JP5464494B2 - Surface coated cutting tool with excellent chipping resistance and peeling resistance of hard coating layer - Google Patents

Surface coated cutting tool with excellent chipping resistance and peeling resistance of hard coating layer Download PDF

Info

Publication number
JP5464494B2
JP5464494B2 JP2010156519A JP2010156519A JP5464494B2 JP 5464494 B2 JP5464494 B2 JP 5464494B2 JP 2010156519 A JP2010156519 A JP 2010156519A JP 2010156519 A JP2010156519 A JP 2010156519A JP 5464494 B2 JP5464494 B2 JP 5464494B2
Authority
JP
Japan
Prior art keywords
tialn
crystal grains
orientation
interface
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010156519A
Other languages
Japanese (ja)
Other versions
JP2012016797A (en
Inventor
耕一 田中
秀充 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2010156519A priority Critical patent/JP5464494B2/en
Priority to CN201110194042.XA priority patent/CN102371378B/en
Publication of JP2012016797A publication Critical patent/JP2012016797A/en
Application granted granted Critical
Publication of JP5464494B2 publication Critical patent/JP5464494B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、WC基超硬合金からなる切削工具基体表面に、少なくともTiAlN層を含む硬質被覆層が物理蒸着により形成されてなる表面被覆切削工具において、工具基体表面とTiAlN層間に、ヘテロエピタキシャル界面を形成することにより、溶着チッピングの生じやすい小径低速切削加工、あるいは、切刃に対して高負荷が作用する高速重切削加工において、硬質被覆層が優れた耐欠損性、耐剥離性を示す表面被覆切削工具(以下、被覆工具という)に関するものである。   The present invention relates to a surface-coated cutting tool in which a hard coating layer including at least a TiAlN layer is formed by physical vapor deposition on a cutting tool substrate surface made of a WC-based cemented carbide alloy. The surface of the hard coating layer has excellent chipping resistance and peeling resistance in small-diameter low-speed cutting processing where welding chipping is likely to occur or high-speed heavy cutting processing in which a high load acts on the cutting edge. The present invention relates to a coated cutting tool (hereinafter referred to as a coated tool).

一般に、被覆工具には、各種の鋼や鋳鉄などの被削材の旋削加工にバイトの先端部に着脱自在に取り付けて用いられるインサートや、前記インサートを着脱自在に取り付けて、面削加工や溝加工、さらに肩加工などに用いられるソリッドタイプのエンドミルと同様に切削加工を行うインサート式エンドミルや、穴あけ加工を行うドリルなどが知られている。   In general, for coated tools, inserts that are detachably attached to the tip of a cutting tool for turning of work materials such as various types of steel and cast iron, and the inserts are detachably attached to be used for chamfering and grooving. An insert-type end mill that performs cutting as well as a solid-type end mill that is used for processing and shoulder processing, and a drill that performs drilling are known.

例えば、特許文献1においては、WC基超硬合金からなる切削工具基体表面に、化学蒸着(CVD)法により硬質被覆層としてのTiCN層を蒸着形成するにあたり、WC結晶粒とTiCN結晶粒との間にエピタキシャル界面(例えば、WCの(0001)面とTiCNの(111)面が平行で、かつ、WCの[11−20]方位とTiCNの[−110]方位が平行である界面)を形成することにより、工具基体と硬質被覆層間の付着性の改善を図ることが知られている。   For example, in Patent Document 1, when forming a TiCN layer as a hard coating layer by chemical vapor deposition (CVD) on the surface of a cutting tool base made of a WC-based cemented carbide, the WC crystal grains and the TiCN crystal grains An epitaxial interface (for example, an interface in which the (0001) plane of WC and the (111) plane of TiCN are parallel and the [11-20] orientation of WC and the [−110] orientation of TiCN are parallel) is formed between them. By doing so, it is known to improve the adhesion between the tool base and the hard coating layer.

また、例えば、特許文献2においては、WC基超硬合金からなる切削工具基体表面に、TiN層、TiCN層からなる中間層を有する硬質被覆層を物理蒸着(PVD)法の1種であるアークイオンプレーティング(AIP)法により蒸着形成する被覆工具(以下、従来被覆工具という)において、WCの(0001)面と中間層の(1−11)面が平行で、かつ、WCの<11−20>方位と中間層の<110>方位とが平行であるエピタキシャル界面を形成することにより、中間層(硬質被覆層)の耐欠損性、耐剥離性を高めることが知られている。   Further, for example, in Patent Document 2, an arc, which is a kind of physical vapor deposition (PVD) method, has a hard coating layer having a TiN layer and an intermediate layer made of a TiCN layer on the surface of a cutting tool base made of a WC-based cemented carbide. In a coated tool (hereinafter referred to as a conventional coated tool) formed by vapor deposition by an ion plating (AIP) method, the (0001) plane of WC and the (1-11) plane of the intermediate layer are parallel, and <11- It is known that by forming an epitaxial interface in which the 20> orientation and the <110> orientation of the intermediate layer are parallel, the chipping resistance and peeling resistance of the intermediate layer (hard coating layer) are improved.

特開2000−234172号公報JP 2000-234172 A 特許第3333081号明細書Japanese Patent No. 3333081

近年の切削加工装置のFA化はめざましく、加えて切削加工に対する省力化、省エネ化、低コスト化さらに効率化の要求も強く、より一層厳しい条件下での切削加工が行われるようになってきており、これらの切削条件に適う切削性能を備えた被覆工具が求められている。
例えば、前記特許文献1に示す被覆工具においては、工具基体と硬質被覆層間に、化学蒸着(CVD)法によるエピタキシャル界面を形成することにより、硬質被覆層の付着性を改善する試みがなされているが、化学蒸着(CVD)法でエピタキシャル界面を形成しようとする場合、エピタキシャル界面の生成が実質的にWC結晶粒の(0001)面上あるいは(10−10)面上に限られていることから、より高次なWC結晶面が露出している一般的な工具基体表面上においては、エピタキシャル界面が形成される面積割合が十分とは言えず、付着力の弱い非エピタキシャル界面が広く形成され、重切削時には弱い界面が膜剥離の起点となるため、所望の耐剥離性が得られないばかりか、蒸着時に基体が高温(約1000℃)に曝されるため、基体組織にη相が形成され、残留応力が導入できず、クラックが発生しやすくなるため、付着性の改善が図られたとしても、被覆工具としての切削性能が満足できるものであるとはいえない。
また、前記特許文献2に示す従来被覆工具においては、物理蒸着(PVD)法により、WCの(0001)面とTiNの(111)面が平行で、かつ、WCの[11−20]方位とTiNの[110]方位とが平行であるエピタキシャル界面を形成することにより、通常条件での切削加工においては、硬質被覆層の耐欠損性、耐剥離性の向上が図られるものの、より厳しい切削加工条件下、例えば、高熱発生を伴い切刃に高負荷が作用する鋼や鋳鉄等の高速重切削加工においては、硬質被覆層の耐欠損性、耐剥離性が不十分であるため、工具寿命が短命であるという問題点があった。また、前記従来被覆工具の母材は、(0001)面が成長した板状晶WC粒子を多く含有するという特殊な組成が要求されることから、(0001)面が成長していない市販の超硬合金粉末で作製された一般工具基体や、小径ドリルなどの微細あるいは複雑な形状をもつ工具基体上への適用は実質的に困難であった。
In recent years, FA of cutting devices has been remarkable, and in addition, there has been a strong demand for labor saving, energy saving, cost reduction and efficiency for cutting, and cutting under more severe conditions has come to be performed. Therefore, a coated tool having a cutting performance suitable for these cutting conditions is required.
For example, in the coated tool shown in Patent Document 1, an attempt is made to improve the adhesion of the hard coating layer by forming an epitaxial interface by a chemical vapor deposition (CVD) method between the tool base and the hard coating layer. However, when an epitaxial interface is formed by a chemical vapor deposition (CVD) method, the formation of the epitaxial interface is substantially limited to the (0001) plane or the (10-10) plane of the WC crystal grain. On the surface of a general tool substrate where higher order WC crystal planes are exposed, the area ratio in which the epitaxial interface is formed is not sufficient, and a non-epitaxial interface with weak adhesion is widely formed. Since the weak interface at the time of heavy cutting is the starting point of film peeling, the desired peeling resistance cannot be obtained, and the substrate is exposed to a high temperature (about 1000 ° C.) during vapor deposition. Since the η phase is formed in the substrate structure, residual stress cannot be introduced, and cracks are likely to occur, so that even if the adhesion is improved, the cutting performance as a coated tool is satisfactory. I can't say that.
Further, in the conventional coated tool shown in Patent Document 2, the (0001) plane of WC and the (111) plane of TiN are parallel and the [11-20] orientation of WC is determined by physical vapor deposition (PVD). By forming an epitaxial interface parallel to the [110] orientation of TiN, it is possible to improve the chipping resistance and peeling resistance of the hard coating layer in cutting under normal conditions. For example, in high-speed heavy cutting such as steel and cast iron, where high load is applied to the cutting edge with high heat generation, the tool life is reduced due to insufficient chipping resistance and peeling resistance of the hard coating layer. There was the problem of being short-lived. In addition, since the base material of the conventional coated tool is required to have a special composition containing a large amount of plate-like WC particles on which the (0001) plane has been grown, a commercially available super Application to a general tool base made of a hard alloy powder or a tool base having a fine or complicated shape such as a small diameter drill has been substantially difficult.

