の基材については、基材とDLC皮膜の密着性をより向上させるためにより平滑であることが好ましい。具体的には、基材の表面粗さは、一般的な表面粗さである算術平均粗さRa(JIS−B−0601−2001に準拠)、及び最大高さ粗さRz(JIS−B−0601−2001に準拠)にて測定した場合、Raが0.06μm以下、Rzが0.1μm以下に研磨されていることが好ましい。更には、基材の表面粗さは、Raが0.05μm以下、Rzが0.08μm以下であることがより好ましい。
In the method for producing a coated tool of the present invention, a diamond-like carbon film is coated on the surface of a substrate by a filtered arc ion plating method. Since a filtered arc ion plating apparatus is used, a smooth DLC film can be easily obtained, but the surface roughness may decrease as the film thickness increases. In that case, the surface state of the coated tool can be achieved by polishing the surface of the coated DLC film.
Moreover, about the base material before coat | covering a DLC film, it is preferable that it is smoother in order to improve the adhesiveness of a base material and a DLC film more. Specifically, the surface roughness of the substrate is an arithmetic average roughness Ra (based on JIS-B-0601-2001), which is a general surface roughness, and a maximum height roughness Rz (JIS-B-). In accordance with 0601-2001), Ra is preferably polished to 0.06 μm or less and Rz to 0.1 μm or less. Furthermore, as for the surface roughness of a base material, it is more preferable that Ra is 0.05 micrometer or less and Rz is 0.08 micrometer or less.

以下、本発明を実施例により更に具体的に説明するが、本発明はその主旨を越えない限り、以下の実施例に限定されるものではない。なお、特に断りのない限り、「部」は質量基準である。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist thereof. Unless otherwise specified, “part” is based on mass.

(実施例1)
<成膜装置>
成膜装置は、T字型フィルタードアークイオンプレーティング装置を用いた。装置の概略図を図10に示す。成膜チャンバー(6)には、グラファイトターゲットを設置したカーボン陰極(カソード)(1)を装着するアーク放電式蒸発源と、基材を搭載するための基材ホルダー(7)を有する。基材ホルダーの下には回転機構(8)があり、基材は基材ホルダーを介して、自転かつ公転する。符号(2)は、カーボン成膜ビームを示し、符号(3)は、球状グラファイト(ドロップレット)中性粒子を示す。
グラファイトターゲット表面上にアーク放電を発生させると、電荷を有するカーボンのみが磁気コイル(4)に曲げられて成膜チャンバーに到達して基材に皮膜を被覆する。電荷を有しないドロップレットは磁気コイルによって曲げられずにダクト(5)内に捕集される。
Example 1
<Deposition system>
As the film forming apparatus, a T-shaped filtered arc ion plating apparatus was used. A schematic diagram of the apparatus is shown in FIG. The film forming chamber (6) has an arc discharge evaporation source on which a carbon cathode (cathode) (1) provided with a graphite target is mounted, and a substrate holder (7) for mounting the substrate. There is a rotation mechanism (8) under the substrate holder, and the substrate rotates and revolves through the substrate holder. Reference numeral (2) indicates a carbon film forming beam, and reference numeral (3) indicates spherical graphite (droplet) neutral particles.
When an arc discharge is generated on the surface of the graphite target, only the charged carbon is bent by the magnetic coil (4) and reaches the film forming chamber to cover the substrate with the coating. The droplets without charge are collected in the duct (5) without being bent by the magnetic coil.

<基材>
DLC皮膜の被覆直後の剥離状態と溶着性の評価には、寸法がφ20×5mmの60HRCに調質したJIS−SKD11相当鋼材の基材を用いた。
ナノインデンター硬さ、皮膜分析、破断面による膜厚の測定には、コバルト含量が10質量%の炭化タングステン(WC−10質量%Co)からなる超硬合金製の基材(寸法:4mm×8mm×25mm、平均粒度:0.8μm、硬度:91.2HRA)を用いた。
スクラッチ試験には、寸法が21mm×17mm×2mmのJIS−SKH51相当鋼材の基材を用いた。
上記のいずれの基材も、DLC皮膜を被覆する前に、算術平均粗さRaが0.01μm以下、最大高さ粗さRzが0.07μm以下となるように研磨した。そして、研磨後、脱脂洗浄して、チャンバー内の基材ホルダーに固定した。
各基材に対しては、DLC皮膜を以下の条件で被覆した。
<Base material>
For the evaluation of the peeled state and the weldability immediately after the coating of the DLC film, a base material of JIS-SKD11 equivalent steel material tempered to 60 HRC with a dimension of φ20 × 5 mm was used.
For measurement of film thickness by nanoindenter hardness, film analysis, and fracture surface, a substrate made of cemented carbide made of tungsten carbide (WC-10 mass% Co) having a cobalt content of 10 mass% (dimension: 4 mm × 8 mm × 25 mm, average particle size: 0.8 μm, hardness: 91.2 HRA).
For the scratch test, a base material of JIS-SKH51 equivalent steel material having dimensions of 21 mm × 17 mm × 2 mm was used.
Before coating the DLC film, any of the above substrates was polished so that the arithmetic average roughness Ra was 0.01 μm or less and the maximum height roughness Rz was 0.07 μm or less. And after grinding | polishing, it degreased and washed and it fixed to the base-material holder in a chamber.
Each substrate was coated with a DLC film under the following conditions.