そこで、本発明者らは、前述のような観点から、溶着チッピングの生じやすい小径低速切削加工、あるいは、切刃に対して高負荷が作用する高速重切削加工高熱発生を伴い切刃に高負荷が作用する鋼や鋳鉄等の高速重切削加工に用いた場合でも、耐欠損性、耐剥離性のすぐれた被覆工具を提供すべく、鋭意研究を行った結果、以下の知見を得た。   In view of the above, the present inventors, from the above-mentioned viewpoint, have a high load on the cutting edge accompanied by a small-diameter low-speed cutting process in which welding chipping is likely to occur, or a high-speed heavy cutting process in which a high load acts on the cutting edge. As a result of earnest research to provide a coated tool with excellent fracture resistance and exfoliation resistance even when used for high-speed heavy cutting of steel, cast iron, etc., the following knowledge was obtained.

工具基体表面と硬質被覆層間のエピタキシャル界面の形成を、前記特許文献1に示される被覆工具では化学蒸着(CVD)法で、また、前記特許文献2に示される被覆工具では物理蒸着(PVD)法の1種であるアークイオンプレーティング(AIP)法により行っていた。
しかし、本発明者らは、WC基超硬合金からなる工具基体(以下、WC超硬基体という)表面に隣接する硬質被覆層としてのTiAlN層の形成を、例えば、図1に概略説明図で示される物理蒸着(PVD)装置の1種である圧力勾配型Arプラズマガンを利用したイオンプレーティング装置により形成することにより、WC超硬基体表面と硬質被覆層(TiAlN層)間に、特定のエピタキシャル関係を満足するヘテロエピタキシャル界面を形成し得ることを見出した。
即ち、WC超硬基体を、前記圧力勾配型Arプラズマガンを利用したイオンプレーティング装置内に装着し、例えば、
WC超硬基体温度:240〜450℃、
プラズマガン放電電力:3kW、
放電ガス流量:アルゴン(Ar)ガス 25〜40sccm、
工具基体に印加する直流バイアス電圧: −600V
という特定の条件で前処理を行った後、
WC超硬基体温度:240〜450℃、
蒸発源:金属Ti、金属Al
プラズマガン放電電力(金属Tiに対して):8〜12kW、
プラズマガン放電電力(金属Alに対して):6〜9kW、
反応ガス流量:窒素(N)ガス 80〜120sccm、
放電ガス流量:アルゴン(Ar)ガス 55〜60sccm、
工具基体に印加する直流バイアス電圧: 0V
という特定の条件で蒸着を行うと、この結果形成されたTiAlN層(以下、改質TiAlN層という)中のTiAlN結晶粒と、WC超硬基体中のWC結晶粒との間には、以下のエピタキシャル関係を満足するヘテロエピタキシャル界面が形成される。
つまり、WC超硬基体と改質TiAlN層との界面の断面について、電界放出型走査電子顕微鏡と電子線後方散乱回折装置で測定して求めたWC結晶粒の[0001]方位とTiAlN結晶粒の[110]方位が平行で、かつ、WC結晶粒の[10−10]方位とTiAlN結晶粒の[001]方位が平行である結晶粒の界面長さをXとし、
また、同じく電界放出型走査電子顕微鏡と電子線後方散乱回折装置で測定して求めたWC結晶粒の[0001]方位とTiAlN結晶粒の[111]方位が平行で、かつ、WC結晶粒の[11−20]方位とTiAlN結晶粒の[110]方位が平行である結晶粒の界面長さをXとした場合に、
前記WC超硬基体表面とこれに隣接する改質TiAlN層間には、
1>(X+X)/X≧0.3、
を満足する(但し、Xは、界面の全長を表す)ヘテロエピタキシャル界面が形成される。
そして、WC超硬基体表面とこれに隣接する改質TiAlN層間に、前記ヘテロエピタキシャル界面が形成されることにより、WC超硬基体と硬質被覆層との密着強度が大幅に向上し、その結果、このような被覆工具を、溶着チッピングの生じやすい小径低速切削加工、あるいは、切刃に対して高送り、高切込みによる高負荷が作用する高速重切削加工に用いた場合でも、すぐれた耐欠損性、耐剥離性を示し、長期の使用に亘ってすぐれた切削性能を発揮することを見出したのである。
Formation of an epitaxial interface between the tool substrate surface and the hard coating layer is performed by chemical vapor deposition (CVD) with the coated tool disclosed in Patent Document 1 and physical vapor deposition (PVD) with the coated tool disclosed in Patent Document 2. The arc ion plating (AIP) method, which is one of the above.
However, the present inventors have shown, for example, the formation of a TiAlN layer as a hard coating layer adjacent to the surface of a tool substrate (hereinafter referred to as a WC carbide substrate) made of a WC-based cemented carbide in a schematic explanatory view in FIG. By forming with an ion plating apparatus using a pressure gradient type Ar plasma gun which is one of the physical vapor deposition (PVD) apparatuses shown, a specific surface is formed between the surface of the WC carbide substrate and the hard coating layer (TiAlN layer). It has been found that a heteroepitaxial interface satisfying the epitaxial relationship can be formed.
That is, a WC carbide substrate is mounted in an ion plating apparatus using the pressure gradient Ar plasma gun, for example,
WC carbide substrate temperature: 240-450 ° C.
Plasma gun discharge power: 3kW
Discharge gas flow rate: Argon (Ar) gas 25-40 sccm,
DC bias voltage applied to the tool base: -600V
After pre-processing under the specific conditions
WC carbide substrate temperature: 240-450 ° C.
Evaporation source: Metal Ti, Metal Al
Plasma gun discharge power (for metal Ti): 8-12 kW,
Plasma gun discharge power (relative to metal Al): 6-9 kW,
Reaction gas flow rate: nitrogen (N 2) gas 80~120Sccm,
Discharge gas flow rate: Argon (Ar) gas 55-60 sccm,
DC bias voltage applied to the tool base: 0V
When the vapor deposition is performed under the specific conditions of the following, between the TiAlN crystal grains in the TiAlN layer formed as a result (hereinafter referred to as a modified TiAlN layer) and the WC crystal grains in the WC carbide substrate, A heteroepitaxial interface that satisfies the epitaxial relationship is formed.
That is, for the cross section of the interface between the WC cemented carbide substrate and the modified TiAlN layer, the [0001] orientation of the WC crystal grains and the TiAlN crystal grains obtained by measuring with a field emission scanning electron microscope and an electron beam backscattering diffractometer. [110] orientation is parallel, and the WC grain [10-10] orientation and TiAlN grains [001] orientation is a crystal grain of the interface length is parallel to the X a,
Similarly, the [0001] orientation of the WC crystal grain and the [111] orientation of the TiAlN crystal grain obtained by measurement using a field emission scanning electron microscope and an electron beam backscatter diffraction apparatus are parallel, and the [ 11-20] orientation and TiAlN grains [110] orientation is a crystal grain of the interface length is parallel to the case of the X C,
Between the surface of the WC carbide substrate and the modified TiAlN layer adjacent thereto,
1> (X A + X C ) /X≧0.3,
(Where X represents the total length of the interface), a heteroepitaxial interface is formed.
And, by forming the heteroepitaxial interface between the WC carbide substrate surface and the modified TiAlN layer adjacent thereto, the adhesion strength between the WC carbide substrate and the hard coating layer is greatly improved, Excellent chipping resistance even when such a coated tool is used for small-diameter low-speed cutting, where welding chipping is likely to occur, or high-speed heavy-duty cutting where a high load is applied to the cutting edge and high cutting force. It has been found that it exhibits peel resistance and exhibits excellent cutting performance over a long period of use.

本発明は、前記知見に基づいてなされたものであって、
「 炭化タングステン基超硬合金からなる切削工具基体の表面に、少なくともTiAlN層を含む硬質被覆層が物理蒸着により形成されてなる表面被覆切削工具であって、
前記切削工具基体の表面に隣接して、0.2〜2μmの層厚を有し、幅10〜100nmの柱状晶組織からなるTiAlN層が形成され、
さらに、前記切削工具基体とTiAlN層との界面の断面における炭化タングステン結晶粒とTiAlN結晶粒について、電界放出型走査電子顕微鏡と電子線後方散乱回折装置を用いて、それぞれの結晶面と結晶方位を求め、
(a)炭化タングステン結晶粒の[0001]方位とTiAlN結晶粒の[110]方位が平行で、かつ、炭化タングステン結晶粒の[10−10]方位とTiAlN結晶粒の[001]方位が平行である結晶粒の界面長さをXとし、
(b)炭化タングステン結晶粒の[0001]方位とTiAlN結晶粒の[111]方位が平行で、かつ、炭化タングステン結晶粒の[11−20]方位とTiAlN結晶粒の[110]方位が平行である結晶粒の界面長さをXとした場合に、
前記切削工具基体表面とこれに隣接するTiAlN層の界面に、
1>(X+X)/X≧0.3、
を満足する(但し、Xは、界面の全長を表す)ヘテロエピタキシャル界面が形成されていることを特徴とする表面被覆切削工具。」
に特徴を有するものである。
The present invention has been made based on the above findings,
A surface-coated cutting tool in which a hard coating layer including at least a TiAlN layer is formed on a surface of a cutting tool base made of a tungsten carbide-based cemented carbide by physical vapor deposition,
Adjacent to the surface of the cutting tool base, a TiAlN layer having a layer thickness of 0.2 to 2 μm and having a columnar crystal structure with a width of 10 to 100 nm is formed,
Further, with respect to the tungsten carbide crystal grains and TiAlN crystal grains in the cross section of the interface between the cutting tool base and the TiAlN layer, the respective crystal planes and crystal orientations are changed using a field emission scanning electron microscope and an electron beam backscatter diffraction apparatus. Seeking
(A) The [0001] orientation of the tungsten carbide crystal grains and the [110] orientation of the TiAlN crystal grains are parallel, and the [10-10] orientation of the tungsten carbide crystal grains and the [001] orientation of the TiAlN crystal grains are parallel. Let X A be the interface length of a crystal grain,
(B) The [0001] orientation of the tungsten carbide crystal grains and the [111] orientation of the TiAlN crystal grains are parallel, and the [11-20] orientation of the tungsten carbide crystal grains and the [110] orientation of the TiAlN crystal grains are parallel. the interface length of certain crystal grains in case of the X C,
At the interface between the cutting tool base surface and the TiAlN layer adjacent thereto,
1> (X A + X C ) /X≧0.3,
A surface-coated cutting tool characterized in that a heteroepitaxial interface is formed (where X represents the total length of the interface). "
It has the characteristics.

本発明の被覆工具の、WC超硬基体表面に隣接する硬質被覆層を構成する改質TiAlN層において、Ti成分は高温強度を向上させ、Alが硬さを向上させ、また、N成分には層の強度を向上させる作用があるため、改質TiAlN層は、高い硬さとすぐれた強度を具備し、被覆工具の耐摩耗性向上に寄与するが、この発明の被覆工具では、これに加え、さらに、改質TiAlN層とWC超硬基体表面にヘテロエピタキシャル界面を形成し、改質TiAlN層とWC超硬基体表面間での密着強度を向上させているので、硬質被覆層の耐欠損性、耐剥離性、付着強度が大幅に向上し、工具の長寿命化が図られる。   In the modified TiAlN layer constituting the hard coating layer adjacent to the surface of the WC carbide substrate of the coated tool of the present invention, the Ti component improves the high temperature strength, Al improves the hardness, and the N component includes Due to the effect of improving the strength of the layer, the modified TiAlN layer has high hardness and excellent strength, and contributes to the improvement of the wear resistance of the coated tool. In the coated tool of the present invention, in addition to this, Furthermore, since a heteroepitaxial interface is formed on the surface of the modified TiAlN layer and the WC carbide substrate, and the adhesion strength between the modified TiAlN layer and the surface of the WC carbide substrate is improved, the fracture resistance of the hard coating layer, The peel resistance and adhesion strength are greatly improved, and the tool life is extended.

WC超硬基体上へTiAlN層を蒸着形成するに際し、図1に示される圧力勾配型Arプラズマガンを利用したイオンプレーティングにより、例えば、
WC超硬基体温度:240〜450℃、
プラズマガン放電電力:3kW、
放電ガス流量:アルゴン(Ar)ガス 25〜40sccm、
工具基体に印加する直流バイアス電圧: −600V
という特定の条件で前処理を行った後、
WC超硬基体温度:240〜450℃、
蒸発源:金属Ti、金属Al
プラズマガン放電電力(金属Tiに対して):8〜12kW、
プラズマガン放電電力(金属Alに対して):6〜9kW、
反応ガス流量:窒素(N)ガス 80〜120sccm、
放電ガス流量:アルゴン(Ar)ガス 55〜60sccm、
工具基体に印加する直流バイアス電圧: 0V
という特定の条件に調整して改質TiAlN層を蒸着すると、前記WC超硬基体表面に垂直な任意の断面において、WC超硬基体表面とこれに隣接する改質TiAlN層との界面には、
(a)炭化タングステン結晶粒の[0001]方位とTiAlN結晶粒の[110]方位が平行で、かつ、炭化タングステン結晶粒の[10−10]方位とTiAlN結晶粒の[001]方位が平行である結晶粒の界面長さをXとし、
(b)炭化タングステン結晶粒の[0001]方位とTiAlN結晶粒の[111]方位が平行で、かつ、炭化タングステン結晶粒の[11−20]方位とTiAlN結晶粒の[110]方位が平行である結晶粒の界面長さをXとした場合に、
1>(X+X)/X≧0.3、
を満足する(但し、Xは、界面の全長を表す)ヘテロエピタキシャル関係を備えた界面が形成される。
そして、前記改質TiAlN層を走査型電子顕微鏡により観察すると、幅10〜100nm、高さ0.2〜2μmの柱状晶の改質TiAlNの形成が観察される。
また、前記改質TiAlNの柱状晶の幅および高さは、前記蒸着条件のうち、特に、蒸着時間によって影響を受けるが、40〜320minの蒸着によって、前記の幅、高さの柱状晶の改質TiAlNが形成される。
なお、改質TiAlN層の層厚0.2〜2μmは、ここでいう柱状晶の高さ0.2〜2μmに対応するものである。
ここで、改質TiAlN層の層厚(柱状晶の高さ)が0.2μm未満では、所望の密着強度を確保するのに不十分であり、一方、その層厚(柱状晶の高さ)が2μmを越えると、柱状晶が粗大化し表面平滑性が失われ、耐欠損性が低下するようになることから、改質TiAlN層の層厚(柱状晶の高さ)を0.2〜2μmと定めた。
When depositing a TiAlN layer on a WC carbide substrate, ion plating using a pressure gradient type Ar plasma gun shown in FIG.
WC carbide substrate temperature: 240-450 ° C.
Plasma gun discharge power: 3kW
Discharge gas flow rate: Argon (Ar) gas 25-40 sccm,
DC bias voltage applied to the tool base: -600V
After pre-processing under the specific conditions
WC carbide substrate temperature: 240-450 ° C.
Evaporation source: Metal Ti, Metal Al
Plasma gun discharge power (for metal Ti): 8-12 kW,
Plasma gun discharge power (relative to metal Al): 6-9 kW,
Reaction gas flow rate: nitrogen (N 2) gas 80~120Sccm,
Discharge gas flow rate: Argon (Ar) gas 55-60 sccm,
DC bias voltage applied to the tool base: 0V
When the modified TiAlN layer is vapor-deposited by adjusting to the specific condition, in the arbitrary cross section perpendicular to the WC carbide substrate surface, the interface between the WC carbide substrate surface and the modified TiAlN layer adjacent thereto is
(A) The [0001] orientation of the tungsten carbide crystal grains and the [110] orientation of the TiAlN crystal grains are parallel, and the [10-10] orientation of the tungsten carbide crystal grains and the [001] orientation of the TiAlN crystal grains are parallel. Let X A be the interface length of a crystal grain,
(B) The [0001] orientation of the tungsten carbide crystal grains and the [111] orientation of the TiAlN crystal grains are parallel, and the [11-20] orientation of the tungsten carbide crystal grains and the [110] orientation of the TiAlN crystal grains are parallel. the interface length of certain crystal grains in case of the X C,
1> (X A + X C ) /X≧0.3,
(Where X represents the total length of the interface), and an interface having a heteroepitaxial relationship is formed.
When the modified TiAlN layer is observed with a scanning electron microscope, formation of columnar crystal modified TiAlN having a width of 10 to 100 nm and a height of 0.2 to 2 μm is observed.
Further, the width and height of the columnar crystals of the modified TiAlN are particularly affected by the deposition time among the deposition conditions, but the columnar crystals having the width and height are modified by the deposition of 40 to 320 min. Quality TiAlN is formed.
The layer thickness of 0.2 to 2 μm of the modified TiAlN layer corresponds to the columnar crystal height of 0.2 to 2 μm.
Here, if the layer thickness (columnar crystal height) of the modified TiAlN layer is less than 0.2 μm, it is insufficient to ensure the desired adhesion strength, while the layer thickness (columnar crystal height). If the thickness exceeds 2 μm, the columnar crystals become coarse, surface smoothness is lost, and the fracture resistance is lowered. Therefore, the layer thickness (columnar crystal height) of the modified TiAlN layer is 0.2-2 μm. It was determined.