<実施例1(試料No.1)>
成膜チャンバーを5×10-3Paまで真空引きを行い、加熱用ヒーターにより基材を150℃付近に加熱して90分間保持した。
その後、基材に印加する負圧のバイアス電圧を−2000Vとし、アルゴンガスに5質量%の水素ガスを含有した混合ガスによるガスボンバード処理を90分実施した。混合ガスの流量は50sccm〜100sccmとした。
ガスボンバード処理後、成膜チャンバーに10sccm窒素ガスを導入し、基材に−150Vのバイアス電圧を印加して、基材温度を100℃以下とした。そして、グラファイトターゲットに50Aの電流を投入し、DLC皮膜を約10分間被覆した。
次いで、窒素ガスを5sccmとし、DLC皮膜を約10分間被覆した。次いで、窒素ガスの導入を止めて、DLC皮膜を30分間被覆した。
<Example 1 (Sample No. 1)>
The film forming chamber was evacuated to 5 × 10 −3 Pa, the substrate was heated to around 150 ° C. with a heater for heating, and held for 90 minutes.
Thereafter, a negative pressure bias voltage applied to the substrate was set to −2000 V, and a gas bombardment treatment with a mixed gas containing 5 mass% hydrogen gas in argon gas was performed for 90 minutes. The flow rate of the mixed gas was 50 sccm to 100 sccm.
After the gas bombardment treatment, 10 sccm nitrogen gas was introduced into the film forming chamber, a bias voltage of −150 V was applied to the substrate, and the substrate temperature was adjusted to 100 ° C. or lower. Then, a 50 A current was applied to the graphite target, and the DLC film was coated for about 10 minutes.
Next, nitrogen gas was set to 5 sccm, and the DLC film was coated for about 10 minutes. Next, the introduction of nitrogen gas was stopped and the DLC film was coated for 30 minutes.

<実施例2(試料No.2)>
ガスボンバード処理までは試料No.1と同様とした。ガスボンバード処理後、成膜チャンバーに10sccm窒素ガスを導入し、基材に−150Vのバイアス電圧を印加して、基材温度を100℃以下とした。そして、グラファイトターゲットに投入する電流を50A〜80Aに段階的に増加させ、DLC皮膜を約30分間被覆した。
次いで、窒素ガス流量を5sccmとし、DLC皮膜を約30分間被覆した。次に、窒素ガスの導入を止めて、DLC皮膜を約70分間被覆した。
<Example 2 (Sample No. 2)>
Sample No. until gas bombardment treatment. Same as 1. After the gas bombardment treatment, 10 sccm nitrogen gas was introduced into the film forming chamber, a bias voltage of −150 V was applied to the substrate, and the substrate temperature was adjusted to 100 ° C. or lower. Then, the current supplied to the graphite target was increased stepwise from 50A to 80A, and the DLC film was coated for about 30 minutes.
Next, the nitrogen gas flow rate was 5 sccm, and the DLC film was coated for about 30 minutes. Next, the introduction of nitrogen gas was stopped and the DLC film was coated for about 70 minutes.

<実施例3(試料No.3)>
ガスボンバード処理までは試料No.1と同様とした。ガスボンバード処理後、成膜チャンバーに20sccm窒素ガスを導入し、基材には−150Vのバイアス電圧を印加して、基材温度を100℃以下とした。そして、グラファイトターゲットに投入する電流を50A〜80Aに段階的に増加させ、DLC皮膜を約30分間被覆した。
次いで、窒素ガス流量を20sccmから5sccmに段階的に変化させ、DLC皮膜を約30分間被覆した。次いで、窒素ガスの導入を止めて、DLC皮膜を約70分間被覆した。
<Example 3 (Sample No. 3)>
Sample No. until gas bombardment treatment. Same as 1. After the gas bombardment treatment, 20 sccm nitrogen gas was introduced into the film forming chamber, a bias voltage of −150 V was applied to the substrate, and the substrate temperature was adjusted to 100 ° C. or lower. Then, the current supplied to the graphite target was increased stepwise from 50A to 80A, and the DLC film was coated for about 30 minutes.
Next, the nitrogen gas flow rate was changed stepwise from 20 sccm to 5 sccm, and the DLC film was coated for about 30 minutes. Next, the introduction of nitrogen gas was stopped and the DLC film was coated for about 70 minutes.

<実施例4(試料No.4)>
ガスボンバード処理までは試料No.1と同様とした。ガスボンバード処理後、成膜チャンバーに5sccmのCガスを5分間導入した。その後、Cの導入を止めて、10sccm窒素ガスを導入し、基材には−150Vのバイアス電圧を印加して、基材温度を100℃以下とした。そして、グラファイトターゲットに50Aの電流を投入して、DLC皮膜を約10分間被覆した。
次いで、窒素ガスの流量を5sccmとしてDLC皮膜を約10分間被覆した。次いで、窒素ガスの導入を止めて、DLC皮膜を約30分間被覆した。
<Example 4 (Sample No. 4)>
Sample No. until gas bombardment treatment. Same as 1. After the gas bombardment treatment, 5 sccm of C 2 H 2 gas was introduced into the film formation chamber for 5 minutes. Thereafter, introduction of C 2 H 2 was stopped, 10 sccm nitrogen gas was introduced, a bias voltage of −150 V was applied to the substrate, and the substrate temperature was adjusted to 100 ° C. or lower. Then, a current of 50 A was applied to the graphite target to coat the DLC film for about 10 minutes.
Next, the DLC film was coated for about 10 minutes with a nitrogen gas flow rate of 5 sccm. Next, the introduction of nitrogen gas was stopped, and the DLC film was coated for about 30 minutes.

<実施例5(試料No.5)>
ガスボンバード処理までは試料No.1と同様とした。ガスボンバード処理後、成膜チャンバーに100sccmのアルゴンガスに5質量%の水素ガスを含有した混合ガスを5分間導入した。その後、混合ガスの導入を止めて、10sccm窒素ガスを導入し、基材には−150Vのバイアス電圧を印加して、基材温度を100℃以下とした。そして、グラファイトターゲットに投入する電流を50AとしてDLC皮膜を約10分間被覆した。
次いで、窒素ガス流量を5sccmとし、DLC皮膜を約10分間被覆した。次いで、窒素ガスの導入を止めて、DLC皮膜を約30分間被覆した。
<Example 5 (Sample No. 5)>
Sample No. until gas bombardment treatment. Same as 1. After the gas bombardment treatment, a mixed gas containing 5% by mass of hydrogen gas in 100 sccm of argon gas was introduced into the film formation chamber for 5 minutes. Thereafter, the introduction of the mixed gas was stopped, 10 sccm nitrogen gas was introduced, a bias voltage of −150 V was applied to the substrate, and the substrate temperature was adjusted to 100 ° C. or lower. Then, the current applied to the graphite target was 50 A, and the DLC film was coated for about 10 minutes.
Next, the nitrogen gas flow rate was 5 sccm, and the DLC film was coated for about 10 minutes. Next, the introduction of nitrogen gas was stopped, and the DLC film was coated for about 30 minutes.

<実施例6(試料No.6)>
ガスボンバード処理までは試料No.1と同様とした。ガスボンバード処理後、成膜チャンバーに10sccmのCガスを10分間導入した。その後、10sccmのCガスと15sccmの窒素ガスを同時に導入し、基材には−150Vのバイアス電圧を印加して、基材温度を100℃以下とした。そして、グラファイトターゲットに投入する電流を50A〜80Aに段階的に増加させ、DLC皮膜を約6分間被覆した。
次いで、Cガスの導入を止めて、15sccmの窒素ガス流量を導入し、DLC皮膜を約45分間被覆した。次いで、窒素ガス流量を15sccmから5sscmに段階的に変化させ、DLC皮膜を約45分間被覆した。次いで、窒素ガスの導入を止めて、DLC皮膜を約100分間被覆した。
<Example 6 (Sample No. 6)>
Sample No. until gas bombardment treatment. Same as 1. After the gas bombardment treatment, 10 sccm of C 2 H 2 gas was introduced into the deposition chamber for 10 minutes. Thereafter, 10 sccm of C 2 H 2 gas and 15 sccm of nitrogen gas were simultaneously introduced, and a bias voltage of −150 V was applied to the base material so that the base material temperature was 100 ° C. or lower. Then, the current supplied to the graphite target was increased stepwise from 50A to 80A, and the DLC film was coated for about 6 minutes.
Next, the introduction of C 2 H 2 gas was stopped, a nitrogen gas flow rate of 15 sccm was introduced, and the DLC film was coated for about 45 minutes. Next, the nitrogen gas flow rate was changed stepwise from 15 sccm to 5 sscm, and the DLC film was coated for about 45 minutes. Next, the introduction of nitrogen gas was stopped and the DLC film was coated for about 100 minutes.

<実施例7(試料No.7)>
ガスボンバード処理までは試料No.1と同様とした。ガスボンバード処理後、成膜チャンバーにCガスを導入した。その後、Cの導入を止めて、10sccm窒素ガスを導入し、基材には−150Vのバイアス電圧を印加して、基材温度を100℃以下とした。そして、グラファイトターゲットに投入する電流を50Aとし、DLC皮膜を約10分間被覆した。次いで、再び炉内にCガスを導入した。その後、Cガスの導入を止めて、窒素ガス流量を5sccmとして、DLC皮膜を約10分間被覆した。次いで、窒素ガスの導入を止めて、DLC皮膜を約30分間被覆した。
<Example 7 (Sample No. 7)>
Sample No. until gas bombardment treatment. Same as 1. After the gas bombardment treatment, C 2 H 2 gas was introduced into the film formation chamber. Thereafter, introduction of C 2 H 2 was stopped, 10 sccm nitrogen gas was introduced, a bias voltage of −150 V was applied to the substrate, and the substrate temperature was adjusted to 100 ° C. or lower. The current applied to the graphite target was 50 A, and the DLC film was coated for about 10 minutes. Next, C 2 H 2 gas was again introduced into the furnace. Thereafter, the introduction of C 2 H 2 gas was stopped, the nitrogen gas flow rate was set to 5 sccm, and the DLC film was coated for about 10 minutes. Next, the introduction of nitrogen gas was stopped, and the DLC film was coated for about 30 minutes.

<比較例1(比較試料No.1)>
ガスボンバード処理までは試料No.1と同様とした。ガスボンバード処理後、窒素ガスを導入せず、基材に−150Vのバイアス電圧を印加して、基材温度を100℃以下とした。そして、グラファイトターゲットに投入する電流を50AとしてDLC皮膜を約50分間成膜した。
<Comparative Example 1 (Comparative Sample No. 1)>
Sample No. until gas bombardment treatment. Same as 1. After the gas bombardment treatment, a nitrogen gas was not introduced, and a bias voltage of −150 V was applied to the substrate to make the substrate temperature 100 ° C. or lower. A DLC film was formed for about 50 minutes with an electric current applied to the graphite target being 50 A.

<比較例2(比較試料No.2)>
ガスボンバード処理は、アルゴンガスのみで行った。ガスボンバード処理後、成膜チャンバーに10sccm窒素ガスを導入し、基材に−150Vのバイアス電圧を印加し、基材温度を100℃以下とした。そして、グラファイトターゲットに投入する電流を50Aとして、DLC皮膜を約10分間被覆した。次いで、窒素ガス流量を5sccmとし、DLC皮膜を約10分間被覆した。次いで、窒素ガスの導入を止めて、DLC皮膜を約30分間被覆した。
<Comparative Example 2 (Comparative Sample No. 2)>
The gas bombardment process was performed only with argon gas. After the gas bombardment treatment, 10 sccm nitrogen gas was introduced into the film forming chamber, a bias voltage of −150 V was applied to the substrate, and the substrate temperature was adjusted to 100 ° C. or lower. And the electric current thrown into a graphite target was 50 A, and the DLC film was coat | covered for about 10 minutes. Next, the nitrogen gas flow rate was 5 sccm, and the DLC film was coated for about 10 minutes. Next, the introduction of nitrogen gas was stopped, and the DLC film was coated for about 30 minutes.