また、切削工具基体とTiAlN層との界面の断面におけるWC結晶粒とTiAlN結晶粒について、電界放出型走査電子顕微鏡と電子線後方散乱回折装置を用いて、以下の手順により、それぞれの結晶面配列、結晶方位配向、界面長さX、界面長さX、全界面長Xを求めた。
すなわち、切削工具基体とTiAlN層の断面をイオン研磨により研磨した後、研磨面表面のWC結晶粒とTiAlN結晶粒に電子線を照射し、個々のWC結晶粒とTiAlN結晶粒の領域を決定し、さらに、測定領域内の切削工具基体とTiAlN層の界面において隣接するWC結晶粒とTiAlN結晶粒の対について、
(a1)WC結晶粒の[10−10]方位とTiAlN結晶粒の[100]方位がなす角度、
(a2)WC結晶粒の[0001]方位とTiAlN結晶粒の[110]方位がなす角度、
(c1)WC結晶粒の[11−20]方位とTiAlN結晶粒の[110]方位がなす角度、
(c2)WC結晶粒の[0001]方位とTiAlN結晶粒の[111]方位がなす角度、
をそれぞれ測定した場合に、
(A)前記(a1)で求めた角度と(a2)で求めた角度がともに10度以下となるWC結晶粒とTiAlN結晶粒の対
によって形成される特定界面領域の基体表面に沿った距離を測定し、前記(A)の条件を満たすWC結晶粒とTiAlN結晶粒の対すべてについて、前記界面領域の長さを足した距離をXとし、
さらに、
(C)前記(c1)で求めた角度と(c2)で求めた角度がともに10度以下となるWC結晶粒とTiAlN結晶粒の対
によって形成される特定界面領域の基体表面に沿った距離を測定し、前記(C)の条件を満たすWC結晶粒とTiAlN結晶粒の対すべてについて、前記界面領域の長さを足した距離をXとし、さらに、測定された工具基体とTiAlN層の界面において、工具基体表面に沿った全界面領域の長さをXとした。
前記測定で求めたX、X、Xの値に基づき算出すると、WC超硬基体表面とこれに隣接するTiAlN層の界面には、
1>(X+X)/X≧0.3、
を満足するヘテロエピタキシャル界面が形成されていることが確認される。
ここで、(X+X)/Xが0.3より小さいと、ヘテロエピタキシャル界面の占める割合が少なくなり、TiAlN層の破壊起点が増え、所望の耐欠損性が得られないことから、(X+X)/Xの値を1>(X+X)/X≧0.3と定めた。
In addition, for the WC crystal grains and TiAlN crystal grains in the cross section of the interface between the cutting tool base and the TiAlN layer, the respective crystal plane alignment is performed by the following procedure using a field emission scanning electron microscope and an electron beam backscatter diffraction apparatus. , Crystal orientation orientation, interface length X A , interface length X C , and total interface length X were determined.
That is, after the cross section of the cutting tool base and the TiAlN layer is polished by ion polishing, the WC crystal grains and TiAlN crystal grains on the polished surface are irradiated with an electron beam to determine the regions of the individual WC crystal grains and TiAlN crystal grains. Furthermore, for a pair of WC grains and TiAlN grains adjacent to each other at the interface between the cutting tool base and the TiAlN layer in the measurement region,
(A1) An angle formed by the [10-10] orientation of the WC crystal grains and the [100] orientation of the TiAlN crystal grains,
(A2) An angle formed by the [0001] orientation of the WC crystal grains and the [110] orientation of the TiAlN crystal grains,
(C1) An angle formed by the [11-20] orientation of the WC crystal grains and the [110] orientation of the TiAlN crystal grains,
(C2) An angle formed by the [0001] orientation of the WC crystal grains and the [111] orientation of the TiAlN crystal grains,
When measuring each
(A) The distance along the substrate surface in a specific interface region formed by a pair of WC crystal grains and TiAlN crystal grains in which both the angle obtained in (a1) and the angle obtained in (a2) are 10 degrees or less. measured, the for all satisfy WC crystal grains and TiAlN grains pair of (a), the distance plus the length of the interface region and X a,
further,
(C) A distance along the substrate surface in a specific interface region formed by a pair of WC crystal grains and TiAlN crystal grains in which both the angle obtained in (c1) and the angle obtained in (c2) are 10 degrees or less. measured, the for all satisfy WC crystal grains and TiAlN grains pair of (C), the distance plus the length of the interface region and X C, further, the interface of the measured tool substrate and TiAlN layer , X is the length of the entire interface region along the tool base surface.
When calculated based on the values of X A , X C , and X obtained in the above measurement, the interface between the WC carbide substrate surface and the TiAlN layer adjacent thereto is as follows:
1> (X A + X C ) /X≧0.3,
It is confirmed that a heteroepitaxial interface satisfying the above is formed.
Here, if (X A + X C ) / X is smaller than 0.3, the proportion of the heteroepitaxial interface decreases, the fracture starting point of the TiAlN layer increases, and the desired fracture resistance cannot be obtained. The value of X A + X C ) / X was determined as 1> (X A + X C ) /X≧0.3.

本発明の被覆工具は、WC超硬基体とこれに接するTiAlN層との界面に存在するWC結晶粒およびTiAlN結晶粒の結晶面および結晶方位が、特定のヘテロエピタキシャル関係を充足するようにTiAlN層が形成されていることにより、溶着チッピングの生じやすい小径低速切削加工、あるいは、切刃に対して高送り、高切込みによる高負荷が作用する高速重切削加工においても、すぐれた耐欠損性と耐剥離性、付着強度を示し、長期の使用に亘ってすぐれた切削性能を発揮し、工具寿命の延命化に寄与するものである。   The coated tool of the present invention has a TiAlN layer so that the crystal planes and crystal orientations of the WC crystal grains and TiAlN crystal grains present at the interface between the WC carbide substrate and the TiAlN layer in contact with the WC carbide substrate satisfy a specific heteroepitaxial relationship. This makes it possible to achieve excellent chipping resistance and resistance even in small-diameter, low-speed cutting processes where welding chipping is likely to occur, or in high-speed heavy cutting processes where high loads are applied to the cutting blade and high loads are applied. It exhibits peelability and adhesion strength, exhibits excellent cutting performance over a long period of use, and contributes to prolonging the tool life.

本発明の表面被覆切削工具(本発明被覆ドリル)の改質TiAlN層を蒸着形成するため圧力勾配型Arプラズマガンを利用したイオンプレーティング装置の概略図を示す。1 is a schematic view of an ion plating apparatus using a pressure gradient type Ar plasma gun for vapor deposition formation of a modified TiAlN layer of a surface-coated cutting tool of the present invention (a coated drill of the present invention). 本発明の表面被覆切削工具のWC超硬基体表面と改質TiAlN層との界面近傍の結晶方位関係の模式図を示す。The schematic diagram of the crystal orientation relationship of the interface vicinity of the WC super hard substrate surface of the surface coating cutting tool of this invention and a modified TiAlN layer is shown. 本発明の表面被覆切削工具のWC超硬基体表面と改質TiAlN層との界面近傍の層厚方向断面での結晶組織と界面長さの模式図を示す。The schematic diagram of the crystal structure and interface length in the layer thickness direction cross section of the vicinity of the interface of the WC super hard substrate surface and the modified TiAlN layer of the surface-coated cutting tool of the present invention is shown.

つぎに、本発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、VC粉末、TaC粉末、NbC粉末、Cr3 2 粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のインサート形状をもったWC超硬基体A−1〜A−10を形成した。 As raw material powders, WC powder, TiC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, and Co powder, all having an average particle diameter of 1 to 3 μm, were prepared. And then wet-mixed with a ball mill for 72 hours, dried, and press-molded into a green compact at a pressure of 100 MPa. The green compact was vacuumed at 6 Pa at a temperature of 1400 ° C. for 1 hour. Sintering is performed under the holding conditions, and after sintering, the cutting edge part is subjected to a honing process of R: 0.03 to form WC carbide substrates A-1 to A-10 having an ISO standard / CNMG120408 insert shape. did.

ついで、前記WC超硬基体A−1〜A−10を、アセトン中で超音波洗浄し、乾燥した状態で、図1に示される圧力勾配型Arプラズマガンを利用したイオンプレーティング装置に装着し、蒸発源として、金属Tiと金属Alを装着し、まず、装置内を排気して1.0×10−3Pa以下の真空に保持しながら、Arガスを導入して2.3×10−2Paとしたのち、圧力勾配型Arプラズマガンの放電電力を3kWとし、チャンバー内にプラズマビームを照射しArをイオン化させるとともに、WC超硬基体に−600Vのバイアス電圧を印加することによって、前記WC超硬基体を10分間Arボンバード処理し、ついで、装置内を一旦1×10−3Pa程度の真空にした後、圧力勾配型Arプラズマガンのうち、Tiに対するプラズマガンの放電電力を10〜12kW、Alに対するプラズマガンの放電電力を8kWとし、Arガスを45sccm,窒素ガスを100sccm流しながら、炉内の圧力を3×10−2〜6×10−2Paに保ち、蒸発源にプラズマビームを入射し金属Tiと金属Alの蒸気を発生させるとともにプラズマビームでイオン化して、所定温度に保持したWC超硬基体表面に、表3に示される目標層厚の改質TiAlN層を硬質被覆層として蒸着形成することにより、本発明被覆工具としての本発明被覆インサート1〜10を製造した。
なお、表2に、本発明被覆インサート1〜10の改質TiAlN層の形成条件である圧力勾配型Arプラズマガンを利用したイオンプレーティングの各種条件を示す。
Next, the WC carbide substrates A-1 to A-10 were ultrasonically washed in acetone and dried, and then mounted on an ion plating apparatus using a pressure gradient type Ar plasma gun shown in FIG. First, metal Ti and metal Al are mounted as evaporation sources, and first, the inside of the apparatus is evacuated and maintained at a vacuum of 1.0 × 10 −3 Pa or less, and Ar gas is introduced to 2.3 × 10 After setting the pressure to 2 Pa, the discharge power of the pressure gradient type Ar plasma gun is set to 3 kW, the plasma beam is irradiated into the chamber to ionize Ar, and a bias voltage of −600 V is applied to the WC cemented carbide substrate. WC cemented carbide substrate was Ar bombardment for 10 minutes, then, after once 1 × 10 -3 Pa vacuum of about in the apparatus, of the pressure gradient type Ar plasma gun, plasma to Ti The discharge power of cancer 10~12KW, and 8kW the discharge power of the plasma gun relative to Al, the Ar gas 45 sccm, while passing 100sccm of nitrogen gas, the pressure in the furnace to 3 × 10 -2 ~6 × 10 -2 Pa Then, a plasma beam is incident on the evaporation source to generate vapors of metal Ti and metal Al and ionize with the plasma beam, and the target layer thickness shown in Table 3 is changed to the surface of the WC carbide substrate maintained at a predetermined temperature. The coated inserts 1 to 10 of the present invention as the coated tool of the present invention were manufactured by vapor-depositing a high quality TiAlN layer as a hard coated layer.
Table 2 shows various conditions for ion plating using a pressure gradient type Ar plasma gun, which are conditions for forming the modified TiAlN layers of the coated inserts 1 to 10 of the present invention.