<比較例3(比較試料No.3;従来例)>
ガスボンバード処理は、アルゴンガスのみで行った。ガスボンバード処理後、窒素ガスを導入せず、基材に−150Vのバイアス電圧を印加して、基材温度を100℃以下とした。そして、グラファイトターゲットに投入する電流を50AとしてDLC皮膜を約50分間成膜した。
<Comparative Example 3 (Comparative Sample No. 3; Conventional Example)>
The gas bombardment process was performed only with argon gas. After the gas bombardment treatment, a nitrogen gas was not introduced, and a bias voltage of −150 V was applied to the substrate to make the substrate temperature 100 ° C. or lower. A DLC film was formed for about 50 minutes with an electric current applied to the graphite target being 50 A.

<比較例4(比較試料No.4;従来例)>
DLC皮膜の被覆前に基材表面をアルゴンガスのみでガスボンバード処理して約3μmのCrNを中間皮膜として被覆した。中間皮膜の被覆後、窒素ガスを導入せず、基材に−150Vのバイアス電圧を印加して、基材温度を100℃以下とした。そして、グラファイトターゲットに投入する電流を50AとしてDLC皮膜を約50分間成膜した。
<Comparative Example 4 (Comparative Sample No. 4; Conventional Example)>
Before coating the DLC film, the substrate surface was gas bombarded with only argon gas to coat about 3 μm of CrN as an intermediate film. After the coating of the intermediate film, nitrogen gas was not introduced, and a bias voltage of −150 V was applied to the substrate to make the substrate temperature 100 ° C. or lower. A DLC film was formed for about 50 minutes with an electric current applied to the graphite target being 50 A.

なお、上述した何れの試料も、基材の温度200℃以下になるように成膜と冷却を繰り返しながらDLC皮膜を被覆した。
DLC皮膜を被覆した各試料について、硬度測定、密着性評価、溶着性評価、構造分析を行った。以下、その測定条件について説明する。
In addition, any sample mentioned above coat | covered the DLC film, repeating film-forming and cooling so that the temperature of a base material might be 200 degrees C or less.
Each sample coated with the DLC film was subjected to hardness measurement, adhesion evaluation, weldability evaluation, and structural analysis. Hereinafter, the measurement conditions will be described.

<比較例5(比較試料No.5)>
ガスボンバード処理までは、試料No.1と同様とした。ガスボンバード処理後、成膜チャンバーに10sccm窒素ガスを導入し、基材に−150Vのバイアス電圧を印加して、基材温度を100℃以下とした。そして、グラファイトターゲットに50Aの電流を投入し、DLC皮膜を約10分間被覆した。
次いで、窒素ガスを5sccmとし、DLC皮膜を約10分間被覆した。次いで、窒素ガスの導入を止めて、20sccmのCガスを導入し、DLC皮膜を30分間被覆した。
<Comparative Example 5 (Comparative Sample No. 5)>
Until gas bombardment processing, sample No. Same as 1. After the gas bombardment treatment, 10 sccm nitrogen gas was introduced into the film forming chamber, a bias voltage of −150 V was applied to the substrate, and the substrate temperature was adjusted to 100 ° C. or lower. Then, a 50 A current was applied to the graphite target, and the DLC film was coated for about 10 minutes.
Next, nitrogen gas was set to 5 sccm, and the DLC film was coated for about 10 minutes. Next, the introduction of nitrogen gas was stopped, 20 sccm of C 2 H 2 gas was introduced, and the DLC film was coated for 30 minutes.

<比較例6(比較試料No.6)>
ガスボンバード処理までは、試料No.1と同様とした。ガスボンバード処理後、成膜チャンバーに20sccm窒素ガスを導入し、基材には−150Vのバイアス電圧を印加して、基材温度を100℃以下とした。そして、グラファイトターゲットに投入する電流を50A〜80Aに段階的に増加させ、DLC皮膜を約30分間被覆した。
次いで、窒素ガス流量を20sccmから5sccmに段階的に変化させ、DLC皮膜を約30分間被覆した。次いで、5sccm窒素ガスの導入し、DLC皮膜を約70分間被覆した。
<Comparative Example 6 (Comparative Sample No. 6)>
Until gas bombardment processing, sample No. Same as 1. After the gas bombardment treatment, 20 sccm nitrogen gas was introduced into the film forming chamber, a bias voltage of −150 V was applied to the substrate, and the substrate temperature was adjusted to 100 ° C. or lower. Then, the current supplied to the graphite target was increased stepwise from 50A to 80A, and the DLC film was coated for about 30 minutes.
Next, the nitrogen gas flow rate was changed stepwise from 20 sccm to 5 sccm, and the DLC film was coated for about 30 minutes. Next, 5 sccm of nitrogen gas was introduced, and the DLC film was coated for about 70 minutes.

<測定および評価>
−硬度の測定−
株式会社エリオニクス製のナノインデンテーション装置を用い、皮膜表面の硬度を測定した。押込み荷重9.8mN、最大荷重保持時間1秒、荷重負荷後の除去速度0.49mN/秒の測定条件で10点測定し、値の大きい2点と値の小さい2点を除いて6点の平均値から求めた。標準試料である溶融石英の硬さが15GPa、CVDダイヤモンド皮膜の硬さが100GPaであることを確認した。
<Measurement and evaluation>
-Measurement of hardness-
The hardness of the coating surface was measured using a nanoindentation device manufactured by Elionix Co., Ltd. 10 points were measured under the measurement conditions of indentation load of 9.8 mN, maximum load holding time of 1 second, and removal speed after load loading of 0.49 mN / second. 6 points were excluded except 2 points with large values and 2 points with small values. Obtained from the average value. It was confirmed that the hardness of the fused quartz as the standard sample was 15 GPa and the hardness of the CVD diamond film was 100 GPa.