比較の目的で、前記WC超硬基体A−1〜A−10を、アセトン中で超音波洗浄し、乾燥した状態で、通常のアークイオンプレーティング装置に装着し、カソード電極(蒸発源)として金属Tiと金属Alを装着し、まず、装置内を排気して0.1Pa以下の真空に保持しながらヒーターで装置内を500℃に加熱した後、Arガスを導入して、0.7Paの雰囲気とすると共に、前記WC超硬基体に−200Vの直流バイアス電圧を印加し、前記WC超硬基体表面をArボンバード処理し、ついで装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記WC超硬基体に−50Vの直流バイアス電圧を印加し、かつ、前記金属Tiと金属Alのカソード電極とアノード電極の間に120Aの電流を流してアーク放電させて、もって前記WC超硬基体の表面に、表4に示される目標層厚の従来TiAlN層を硬質被覆層として蒸着形成することにより、従来被覆工具としての従来被覆インサート1〜10をそれぞれ製造した。   For the purpose of comparison, the WC carbide substrates A-1 to A-10 are ultrasonically cleaned in acetone and dried, and attached to a normal arc ion plating apparatus as a cathode electrode (evaporation source). Attach metal Ti and metal Al, and first heat the interior of the apparatus to 500 ° C. with a heater while evacuating the apparatus and maintaining a vacuum of 0.1 Pa or less, then introduce Ar gas, 0.7 Pa At the same time, a DC bias voltage of −200 V was applied to the WC carbide substrate, the surface of the WC carbide substrate was treated with Ar bombardment, and then nitrogen gas was introduced into the apparatus as a reaction gas to generate a reaction atmosphere of 3 Pa. In addition, a DC bias voltage of −50 V is applied to the WC carbide substrate, and a current of 120 A is passed between the cathode electrode and the anode electrode of the metal Ti and metal Al to discharge the arc. Thus, conventional coated inserts 1 to 10 as conventional coated tools are manufactured by depositing a conventional TiAlN layer having a target layer thickness shown in Table 4 on the surface of the WC carbide substrate as a hard coated layer, respectively. did.

参考のため、前記WC超硬基体A−1〜A−5について、これをアセトン中で超音波洗浄し、乾燥した後、WC超硬基体A−1〜A−5を通常の化学蒸着(CVD)装置内に装着し、
反応ガス組成:容量%で、TiCl:2.2%、AlCl:2.5%、N2:30%、H2:残り、
反応雰囲気温度:900℃、
反応雰囲気圧力:30kPa、
の条件で、CVD法によるTiAlN層(以下、化学蒸着TiAlN層で示す)を表5に示される目標層厚で蒸着形成することにより、参考被覆工具としての参考被覆インサート1〜5を製造した。
前記本発明被覆インサート1〜10の改質TiAlN層、従来被覆インサート1〜10の従来TiAlN層および参考被覆インサート1〜5の化学蒸着TiAlN層について、その層厚、柱状晶のサイズを走査型電子顕微鏡(Carl Zeiss社製 Ultra55)を用いて、膜の破断面を観察することにより測定した。なお、この測定は5点測定の平均値である。
表3〜5に、それぞれの測定値を示した。
For reference, the WC carbide substrates A-1 to A-5 were ultrasonically cleaned in acetone and dried, and then the WC carbide substrates A-1 to A-5 were subjected to normal chemical vapor deposition (CVD). ) Install in the device,
Reaction gas composition: volume%, TiCl 4 : 2.2%, AlCl 3 : 2.5%, N 2 : 30%, H 2 : remaining,
Reaction atmosphere temperature: 900 ° C.
Reaction atmosphere pressure: 30 kPa,
Under these conditions, TiAlN layers (hereinafter referred to as chemical vapor deposition TiAlN layers) formed by CVD were vapor-deposited with the target layer thicknesses shown in Table 5 to produce reference coating inserts 1 to 5 as reference coating tools.
Regarding the modified TiAlN layer of the present invention coated inserts 1 to 10, the conventional TiAlN layer of the conventional coated inserts 1 to 10 and the chemical vapor deposited TiAlN layer of the reference coated inserts 1 to 5, the layer thickness and the size of the columnar crystals are determined by scanning electron. It measured by observing the torn surface of a film | membrane using the microscope (Carl Zeiss Ultra55). This measurement is an average value of five-point measurement.
Each measured value was shown to Tables 3-5.

Figure 0005464494
Figure 0005464494

Figure 0005464494
Figure 0005464494

Figure 0005464494
Figure 0005464494

Figure 0005464494
Figure 0005464494

Figure 0005464494
Figure 0005464494

さらに、前記本発明被覆インサート1〜10のWC超硬基体と改質TiAlN層との界面近傍、従来被覆インサート1〜10のWC超硬基体と従来TiAlN層との界面近傍、および、参考被覆インサート1〜5のWC超硬基体と化学蒸着TiAlN層との界面近傍における、WC結晶粒とTiAlN結晶粒の結晶面配列、結晶方位配向を電界放出型走査電子顕微鏡と電子線後方散乱回折装置を用いて測定した。   Further, the vicinity of the interface between the WC cemented carbide substrate of the present invention coated inserts 1 to 10 and the modified TiAlN layer, the vicinity of the interface between the WC cemented carbide substrate of the conventional coated inserts 1 to 10 and the conventional TiAlN layer, and the reference coated insert Using a field emission scanning electron microscope and an electron beam backscattering diffraction device, the crystal plane arrangement and crystal orientation of WC crystal grains and TiAlN crystal grains in the vicinity of the interface between 1 to 5 WC carbide substrate and chemical vapor deposition TiAlN layer Measured.

図2に、一例として、本発明被覆インサート1についての、超硬基体と改質TiAlN層との界面近傍における、WC結晶粒とTiAlN結晶粒の結晶面配列、結晶方位配向を表す模式図を示す。
また、具体的な測定手順は、次のとおりである。
すなわち、切削工具基体とTiAlN層の断面をイオン研磨により研磨した後、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で10kVの加速電圧の電子線を1.8nAの照射電流で、それぞれの前記表面研磨面の測定範囲内に存在するTiN結晶粒個々に照射して、電子後方散乱回折像装置を用い、界面を中心とし、界面と略平行に幅30μm、高さ3μmの領域の個々のWC結晶粒の[10−10]方位と[0001]方位および、TiAlN結晶粒の[100]方位と[110]方位のそれぞれについて、前記研磨面の法線および法線に直交する任意の方向および、前記法線および前記任意の方向と直交する方向の、それぞれとなす傾斜角度を0.02μm/stepの間隔で測定し、さらに、測定領域内の切削工具基体とTiAlN層の界面において隣接するWC結晶粒とTiAlN結晶粒の対について、
(a1)WC結晶粒の[10−10]方位とTiAlN結晶粒の[100]方位がなす角度、
(a2)WC結晶粒の[0001]方位とTiAlN結晶粒の[110]方位がなす角度、
(c1)WC結晶粒の[11−20]方位とTiAlN結晶粒の[110]方位がなす角度、
(c2)WC結晶粒の[0001]方位とTiAlN結晶粒の[111]方位がなす角度、
をそれぞれ測定した場合に、
(A)前記(a1)で求めた角度と(a2)で求めた角度がともに10度以下となるWC結晶粒とTiAlN結晶粒の対によって形成される特定界面領域の基体表面に沿った距離を測定し、前記(A)の条件を満たすWC結晶粒とTiAlN結晶粒の対すべてについて、前記界面領域の長さを足した距離をXとし、
さらに、
(C)前記(c1)で求めた角度と(c2)で求めた角度がともに10度以下となるWC結晶粒とTiAlN結晶粒の対によって形成される特定界面領域の基体表面に沿った距離を測定し、前記(C)の条件を満たすWC結晶粒とTiAlN結晶粒の対すべてについて、前記界面領域の長さを足した距離をXとし、
さらに、測定された工具基体とTiAlN層の界面において、工具基体表面に沿った全界面領域の長さをXとした。
前記測定により求めた
炭化タングステン結晶粒の[0001]方位とTiAlN結晶粒の[110]方位が平行で、かつ、炭化タングステン結晶粒の[10−10]方位とTiAlN結晶粒の[001]方位が平行である結晶粒の界面長さX
および、
炭化タングステン結晶粒の[0001]方位とTiAlN結晶粒の[111]方位が平行で、かつ、炭化タングステン結晶粒の[11−20]方位とTiAlN結晶粒の[110]方位が平行である結晶粒の界面長さX
の値から、
(X+X)/Xの値(但し、Xは、界面の全長)
の値を算出した。
これらの値をそれぞれ表3〜表5に示す。
FIG. 2 shows, as an example, a schematic diagram showing the crystal plane arrangement and crystal orientation of WC crystal grains and TiAlN crystal grains in the vicinity of the interface between the cemented carbide substrate and the modified TiAlN layer for the coated insert 1 of the present invention. .
The specific measurement procedure is as follows.
That is, after the cross section of the cutting tool base and the TiAlN layer is polished by ion polishing, it is set in a lens barrel of a field emission scanning electron microscope, and an electron beam with an acceleration voltage of 10 kV is applied to the polished surface at an incident angle of 70 degrees. Irradiate each TiN crystal grain existing within the measurement range of each surface polished surface with an irradiation current of 1.8 nA, and use an electron backscatter diffraction image apparatus, centering on the interface and having a width substantially parallel to the interface. The normal of the polished surface for each of the [10-10] and [0001] orientations of the individual WC crystal grains in the region of 30 μm and the height of 3 μm and the [100] and [110] orientations of the TiAlN crystal grains And an arbitrary angle orthogonal to the normal line and an inclination angle between the normal line and the direction orthogonal to the arbitrary direction are measured at intervals of 0.02 μm / step, and further, cutting in the measurement region is performed. For pairs of adjacent WC crystal grains and TiAlN grains at the interface of the tool substrate and TiAlN layer,
(A1) An angle formed by the [10-10] orientation of the WC crystal grains and the [100] orientation of the TiAlN crystal grains,
(A2) An angle formed by the [0001] orientation of the WC crystal grains and the [110] orientation of the TiAlN crystal grains,
(C1) An angle formed by the [11-20] orientation of the WC crystal grains and the [110] orientation of the TiAlN crystal grains,
(C2) An angle formed by the [0001] orientation of the WC crystal grains and the [111] orientation of the TiAlN crystal grains,
When measuring each
(A) The distance along the substrate surface in a specific interface region formed by a pair of WC crystal grains and TiAlN crystal grains in which both the angle obtained in (a1) and the angle obtained in (a2) are 10 degrees or less. measured, the for all satisfy WC crystal grains and TiAlN grains pair of (a), the distance plus the length of the interface region and X a,
further,
(C) A distance along the substrate surface in a specific interface region formed by a pair of WC crystal grains and TiAlN crystal grains in which both the angle obtained in (c1) and the angle obtained in (c2) are 10 degrees or less. measured, the for all satisfy WC crystal grains and TiAlN grains pair of (C), the distance plus the length of the interface region and X C,
Furthermore, the length of the entire interface region along the tool substrate surface at the measured interface between the tool substrate and the TiAlN layer was X.
The [0001] orientation of the tungsten carbide crystal grains and the [110] orientation of the TiAlN crystal grains determined by the measurement are parallel, and the [10-10] orientation of the tungsten carbide crystal grains and the [001] orientation of the TiAlN crystal grains are The interface length X A of the parallel crystal grains,
and,
[0001] orientation of tungsten carbide crystal grains and [111] orientation of TiAlN crystal grains are parallel, and [11-20] orientation of tungsten carbide crystal grains and [110] orientation of TiAlN crystal grains are parallel. Interface length X C ,
From the value of
Value of (X A + X C ) / X (where X is the total length of the interface)
The value of was calculated.
These values are shown in Tables 3 to 5, respectively.