−表面粗さの測定−
株式会社東京精密製の接触式面粗さ測定器SURFCOM480Aを用いて、JIS−B−0601−2001に従って、粗さ曲線より算術平均粗さRaと最大高さ粗さRzを測定した。測定条件は、評価長さ:4.0mm、測定速度:0.3mm/s、カットオフ値:0.8mmとした。
-Measurement of surface roughness-
Arithmetic average roughness Ra and maximum height roughness Rz were measured from a roughness curve according to JIS-B-0601-2001 using a contact type surface roughness measuring device SURFCOM 480A manufactured by Tokyo Seimitsu Co., Ltd. The measurement conditions were as follows: evaluation length: 4.0 mm, measurement speed: 0.3 mm / s, cut-off value: 0.8 mm.

−密着性の評価−
被覆直後の試料のDLC皮膜表面を、株式会社ミツトヨ製の光学顕微鏡を用いて約800倍の倍率で観察して剥離状況を評価した。DLC皮膜の表面剥離の評価基準は以下の通りとした。
<表面剥離の評価基準>
A:表面剥離無し
B:微小剥離有り
C:剥離有り
-Evaluation of adhesion-
The surface of the DLC film of the sample immediately after coating was observed at a magnification of about 800 times using an optical microscope manufactured by Mitutoyo Corporation to evaluate the peeling state. The evaluation criteria for the surface peeling of the DLC film were as follows.
<Evaluation criteria for surface peeling>
A: No surface peeling B: With micro peeling C: With peeling

また、CSM社製スクラッチ試験機(REVETEST)を用いて剥離荷重を測定した。測定条件は、測定荷重:0〜100N、荷重スピード:99.25N/min、スクラッチスピード:10mm/min、スクラッチ距離:10mm、AE感度:5、圧子:ロックウェル、ダイヤモンド、先端半径:200μm、ハードウェア設定:Fnコンタクト0.9N、Fnスピード:5N/s、Fn除去スピード :10N/s、アプローチスピード:2%/sとした。
初期チッピング発生荷重をA荷重とし、スクラッチ痕底部の基材が完全に露出した時の荷重をB荷重として評価した。
The peel load was measured using a CSM scratch tester (REVETEST). The measurement conditions are: measurement load: 0 to 100 N, load speed: 99.25 N / min, scratch speed: 10 mm / min, scratch distance: 10 mm, AE sensitivity: 5, indenter: Rockwell, diamond, tip radius: 200 μm, hard Wear setting: Fn contact 0.9 N, Fn speed: 5 N / s, Fn removal speed: 10 N / s, approach speed: 2% / s.
The initial chipping occurrence load was evaluated as A load, and the load when the substrate at the bottom of the scratch mark was completely exposed was evaluated as B load.

−GD−OES分析−
窒素成分の分布を確認するため、DLC皮膜表面から基材にかけてグロー放電発光分析(GD−OES)による構造分析を行った。装置はHORIBA JOBIN YVON製のJY−5000RF型GD−OESを使用した。分析条件は、スパッタリング用ガスとしてArを用い、圧力:600Pa、出力:35W、モジュール:6V、フェーズ4:V、ガス置換時間:20秒、予備スパッタ時間:30秒、バックグラウンド:10秒、測定時間:90秒〜120秒とした。
窒素の発光強度が低いことから、ピーク強度を30倍にして確認した。代表例として、本発明例である試料No.1〜No.3及び比較試料No.1〜No.3のGD−OESによる強度プロファイルを図1〜図6に示す。
-GD-OES analysis-
In order to confirm the distribution of the nitrogen component, structural analysis was performed by glow discharge emission analysis (GD-OES) from the surface of the DLC film to the substrate. The apparatus used was JY-5000RF type GD-OES manufactured by HORIBA JOBIN YVON. As analysis conditions, Ar is used as a sputtering gas, pressure: 600 Pa, output: 35 W, module: 6 V, phase 4: V, gas replacement time: 20 seconds, pre-sputtering time: 30 seconds, background: 10 seconds, measurement Time: 90 seconds to 120 seconds.
Since the emission intensity of nitrogen was low, the peak intensity was confirmed to be 30 times. As a representative example, Sample No. 1-No. 3 and comparative sample no. 1-No. 1 to 6 show the intensity profiles of GD-OES.

−AES分析−
DLC皮膜の表面から基材にかけてオージェ電子分光法(AES分析)による窒素成分の定量分析を行った。装置には、パーキン・エルマー社製のPHI650(走査型オージェ電子分光装置)を使用した。分析は、下記の分析条件にて行った。
(分析条件)
・一次電子のエネルギー:3keV
・電流:約260nA
・入射角度:試料法線に対して30度
・分析領域:約5μm×5μm
(イオンスパッタ(Ar)の条件)
・エネルギー:3keV
・電流:25mA
・入射角度:試料法線に対して約58度
・スパッタ速度:約50nm/min
代表例として、図7に本発明例である試料No.1、図8に本発明例である試料No.3、図9に比較例である比較試料No.3の測定結果を示す。
-AES analysis-
The nitrogen component was quantitatively analyzed by Auger electron spectroscopy (AES analysis) from the surface of the DLC film to the substrate. As the apparatus, PHI650 (scanning Auger electron spectrometer) manufactured by Perkin Elmer was used. The analysis was performed under the following analysis conditions.
(Analysis conditions)
・ Primary electron energy: 3 keV
・ Current: about 260nA
-Incident angle: 30 degrees with respect to the sample normal-Analysis area: approx. 5 μm x 5 μm
(Conditions for ion sputtering (Ar + ))
・ Energy: 3 keV
・ Current: 25mA
-Incident angle: about 58 degrees with respect to the sample normal line-Sputtering speed: about 50 nm / min
As a representative example, FIG. 1 and FIG. 3 and FIG. The measurement result of 3 is shown.