表3から、本発明被覆インサート1〜10の改質TiAlN層は、幅10〜100nm、高さ0.2〜2μmの柱状晶を有し、さらに、WC超硬基体と改質TiAlN層間には、
1>(X+X)/X≧0.3、
を満足するヘテロエピタキシャル界面が形成されていることがわかる。
これに対して、表4から、従来被覆インサート1〜10の従来TiAlN層は、幅100〜500nm、高さ0.2〜2.0μmの柱状晶を有するが、WC超硬基体と従来TiAlN層間には、
1>(X+X)/X≧0.3、
を満足するヘテロエピタキシャル界面は形成されておらず、付着強度が不十分であることがわかる。
また、同じく表5から、参考被覆インサート1〜の化学蒸着TiAlN層にも、
1>(X+X)/X≧0.3、
を満足するヘテロエピタキシャル界面は形成されておらず、付着強度が不十分であることがわかる。
From Table 3, the modified TiAlN layers of the coated inserts 1-10 of the present invention have columnar crystals with a width of 10 to 100 nm and a height of 0.2 to 2 μm, and between the WC carbide substrate and the modified TiAlN layer. ,
1> (X A + X C ) /X≧0.3,
It can be seen that a heteroepitaxial interface satisfying the above is formed.
On the other hand, from Table 4, the conventional TiAlN layer of the conventional coated inserts 1 to 10 has columnar crystals with a width of 100 to 500 nm and a height of 0.2 to 2.0 μm, but the WC carbide substrate and the conventional TiAlN interlayer In
1> (X A + X C ) /X≧0.3,
It can be seen that the heteroepitaxial interface satisfying the above is not formed, and the adhesion strength is insufficient.
Also from Table 5, the chemical vapor deposition TiAlN layers of the reference coating inserts 1 to 5
1> (X A + X C ) /X≧0.3,
It can be seen that the heteroepitaxial interface satisfying the above is not formed, and the adhesion strength is insufficient.

つぎに、前記本発明被覆インサート1〜10、従来被覆インサート1〜10および参考被覆インサート1〜5について、これを工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、溶着チッピングの生じやすい小径部品加工を想定した以下の条件の旋削加工試験を行った。
被削材:JIS・S25Cの丸棒、
切削速度: 80m/min.、
切り込み: 2mm、
送り: 0.1mm/rev.、
切削時間: 45分、
の条件での炭素鋼の乾式低速連続切削加工試験(通常の切削速度および送りは、それぞれ、250m/min.および0.6mm/rev.)、
を行い、切刃の逃げ面摩耗幅を測定した。
前記切削加工試験の測定結果を表6に示した。
Next, welding chipping of the present invention coated inserts 1 to 10, the conventional coated inserts 1 to 10 and the reference coated inserts 1 to 5 are screwed to the tip of the tool steel tool with a fixing jig. A turning test was conducted under the following conditions assuming small diameter part machining that is likely to occur.
Work material: JIS / S25C round bar,
Cutting speed: 80 m / min. ,
Cutting depth: 2mm,
Feed: 0.1 mm / rev. ,
Cutting time: 45 minutes,
Carbon steel dry low-speed continuous cutting test under the following conditions (normal cutting speed and feed are 250 m / min. And 0.6 mm / rev., Respectively),
The flank wear width of the cutting blade was measured.
The measurement results of the cutting test are shown in Table 6.

Figure 0005464494
Figure 0005464494

表3〜6に示される結果から、本発明被覆インサート1〜10は、改質TiAlN層が幅10〜100nm、高さ0.2〜2μmの柱状晶で構成され、さらに、電界放出型走査電子顕微鏡と電子線後方散乱回折装置により、結晶面配列、結晶方位配向を測定した場合、WC超硬基体と改質TiAlN層との界面には、特定のヘテロエピタキシャル界面が形成されており、その結果、すぐれた密着強度を備えることから、溶着チッピングの生じやすい小径低速切削加工条件下において、優れた耐欠損性、耐剥離性を示し、長期の使用に亘って優れた切削性能を発揮するとともに、工具寿命の延命化が図られる。
これに対して、従来被覆インサート1〜10および参考被覆インサート1〜5においては、特定のヘテロエピタキシャル界面の形成が十分でないため、溶着チッピングの生じやすい小径または小型部品の低速加工条件下では欠損、剥離等により、比較的短時間で使用寿命に至ることが明らかである。
From the results shown in Tables 3 to 6, in the coated inserts 1 to 10 of the present invention, the modified TiAlN layer is composed of columnar crystals having a width of 10 to 100 nm and a height of 0.2 to 2 μm, and further, field emission type scanning electrons When the crystal plane alignment and crystal orientation are measured with a microscope and an electron beam backscatter diffraction apparatus, a specific heteroepitaxial interface is formed at the interface between the WC carbide substrate and the modified TiAlN layer. Since it has excellent adhesion strength, it exhibits excellent chipping resistance and peeling resistance under small-diameter low-speed cutting conditions where welding chipping is likely to occur, and exhibits excellent cutting performance over a long period of use. The tool life can be extended.
On the other hand, in the conventional coated inserts 1 to 10 and the reference coated inserts 1 to 5, since the formation of a specific heteroepitaxial interface is not sufficient, a defect occurs under low-speed machining conditions of small diameter or small parts that are likely to cause welding chipping. It is clear that the service life is reached in a relatively short time due to peeling or the like.

原料粉末として、平均粒径0.2μmのWC粉末、同2.3μmのCr粉末、同1.5μmのVC粉末および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表7に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、工具基体形成用丸棒焼結体を形成し、この丸棒焼結体から、研削加工にて、溝形成部の直径×長さが6mm×81mmの寸法並びにねじれ角30度の2枚刃形状をもったWC超硬基体(ドリル)D−1〜D−4を製造した。 As raw material powders, WC powder having an average particle size of 0.2 μm, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, and 1.8 μm Co powder were prepared. 7 and added to wax, ball mill mixed in acetone for 24 hours, dried under reduced pressure, press-molded into various compacts of a predetermined shape at a pressure of 100 MPa, and these compacts The body is heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a heating rate of 7 ° C./min in a vacuum atmosphere of 6 Pa, held at this temperature for 1 hour, and then sintered under furnace cooling conditions. Then, a tool bar forming round bar sintered body is formed, and from this round bar sintered body, a groove forming portion diameter × length of 6 mm × 81 mm and a twist angle of 30 degrees are obtained by grinding. WC carbide substrate (drill) D-1 to D- with blade shape It was prepared.

ついで、前記WC超硬基体D−1〜D−4を、アセトン中で超音波洗浄し、乾燥した状態で、図1に示される圧力勾配型Arプラズマガンを利用したイオンプレーティング装置に装着し、実施例1と同様な方法で、表8に示される目標層厚の改質TiAlN層を硬質被覆層として蒸着形成することにより、本発明被覆工具としての本発明被覆表面被覆ドリル(以下、本発明被覆ドリルという)1〜8を製造した。   Next, the WC carbide substrates D-1 to D-4 were ultrasonically washed in acetone and dried, and then mounted on an ion plating apparatus using a pressure gradient type Ar plasma gun shown in FIG. In the same manner as in Example 1, a modified TiAlN layer having a target layer thickness shown in Table 8 is formed by vapor deposition as a hard coating layer. 1-8 were produced.

比較の目的で、前記WC超硬基体D−1〜D−4を、アセトン中で超音波洗浄し、乾燥した状態で、通常のアークイオンプレーティング装置に装着し、実施例1と同様な方法で、表9に示される目標層厚の従来TiAlN層を硬質被覆層として蒸着形成することにより、従来被覆工具としての従来被覆ドリル1〜8を製造した。   For the purpose of comparison, the WC carbide substrates D-1 to D-4 were ultrasonically cleaned in acetone and dried and mounted on a normal arc ion plating apparatus. Thus, conventional coated drills 1 to 8 as conventional coated tools were manufactured by vapor-depositing a conventional TiAlN layer having a target layer thickness shown in Table 9 as a hard coating layer.

参考のため、前記WC超硬基体D−1〜D−4を、アセトン中で超音波洗浄し、乾燥した後、WC超硬基体D−1〜D−4を通常の化学蒸着(CVD)装置内に装着し、実施例1と同様な方法で、CVD法による化学蒸着TiAlN層を蒸着形成することにより、表10に示される目標層厚の化学蒸着TiAlN層からなる硬質被覆層を備えた参考被覆工具としての参考被覆ドリル1〜4を製造した。   For reference, the WC carbide substrates D-1 to D-4 are ultrasonically cleaned in acetone and dried, and then the WC carbide substrates D-1 to D-4 are subjected to normal chemical vapor deposition (CVD) equipment. A hard coating layer comprising a chemical vapor deposition TiAlN layer having a target layer thickness shown in Table 10 was formed by vapor deposition of a chemical vapor deposition TiAlN layer by a CVD method in the same manner as in Example 1 Reference coated drills 1 to 4 as coated tools were manufactured.

前記本発明被覆ドリル1〜8の改質TiAlN層、従来被覆ドリル1〜8の従来TiAlN層および参考被覆ドリル1〜4の化学蒸着TiAlN層について、その層厚、柱状晶のサイズを、実施例1と同様にして測定した。
表8〜10に、それぞれの測定値を示した。
Regarding the modified TiAlN layer of the present invention coated drills 1-8, the conventional TiAlN layer of the conventional coated drills 1-8, and the chemical vapor deposited TiAlN layer of the reference coated drills 1-4, the layer thickness, the size of the columnar crystals, the examples Measurement was performed in the same manner as in 1.
Each measured value was shown to Tables 8-10.

さらに、前記本発明被覆ドリル1〜8のWC超硬基体と改質TiAlN層との界面近傍、従来被覆ドリル1〜8のWC超硬基体と従来TiAlN層との界面近傍、および、参考被覆ドリル1〜4のWC超硬基体と化学蒸着TiAlN層との界面近傍における、WC結晶粒とTiAlN結晶粒の結晶面配列、結晶方位配向についても、実施例1と同様にして、電界放出型走査電子顕微鏡と電子線後方散乱回折装置を用いてX,X,Xを測定し、(X+X)/Xの値を求めた。
これらの値をそれぞれ表8〜表10に示す。
Furthermore, the vicinity of the interface between the WC carbide substrate of the inventive coated drills 1-8 and the modified TiAlN layer, the vicinity of the interface between the WC carbide substrate of the conventional coated drills 1-8 and the conventional TiAlN layer, and a reference coated drill In the same manner as in Example 1, field emission scanning electrons were also used for the crystal plane arrangement and crystal orientation of the WC crystal grains and TiAlN crystal grains in the vicinity of the interface between the WC carbide substrate of 1-4 and the chemical vapor deposition TiAlN layer. X A , X C , and X were measured using a microscope and an electron beam backscatter diffractometer, and the value of (X A + X C ) / X was determined.
These values are shown in Tables 8 to 10, respectively.

Figure 0005464494
Figure 0005464494

Figure 0005464494
Figure 0005464494

Figure 0005464494
Figure 0005464494

Figure 0005464494
Figure 0005464494

表8から、本発明被覆ドリル1〜8の改質TiAlN層は、幅10〜100nm、高さ0.2〜2μmの柱状晶を有し、さらに、WC超硬基体と改質TiAlN層間には、
1>(X+X)/X≧0.3、
を満足するヘテロエピタキシャル界面が形成されていることがわかる。
これに対して、表9から、従来被覆ドリル1〜8の従来TiAlN層は、幅100〜500nm、高さ0.2〜2.0μmの柱状晶を有するが、WC超硬基体と従来TiAlN層間には、
1>(X+X)/X≧0.3、
を満足するヘテロエピタキシャル界面は形成されておらず、付着強度が不十分であることがわかる。
また、同じく表10から、参考被覆ドリル1〜4の化学蒸着TiAlN層にも、
1>(X+X)/X≧0.3、
を満足するヘテロエピタキシャル界面は形成されておらず、付着強度が不十分であることがわかる。
From Table 8, the modified TiAlN layer of the present invention coated drills 1 to 8 has columnar crystals with a width of 10 to 100 nm and a height of 0.2 to 2 μm, and between the WC carbide substrate and the modified TiAlN layer. ,
1> (X A + X C ) /X≧0.3,
It can be seen that a heteroepitaxial interface satisfying the above is formed.
On the other hand, from Table 9, the conventional TiAlN layer of the conventional coated drills 1 to 8 has columnar crystals with a width of 100 to 500 nm and a height of 0.2 to 2.0 μm, but the WC carbide substrate and the conventional TiAlN interlayer In
1> (X A + X C ) /X≧0.3,
It can be seen that the heteroepitaxial interface satisfying the above is not formed, and the adhesion strength is insufficient.
Similarly, from Table 10, the chemical vapor deposition TiAlN layers of the reference coated drills 1 to 4
1> (X A + X C ) /X≧0.3,
It can be seen that the heteroepitaxial interface satisfying the above is not formed, and the adhesion strength is insufficient.

つぎに、前記本発明被覆ドリル1〜8、従来被覆ドリル1〜8および参考被覆ドリル1〜4について、
被削材−平面寸法:100mm×250mm、厚さ:50mmの、JIS・S25Cの板材、
切削速度: 100m/min.、
送り: 0.40mm/rev.、
穴深さ: 10mm、
の条件での炭素の湿式高速穴あけ切削加工試験(通常の切削速度および送りは、それぞれ、85m/min.および0.20mm/rev.)、
を行い(水溶性切削油使用)、先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。
この測定結果を表11にそれぞれ示した。
Next, about the said invention coated drills 1-8, the conventional coated drills 1-8, and the reference coated drills 1-4,
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm, JIS / S25C plate,
Cutting speed: 100 m / min. ,
Feed: 0.40 mm / rev. ,
Hole depth: 10mm,
Wet high-speed drilling test of carbon under the following conditions (normal cutting speed and feed are 85 m / min. And 0.20 mm / rev., Respectively),
(Using water-soluble cutting oil), and the number of drilling operations was measured until the flank wear width of the cutting edge surface reached 0.3 mm.
The measurement results are shown in Table 11, respectively.

Figure 0005464494
Figure 0005464494

表3、6、8、11に示される結果から、本発明被覆インサート1〜10、本発明被覆ドリル1〜8は、改質TiAlN層が幅10〜100nm、高さ0.2〜2μmの柱状晶で構成され、さらに、電界放出型走査電子顕微鏡と電子線後方散乱回折装置により、結晶面配列、結晶方位配向を測定した場合、WC超硬基体と改質TiAlN層との界面には、特定のヘテロエピタキシャル界面が形成されており、その結果、すぐれた密着強度を備えることから、溶着チッピングの生じやすい小径低速切削加工条件下、あるいは、高速重切削加工条件下においても、優れた耐欠損性、耐剥離性を示し、長期の使用に亘って優れた切削性能を発揮するとともに、工具寿命の延命化が図られる。
これに対して、表4〜6、9〜11に示される結果から、従来被覆インサート1〜10、参考被覆インサート1〜5、および、従来被覆ドリル1〜8、参考被覆ドリル1〜4においては、特定のヘテロエピタキシャル界面の形成が十分でないため、溶着チッピングの生じやすい小径低速切削加工条件下、あるいは、高速重切削加工条件下においては、欠損、剥離等により、比較的短時間で使用寿命に至ることが明らかである。
From the results shown in Tables 3, 6, 8, and 11, the coated inserts 1 to 10 and the coated drills 1 to 8 of the present invention are columnar with a modified TiAlN layer having a width of 10 to 100 nm and a height of 0.2 to 2 μm. In addition, when the crystal plane alignment and crystal orientation are measured by a field emission scanning electron microscope and an electron beam backscatter diffraction device, the interface between the WC carbide substrate and the modified TiAlN layer is specified. As a result, it has excellent adhesion strength, so it has excellent fracture resistance even under conditions of small diameter low-speed cutting or high-speed heavy cutting, where welding chipping is likely to occur. It exhibits peeling resistance, exhibits excellent cutting performance over a long period of use, and extends the tool life.
On the other hand, from the results shown in Tables 4-6 and 9-11, in the conventional coated inserts 1-10, the reference coated inserts 1-5, the conventional coated drills 1-8, and the reference coated drills 1-4 Because the formation of a specific heteroepitaxial interface is not sufficient, the service life is shortened in a relatively short time due to defects, delamination, etc. under small diameter low speed cutting conditions or high speed heavy cutting conditions where welding chipping is likely to occur. It is clear that

前述のように、本発明の被覆工具は、WC超硬基体とこれに隣接して形成される改質TiAlN層間での密着強度が高いため、溶着チッピングの生じやすい小径低速切削加工、あるいは、切刃に対して高負荷が作用する高速重切削加工に用いられた場合に、すぐれた耐欠損性、耐剥離性を示すものであって、被覆インサート、被覆ドリル等の各種被覆工具として用いることができ、そして、これによって、硬質被覆層の欠損、剥離の発生を防止し得ることから、低コスト化に十分満足に対応できるとともに、すぐれた切削性能を長期に亘って発揮し、工具寿命の延命化を図ることができるものである。   As described above, the coated tool of the present invention has high adhesion strength between the WC cemented carbide substrate and the modified TiAlN layer formed adjacent to the WC cemented carbide substrate. When used in high-speed heavy cutting where a high load acts on the blade, it exhibits excellent fracture resistance and peeling resistance, and can be used as various coated tools such as coated inserts and coated drills. This can prevent the occurrence of chipping and delamination of the hard coating layer, so that it is possible to respond satisfactorily to cost reductions, exhibit excellent cutting performance over a long period of time, and extend the tool life. Can be realized.