−ERDA分析−
水素成分の分布を確認するため、Elastic Recoil Detection
Analysis 弾性反跳粒子検出法(ERDA分析)により、DLC皮膜の基材側と表
面側で水素濃度分析を行った。装置はNational Electrostatics Corporation製 Pelletron 3SDHを使用した。エネルギー2.3MeVのHe++イオンを試料面の法線に対し75度の角度で入射し、反跳された水素粒子(H、H)を散乱角30度の位置で半導体検出器により検出した。
-ERDA analysis-
In order to confirm the distribution of hydrogen components, Elastic Recoil Detection
Hydrogen concentration analysis was performed on the substrate side and the surface side of the DLC film by the analysis of elastic recoil particles (ERDA analysis). As the apparatus, Pelletron 3SDH manufactured by National Electrostatics Corporation was used. He + + ions with an energy of 2.3 MeV were incident at an angle of 75 degrees with respect to the normal of the sample surface, and recoiled hydrogen particles (H, H + ) were detected by a semiconductor detector at a scattering angle of 30 degrees. .

−ボールオンディスク試験−
溶着性を評価するために、ボールオンディスク試験機(CSM Instruments社製 Tribometer)を使用した。DLC皮膜を被覆した基材にアルミA5052球(直径6mm)を5Nの荷重で押し付けながら、円盤状試験片を100mm/秒の速度で回転させた。試験距離は100mとした。
-Ball-on-disk test-
In order to evaluate the weldability, a ball-on-disk tester (Tribometer manufactured by CSM Instruments) was used. The disk-shaped test piece was rotated at a speed of 100 mm / sec while pressing aluminum A5052 balls (diameter 6 mm) with a load of 5 N against the substrate coated with the DLC film. The test distance was 100 m.

試験結果を纏めて表1に示す。本発明例である試料No.1〜No.7は、被覆後の表面剥離が無く、スクラッチ試験による密着性も比較例よりも優れた。膜厚が1μm以上である本発明例である試料No.6よりも、膜厚が小さい本発明例である試料No.1〜No.5及びNo.7の方が、DLC皮膜がより平滑になる傾向にあった。
DLC皮膜を被覆直後の試料表面の光学顕微鏡観察写真について図11、図12に代表例を示す。比較試料No.1、比較試料No.2については、被覆後に直径が20μm程度の微小剥離が確認された。比較例の中でも、DLC皮膜の基材側に水素または窒素をいずれも含有させていない比較試料No.3や、基材とDLC皮膜の間に窒化物の中間皮膜を介した比較試料No.4については、DLC皮膜の被覆後に直径が100μm程度の大きな剥離が確認され、スクラッチ荷重も低くなった。
ボールオンディスク試験後の表面観察写真について、図13に本発明例の試料の代表例を、図14に比較試料の代表例を、それぞれ示す。本発明例では、いずれもボールオンディスク試験で皮膜剥離や溶着は発生してないことが確認された。一方、比較例では、いずれも皮膜剥離があり、剥離に伴う溶着も確認された。
密着性が優れるDLC皮膜の皮膜構造を確認するため、分析を行った。本発明例の試料及び比較試料No.2は、GD−OES分析から、基材側から表面側に向かって窒素濃度が減少していることが確認された。
The test results are summarized in Table 1. Sample No. which is an example of the present invention. 1-No. 7 had no surface peeling after coating, and the adhesion by the scratch test was also superior to that of the comparative example. Sample No. which is an example of the present invention having a film thickness of 1 μm or more. Sample No. 6 which is an example of the present invention having a film thickness smaller than 6 is shown. 1-No. 5 and no. No. 7 tended to make the DLC film smoother.
11 and 12 show typical examples of the optical microscope observation photograph of the sample surface immediately after coating the DLC film. Comparative sample No. 1, comparative sample No. As for No. 2, fine peeling having a diameter of about 20 μm was confirmed after coating. Among the comparative examples, comparative sample No. 1 containing no hydrogen or nitrogen on the substrate side of the DLC film. 3 and comparative sample No. 1 with a nitride intermediate film interposed between the substrate and the DLC film. For No. 4, large peeling with a diameter of about 100 μm was confirmed after coating the DLC film, and the scratch load was also low.
Regarding the surface observation photograph after the ball-on-disk test, FIG. 13 shows a representative example of the sample of the present invention, and FIG. 14 shows a representative example of the comparative sample. In the examples of the present invention, it was confirmed that no film peeling or welding occurred in the ball-on-disk test. On the other hand, in the comparative examples, there was film peeling, and welding accompanying peeling was also confirmed.
Analysis was performed to confirm the film structure of the DLC film having excellent adhesion. Samples of the present invention and comparative sample No. As for No. 2, it was confirmed from the GD-OES analysis that the nitrogen concentration decreased from the substrate side to the surface side.

AES分析の結果、本発明例の試料のDLC皮膜の基材側の表面には、2.8原子%〜3.7原子%の窒素が含有されていることを確認した。一方、本発明例の試料DLC皮膜の表面の窒素含有量は、検出限界以下(1.0原子%以下)であった。なお、基材側に見られるピーク(例えば、図7においてはスパッタリング深さ1000nm〜1700nm付近のピーク)は、NとWのオージェピークの干渉によるものである。
ERDA分析から、本発明例の試料のDLC皮膜は、基材側の表面に水素を1.0原子%〜7.8原子%含有し、逆に表面の水素含有量が検出限界以下(0.2原子%以下)であることを確認した。代表例として、本発明例である試料No.4〜No.7の膜厚方向の水素濃度分析の詳細を表2に示す。本発明例は、いずれもDLC皮膜の基材側から表面側に向けて水素濃度が減少していることが確認された。
以上の分析から、密着性が優れる本発明例は、基材側から表面側に向かって窒素含有量及び水素含有量が減少していることが確認された。
As a result of AES analysis, it was confirmed that 2.8 atomic% to 3.7 atomic% of nitrogen was contained on the substrate side surface of the DLC film of the sample of the present invention. On the other hand, the nitrogen content on the surface of the sample DLC film of the present invention was below the detection limit (1.0 at% or less). Note that the peak seen on the substrate side (for example, the peak near the sputtering depth of 1000 nm to 1700 nm in FIG. 7) is due to the interference of the N and W Auger peaks.
From the ERDA analysis, the DLC film of the sample according to the present invention contains 1.0 atomic% to 7.8 atomic% of hydrogen on the surface on the base material side. 2 atomic% or less). As a representative example, Sample No. 4-No. Details of the hydrogen concentration analysis in the film thickness direction of No. 7 are shown in Table 2. In all of the inventive examples, it was confirmed that the hydrogen concentration decreased from the substrate side to the surface side of the DLC film.
From the above analysis, it was confirmed that the nitrogen content and the hydrogen content of the present invention example having excellent adhesion decreased from the base material side to the surface side.

比較試料No.1〜比較試料No.3では、基材側から表面側に向かって窒素含有量及び水素含有量が減少している皮膜構造は確認されなかった。そのため、本発明例の試料に比べて密着性が低下して、溶着も発生した。
また、比較試料No.4では、基材とDLC皮膜との間に別途窒化物からなる中間皮膜を介在させているため、窒化物皮膜の表面欠陥を起点にDLC皮膜の表面剥離が発生し、スクラッチ試験による密着性も低くなった。
比較試料No.5では、基材側から表面側に向かって窒素含有量が減少しているが、水素含有量は増加している。そのため、本発明例の試料に比べて皮膜硬度及び密着性が低下して、溶着も発生した。
比較例6は、基材側から表面側に向かって窒素含有量及び水素含有量が減少しているが、表面の窒素含有量が多い。そのため、本発明例の試料に比べて皮膜硬度及び密着性が低下して、溶着も発生した。
Comparative sample No. 1 to Comparative Sample No. In No. 3, a film structure in which the nitrogen content and the hydrogen content decreased from the substrate side toward the surface side was not confirmed. Therefore, the adhesiveness was lowered and welding occurred as compared with the sample of the present invention.
Comparative sample No. In No. 4, since an intermediate film made of nitride is separately interposed between the base material and the DLC film, the surface of the DLC film is peeled off from the surface defect of the nitride film, and the adhesion by the scratch test is also improved. It became low.
Comparative sample No. In No. 5, the nitrogen content decreases from the substrate side to the surface side, but the hydrogen content increases. Therefore, compared with the sample of the example of the present invention, the film hardness and adhesion were lowered, and welding was also generated.
In Comparative Example 6, the nitrogen content and the hydrogen content decrease from the substrate side toward the surface side, but the surface nitrogen content is large. Therefore, compared with the sample of the example of the present invention, the film hardness and adhesion were lowered, and welding was also generated.



日本出願2013−073617の開示はその全体が参照により本明細書に取り込まれる。
本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese application 2013-073617 is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually stated to be incorporated by reference, Incorporated herein by reference.

Claims (4)

基材の表面にダイヤモンドライクカーボン皮膜を被覆した被覆工具であって、
前記ダイヤモンドライクカーボン皮膜のナノインデンテーション硬度は、50GPa以上100GPa以下であり、
前記ダイヤモンドライクカーボン皮膜は、基材側から厚み方向に向かって水素原子及び窒素原子の含有量が減少しており、
前記ダイヤモンドライクカーボン皮膜の表面は、水素原子の含有量が0.5原子%以下であり、窒素原子の含有量が2原子%以下であり、
前記ダイヤモンドライクカーボン皮膜の基材側の表面は、水素原子の含有量が1.2原子%以上7原子%以下であり、窒素原子の含有量が2原子%超8原子%以下であり、
前記ダイヤモンドライクカーボン皮膜の、基材側の表面から厚み方向における膜厚の20.8%の位置での水素原子の含有量が0.9原子%以上である被覆工具。
A coated tool in which a diamond-like carbon film is coated on the surface of a substrate,
The nano-indentation hardness of the diamond-like carbon film is 50 GPa or more and 100 GPa or less,
The diamond-like carbon film has a reduced content of hydrogen atoms and nitrogen atoms in the thickness direction from the substrate side,
The surface of the diamond-like carbon film has a hydrogen atom content of 0.5 atomic percent or less and a nitrogen atom content of 2 atomic percent or less.
The surface of the diamond-like carbon film on the substrate side has a hydrogen atom content of 1.2 atom% or more and 7 atom% or less, and a nitrogen atom content of more than 2 atom% and 8 atom% or less,
A coated tool having a hydrogen atom content of 0.9 atomic % or more at a position of 20.8% of the film thickness in the thickness direction from the substrate-side surface of the diamond-like carbon film.
前記ダイヤモンドライクカーボン皮膜の表面粗さは、算術平均粗さRaが0.03μm以下であり、最大高さ粗さRzが0.5μm以下である請求項1に記載の被覆工具。   2. The coated tool according to claim 1, wherein the surface roughness of the diamond-like carbon film is an arithmetic average roughness Ra of 0.03 μm or less and a maximum height roughness Rz of 0.5 μm or less. 前記ダイヤモンドライクカーボン皮膜の膜厚が、0.1μm〜1.5μmである請求項1又は請求項2に記載の被覆工具。   The coated tool according to claim 1 or 2, wherein the diamond-like carbon film has a thickness of 0.1 µm to 1.5 µm. 前記基材が、炭素含率が1質量%以上の高炭素鋼又は超硬合金である請求項1〜請求項3のいずれか1項に記載の被覆工具。
The coated tool according to any one of claims 1 to 3, wherein the base material is a high carbon steel or a cemented carbide having a carbon content of 1% by mass or more.
JP2016201280A 2013-03-29 2016-10-12 Coated tool Active JP6337944B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013073617 2013-03-29
JP2013073617 2013-03-29

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015508720A Division JP6103040B2 (en) 2013-03-29 2014-03-27 Manufacturing method of coated tool

Publications (2)

Publication Number Publication Date
JP2017013136A JP2017013136A (en) 2017-01-19
JP6337944B2 true JP6337944B2 (en) 2018-06-06

Family

ID=51624518

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2015508720A Active JP6103040B2 (en) 2013-03-29 2014-03-27 Manufacturing method of coated tool
JP2016201280A Active JP6337944B2 (en) 2013-03-29 2016-10-12 Coated tool

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2015508720A Active JP6103040B2 (en) 2013-03-29 2014-03-27 Manufacturing method of coated tool

Country Status (7)

Country Link
JP (2) JP6103040B2 (en)
KR (2) KR20150121173A (en)
CN (2) CN105102665A (en)
MY (1) MY173635A (en)
PH (1) PH12015502188A1 (en)
TW (1) TWI616544B (en)
WO (1) WO2014157560A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105102665A (en) * 2013-03-29 2015-11-25 日立金属株式会社 Coated tool and method for producing same
JP6211987B2 (en) * 2014-04-22 2017-10-11 株式会社神戸製鋼所 Mold for hot forming of Zn-plated steel sheet
KR102088090B1 (en) * 2014-08-01 2020-03-11 히타치 긴조쿠 가부시키가이샤 Method for manufacturing a coated tool
JP6855864B2 (en) * 2017-03-22 2021-04-07 日本製鉄株式会社 Titanium plate press die and titanium plate press molding method
JP6855863B2 (en) * 2017-03-22 2021-04-07 日本製鉄株式会社 Titanium plate press die and titanium plate press molding method
WO2019058587A1 (en) * 2017-09-20 2019-03-28 日本アイ・ティ・エフ株式会社 Arc-based film formation device and film formation method
CN108950479A (en) * 2018-08-16 2018-12-07 佛山市南海唐立新五金工具有限公司 Diamond-like coating saw blade preparation method and diamond-like coating saw blade
CN116324232A (en) * 2021-09-30 2023-06-23 帝伯爱尔株式会社 Sliding member
CN114318287B (en) * 2021-12-23 2023-11-03 深圳技术大学 Preparation method of diamond self-supporting film and diamond self-supporting film

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01201095A (en) * 1988-02-04 1989-08-14 Idemitsu Petrochem Co Ltd Diamond carbon film and production thereof
JPH1192934A (en) * 1997-09-17 1999-04-06 Daido Steel Co Ltd Hard carbon thick coating and its production
JP2001062605A (en) * 1999-08-30 2001-03-13 Sumitomo Electric Ind Ltd Amorphous carbon coated tool
DE10018143C5 (en) * 2000-04-12 2012-09-06 Oerlikon Trading Ag, Trübbach DLC layer system and method and apparatus for producing such a layer system
JP3719708B2 (en) * 2001-06-13 2005-11-24 住友電気工業株式会社 Amorphous carbon coated tool and method for manufacturing the same
EP1479946B1 (en) * 2003-05-23 2012-12-19 Nissan Motor Co., Ltd. Piston for internal combustion engine
TWI386494B (en) * 2005-11-18 2013-02-21 Hon Hai Prec Ind Co Ltd A multilayer coating mold
JP5176621B2 (en) * 2008-03-18 2013-04-03 株式会社タンガロイ Amorphous carbon coated tool
JP5741891B2 (en) * 2009-06-19 2015-07-01 株式会社ジェイテクト DLC film forming method
JP2012066285A (en) * 2010-09-24 2012-04-05 Hitachi Tool Engineering Ltd Aluminum plate processing metal mold
CN105102665A (en) * 2013-03-29 2015-11-25 日立金属株式会社 Coated tool and method for producing same
KR102088090B1 (en) * 2014-08-01 2020-03-11 히타치 긴조쿠 가부시키가이샤 Method for manufacturing a coated tool
JP2016056435A (en) * 2014-09-12 2016-04-21 株式会社神戸製鋼所 Method for manufacturing hard slide member and hard slide member

Also Published As

Publication number Publication date
TWI616544B (en) 2018-03-01
CN105102665A (en) 2015-11-25
TW201512434A (en) 2015-04-01
CN110616399A (en) 2019-12-27
PH12015502188B1 (en) 2016-01-25
JP2017013136A (en) 2017-01-19
JPWO2014157560A1 (en) 2017-02-16
KR101860292B1 (en) 2018-05-21
MY173635A (en) 2020-02-12
PH12015502188A1 (en) 2016-01-25
CN110616399B (en) 2022-05-24
KR20150121173A (en) 2015-10-28
JP6103040B2 (en) 2017-03-29
WO2014157560A1 (en) 2014-10-02
KR20180030253A (en) 2018-03-21

Similar Documents

Publication Publication Date Title
JP6337944B2 (en) Coated tool
JP6525310B2 (en) Coated tools
WO2009116552A1 (en) Amorphous carbon covered tool
JP6064987B2 (en) Coated rotating tool and manufacturing method thereof
JP6308298B2 (en) Manufacturing method of coated tool
JP6024739B2 (en) Coated rotating tool and manufacturing method thereof
JP6528936B2 (en) Method of manufacturing coated tool
JP5464494B2 (en) Surface coated cutting tool with excellent chipping resistance and peeling resistance of hard coating layer
Zia et al. Evaluation of bias voltage effect on diamond‐like carbon coating properties deposited on tungsten carbide cobalt
US10265776B2 (en) Cutting tool
CN113226604B (en) Coated cutting tool
JP5240665B2 (en) Surface-coated cutting tool with excellent chip evacuation
JP2006169614A (en) Metal-diamond-like-carbon (dlc) composite film, forming method therefor and sliding member
JP2011005567A (en) Surface coated cutting tool excellent in chipping resistance and peeling resistance of hard coating layer
JP2015033757A (en) Coated cutting tool for processing titanium or titanium alloy, manufacturing method of the same and processing method of titanium or titanium alloy using the same
JP2014069239A (en) Method of producing coated tool having excellent durability
JP2006082177A (en) Amorphous carbon covering tool and covering method for amorphous carbon coating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180423

R150 Certificate of patent or registration of utility model

Ref document number: 6337944

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350