1:改質TiAlN層
2:工具基体
3:工具基体表面の略平面
4:3を中心に、3と平行となる幅30μm、高さ3μmの測定範囲
5:炭化タングステン結晶粒の[0001]方位とTiAlN結晶粒の[110]方位が平行で、かつ、炭化タングステン結晶粒の[10−10]方位とTiAlN結晶粒の[001]方位が平行である結晶粒の界面長さ X
6:炭化タングステン結晶粒の[0001]方位とTiAlN結晶粒の[111]方位が平行で、かつ、炭化タングステン結晶粒の[11−20]方位とTiAlN結晶粒の[110]方位が平行である結晶粒の界面長さ X
7(4内の実線部):全界面長 X
1: Modified TiAlN layer 2: Tool substrate 3: Measurement range of 30 μm in width and 3 μm in height parallel to 3 centering on a substantially flat surface 4: 3 of the tool substrate surface 5: [0001] orientation of tungsten carbide crystal grains And the [110] orientation of TiAlN crystal grains and the [10-10] orientation of tungsten carbide crystal grains and the [001] orientation of TiAlN crystal grains are parallel to the interface length X A
6: The [0001] orientation of the tungsten carbide crystal grain and the [111] orientation of the TiAlN crystal grain are parallel, and the [11-20] orientation of the tungsten carbide crystal grain and the [110] orientation of the TiAlN crystal grain are parallel. Crystal interface length X C
7 (solid line in 4): Total interface length X

Claims (1)

炭化タングステン基超硬合金からなる切削工具基体の表面に、少なくともTiAlN層を含む硬質被覆層が物理蒸着により形成されてなる表面被覆切削工具であって、
前記切削工具基体の表面に隣接して、0.2〜2μmの層厚を有し、幅10〜100nmの柱状晶組織からなるTiAlN層が形成され、
さらに、前記切削工具基体とTiAlN層との界面の断面における炭化タングステン結晶粒とTiAlN結晶粒について、電界放出型走査電子顕微鏡と電子線後方散乱回折装置を用いて、それぞれの結晶面と結晶方位を求め、
(a)炭化タングステン結晶粒の[0001]方位とTiAlN結晶粒の[110]方位が平行で、かつ、炭化タングステン結晶粒の[10−10]方位とTiAlN結晶粒の[001]方位が平行である結晶粒の界面長さをXとし、
(b)炭化タングステン結晶粒の[0001]方位とTiAlN結晶粒の[111]方位が平行で、かつ、炭化タングステン結晶粒の[11−20]方位とTiAlN結晶粒の[110]方位が平行である結晶粒の界面長さをXとした場合に、
前記切削工具基体表面とこれに隣接するTiAlN層の界面に、
1>(X+X)/X≧0.3、
を満足する(但し、Xは、界面の全長を表す)ヘテロエピタキシャル界面が形成されていることを特徴とする表面被覆切削工具。
A surface-coated cutting tool in which a hard coating layer including at least a TiAlN layer is formed by physical vapor deposition on the surface of a cutting tool base made of a tungsten carbide-based cemented carbide,
Adjacent to the surface of the cutting tool base, a TiAlN layer having a layer thickness of 0.2 to 2 μm and having a columnar crystal structure with a width of 10 to 100 nm is formed,
Further, with respect to the tungsten carbide crystal grains and TiAlN crystal grains in the cross section of the interface between the cutting tool base and the TiAlN layer, the respective crystal planes and crystal orientations are changed using a field emission scanning electron microscope and an electron beam backscatter diffraction apparatus. Seeking
(A) The [0001] orientation of the tungsten carbide crystal grains and the [110] orientation of the TiAlN crystal grains are parallel, and the [10-10] orientation of the tungsten carbide crystal grains and the [001] orientation of the TiAlN crystal grains are parallel. Let X A be the interface length of a crystal grain,
(B) The [0001] orientation of the tungsten carbide crystal grains and the [111] orientation of the TiAlN crystal grains are parallel, and the [11-20] orientation of the tungsten carbide crystal grains and the [110] orientation of the TiAlN crystal grains are parallel. the interface length of certain crystal grains in case of the X C,
At the interface between the cutting tool base surface and the TiAlN layer adjacent thereto,
1> (X A + X C ) /X≧0.3,
A surface-coated cutting tool characterized in that a heteroepitaxial interface is formed (where X represents the total length of the interface).
JP2010156519A 2010-07-09 2010-07-09 Surface coated cutting tool with excellent chipping resistance and peeling resistance of hard coating layer Expired - Fee Related JP5464494B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010156519A JP5464494B2 (en) 2010-07-09 2010-07-09 Surface coated cutting tool with excellent chipping resistance and peeling resistance of hard coating layer
CN201110194042.XA CN102371378B (en) 2010-07-09 2011-07-07 Surface wrapping cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010156519A JP5464494B2 (en) 2010-07-09 2010-07-09 Surface coated cutting tool with excellent chipping resistance and peeling resistance of hard coating layer

Publications (2)

Publication Number Publication Date
JP2012016797A JP2012016797A (en) 2012-01-26
JP5464494B2 true JP5464494B2 (en) 2014-04-09

Family

ID=45602417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010156519A Expired - Fee Related JP5464494B2 (en) 2010-07-09 2010-07-09 Surface coated cutting tool with excellent chipping resistance and peeling resistance of hard coating layer

Country Status (2)

Country Link
JP (1) JP5464494B2 (en)
CN (1) CN102371378B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014103220A1 (en) 2014-03-11 2015-09-17 Walter Ag TiAIN layers with lamellar structure
JP6593776B2 (en) 2015-01-22 2019-10-23 三菱マテリアル株式会社 Surface coated cutting tool
CN110484870B (en) * 2019-08-15 2021-08-24 广东工业大学 Multicomponent nitride hard coating and preparation method and application thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3333081B2 (en) * 1995-12-18 2002-10-07 東芝タンガロイ株式会社 Crystal orientation high strength coated member
JP3333080B2 (en) * 1995-12-18 2002-10-07 東芝タンガロイ株式会社 High-strength coated members with consistent interfaces
US6251508B1 (en) * 1998-12-09 2001-06-26 Seco Tools Ab Grade for cast iron
JP2004284003A (en) * 2003-02-28 2004-10-14 Mitsubishi Materials Corp Surface-coated cermet cutting tool exhibiting excellent chipping resistance in hard coated layer
JP4747268B2 (en) * 2005-05-25 2011-08-17 三菱マテリアル株式会社 Surface coated cemented carbide cutting tool with high temperature strength with excellent hard coating layer
JP4706918B2 (en) * 2005-09-12 2011-06-22 三菱マテリアル株式会社 Surface coated high speed tool steel cutting tool with excellent chipping resistance in high speed heavy cutting of difficult-to-cut materials
JP4960149B2 (en) * 2007-05-29 2012-06-27 京セラ株式会社 Surface coated cutting tool
JP5099586B2 (en) * 2007-08-31 2012-12-19 三菱マテリアル株式会社 Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5099587B2 (en) * 2007-09-04 2012-12-19 三菱マテリアル株式会社 Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5187570B2 (en) * 2007-12-28 2013-04-24 三菱マテリアル株式会社 Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP5168552B2 (en) * 2008-03-28 2013-03-21 三菱マテリアル株式会社 Surface-coated cutting tool with excellent fracture resistance due to hard coating layer

Also Published As

Publication number Publication date
JP2012016797A (en) 2012-01-26
CN102371378A (en) 2012-03-14
CN102371378B (en) 2015-05-06

Similar Documents

Publication Publication Date Title
JP5099586B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5036338B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5287125B2 (en) A surface-coated cutting tool with a hard coating layer that provides excellent fracture resistance and wear resistance
JP5207109B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP2011152602A (en) Surface-coated cutting tool provided with hard coated layer demonstrating superior chipping resistance
JP5515806B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP2013146839A (en) Surface coated cutting tool with hard coating layer maintaining superior heat resistance and wear resistance
JP5182501B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5207105B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5464494B2 (en) Surface coated cutting tool with excellent chipping resistance and peeling resistance of hard coating layer
JP5560513B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5240666B2 (en) Surface-coated cutting tool with excellent chip evacuation
JP5287123B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5287124B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5327534B2 (en) Surface coated cutting tool with excellent chipping resistance and peeling resistance of hard coating layer
JP5397690B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5239292B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5309733B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP2015009322A (en) Surface coated cutting tool
JP5240665B2 (en) Surface-coated cutting tool with excellent chip evacuation
JP5239392B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5239296B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5099587B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP2011194536A (en) Surface-coat cutting tool with hard coating layer exhibiting excellent chipping resistance
JP2019131861A (en) Hard film, hard film-coated tool, and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140109

R150 Certificate of patent or registration of utility model

Ref document number: 5464494

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees