JP2001192864A - Hard film and coated member - Google Patents

Hard film and coated member

Info

Publication number
JP2001192864A
JP2001192864A JP36784499A JP36784499A JP2001192864A JP 2001192864 A JP2001192864 A JP 2001192864A JP 36784499 A JP36784499 A JP 36784499A JP 36784499 A JP36784499 A JP 36784499A JP 2001192864 A JP2001192864 A JP 2001192864A
Authority
JP
Japan
Prior art keywords
hard coating
carbon
less
coating according
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP36784499A
Other languages
Japanese (ja)
Other versions
JP4251738B2 (en
Inventor
Yoshinori Irie
美紀 入江
Kazuhiko Oda
一彦 織田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP36784499A priority Critical patent/JP4251738B2/en
Priority to DE60040365T priority patent/DE60040365D1/en
Priority to EP00301009A priority patent/EP1067211B1/en
Priority to EP08016391.8A priority patent/EP2000560B1/en
Publication of JP2001192864A publication Critical patent/JP2001192864A/en
Application granted granted Critical
Publication of JP4251738B2 publication Critical patent/JP4251738B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/046Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with at least one amorphous inorganic material layer, e.g. DLC, a-C:H, a-C:Me, the layer being doped or not
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a film and a coated member having a low friction coeffi cient and best suited for utilization in a lubricating oil. SOLUTION: This coated member is obtained by providing the surface of a base material 1 with a film 2. This film is provided at least on a part of a sliding face. The film 2 is provided with a layer essentially consisting of carbon. Then, the coated member is used in the presence of lubricating oil. The lubricating oil desirably contains an aromatic compound.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炭素を主成分とす
る硬質被膜と被覆部材に関するものである。特に、耐摩
耗性、低摩擦係数、低相手攻撃性(相手材の摩耗量が少
ない)、耐食性および表面保護機能向上のため、産業、
一般家庭分野において潤滑剤の存在下において利用され
る硬質被膜と被覆部材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hard coating mainly composed of carbon and a coated member. In particular, to improve abrasion resistance, low coefficient of friction, low opponent aggressiveness (low abrasion of mating material), corrosion resistance and surface protection function,
The present invention relates to a hard coating and a coated member used in the general household field in the presence of a lubricant.

【0002】[0002]

【従来の技術】従来、自動車のエンジン、燃料ポンプ、
各種機械などの摺動部に利用される部品に、その摺動性
を高めるための表面処理が施されてきた。摺動性は、耐
摩耗性、耐焼き付き性、摩擦係数によって決定される。
これらの性質を向上するために、部材表面を窒化処理、
メッキ処理、溶射処理、物理的蒸着法によって改質また
は被覆することが試みられてきた。中でも、物理的蒸着
法による表面被覆は、優れた摺動性を示すということが
知られている(例えば特公平1-52471号公報、特開昭62-
120471号公報)。
2. Description of the Related Art Conventionally, automobile engines, fuel pumps,
2. Description of the Related Art Surface treatments have been applied to components used for sliding parts of various machines and the like in order to enhance the slidability. The slidability is determined by wear resistance, seizure resistance, and coefficient of friction.
In order to improve these properties, the surface of the member is nitrided,
Attempts have been made to modify or coat by plating, thermal spraying, or physical vapor deposition. Among them, it is known that surface coating by physical vapor deposition exhibits excellent sliding properties (for example, Japanese Patent Publication No. 1-52471, Japanese Patent Application Laid-Open No.
No. 120471).

【0003】特に、ダイヤモンドライクカーボン(DL
C)、i-C、アモルファスカーボンなどと呼ばれている硬
質カーボン膜は、部品表面に形成することで、部品の摺
動性を向上する材料として知られている。DLCは、炭素
が主成分であり、ときには水素を含んでおり、炭素原子
がSP結合やSP結合を有していながら、全体として非
晶質の材料である。そして、その膜特性と表面平滑性か
ら摩擦係数が低く、耐摩耗性が高いことが知られてお
り、広く利用されている。
[0003] In particular, diamond-like carbon (DL
Hard carbon films called C), iC, amorphous carbon, and the like are known as materials that are formed on the surface of a component to improve the slidability of the component. DLC is a material which is amorphous as a whole, although carbon is a main component and sometimes hydrogen, and carbon atoms have SP 2 bonds or SP 3 bonds. And it is known that the coefficient of friction is low and the abrasion resistance is high because of its film properties and surface smoothness, and it is widely used.

【0004】内燃機関、各種機械などの摺動部に利用さ
れる部品の多くは潤滑油下で利用される。また、近年、
環境問題への取り組みから、これらの部品で発生する摩
擦損失を低減することが強く望まれており、材質面から
みると潤滑油下の摩擦係数の低減、耐摩耗性を向上する
ことが必要である。
[0004] Many of the parts used for sliding parts of internal combustion engines and various machines are used under lubricating oil. In recent years,
It is strongly desired to reduce the friction loss that occurs in these parts from the approach to environmental issues, and it is necessary to reduce the coefficient of friction under lubricating oil and improve the wear resistance in terms of material. is there.

【0005】潤滑油下の摩擦カは、次式のように、固体
−固体の接触で発生する摩擦力と潤滑油同士を引き離す
のに必要なせん断力の和で決定される。 F=A{αSm+(1−α)Sl} … (式1) F:摩擦力、A:荷重、α:摺動面における固体一固体
接触の割合、Sm:固体−固体接触の摩擦係数、Sl:
潤滑油同士の摩擦係数
[0005] The frictional force under lubricating oil is determined by the sum of the frictional force generated by solid-solid contact and the shearing force required to separate the lubricating oils, as shown in the following equation. F = A {αSm + (1−α) Sl} (Equation 1) F: friction force, A: load, α: ratio of solid-solid contact on sliding surface, Sm: friction coefficient of solid-solid contact, Sl :
Coefficient of friction between lubricants

【0006】従って、潤滑油下の摩擦係数を低減させる
ためには、(1)固体−固体の摩擦係数Smを減らす、
(2)固体−固体接触の割合αを減らす(潤滑油での潤
滑割合を増やす)ことが考えられている。
Accordingly, in order to reduce the friction coefficient under lubricating oil, it is necessary to (1) reduce the solid-solid friction coefficient Sm;
(2) It has been considered to reduce the ratio α of solid-solid contact (increase the lubrication ratio with lubricating oil).

【0007】現在のところ(1)に対しては、部品表面
を窒化処理、メッキ処理、溶射処理、CVD法、PVD法によ
って改質または被覆することが有効だと考えられてお
り、この試みは、従来材に比べると格段の効果を発揮し
ている。
At present, for (1), it is considered effective to modify or coat the surface of the component by nitriding, plating, thermal spraying, CVD, or PVD. It has a remarkable effect compared to conventional materials.

【0008】また、(2)に関しては、部品表面を超研
磨加工して表面粗さを小さくし、固体−固体接触の割合
を減らす方法や、部品表面に適当なくぼみを形成し、潤
滑油の油膜を形成しやすくして油膜厚みを増すことで、
潤滑油での潤滑割合を増やすなどの試みがされている。
Regarding (2), the surface of the component is super-polished to reduce the surface roughness and the ratio of solid-solid contact is reduced. By making it easy to form an oil film and increasing the oil film thickness,
Attempts have been made to increase the ratio of lubrication with lubricating oil.

【0009】一方、主に磁気記録媒体の保護層としても
DLCは用いられている。この分野では、DLC被膜の構造を
ラマン分光分析、EELS(電子エネルギー損失分光)、赤
外分光分析などで解析している。特に、摩擦係数を保持
したまま更に耐久性を上げたり、また摩擦係数をも減少
させることを目的として、ラマン分光分析を行って、ラ
マンスペクトルの形状を規定する提案がなされている。
例えば、次の文献が知られている。
On the other hand, it is mainly used as a protective layer of a magnetic recording medium.
DLC has been used. In this field, the structure of the DLC film is analyzed by Raman spectroscopy, EELS (Electron Energy Loss Spectroscopy), infrared spectroscopy, etc. In particular, for the purpose of further increasing the durability while maintaining the friction coefficient or reducing the friction coefficient, a proposal has been made to define the shape of the Raman spectrum by performing Raman spectroscopic analysis.
For example, the following document is known.

【0010】1550cm-1付近と1340cm-1付近に現れるピ
ークの強度比を規定するもの:特開平2-29919号、同3-3
7109号、同5-151560号、同5-174368号、同5-325175号公
What defines the intensity ratio of peaks appearing around 1550 cm -1 and around 1340 cm -1 : JP-A-2-29919, JP-A-3-2919
No. 7109, No. 5-151560, No. 5-174368, No. 5-325175

【0011】面積強度比を規定するもの:特開平6-1112
87号、同6-267063号、同6-349055号、同7-85465号、同7
-192254号、同9-91686号、同10-91935号公報
What defines the area intensity ratio: JP-A-6-1112
No. 87, No. 6-267063, No. 6-349055, No. 7-85465, No. 7
-192254, 9-91686, 10-91935

【0012】これらのピークの蛍光強度比を規定するも
の:特開平8-329450号、同9-153213号、同11-25441号、
同11-86275号、同10-49856号公報
What defines the fluorescence intensity ratio of these peaks: JP-A-8-329450, JP-A-9-153213, JP-A-11-25441,
No. 11-86275, No. 10-49856

【0013】[0013]

【発明が解決しようとする課題】しかし、硬質カーボン
膜が潤滑油中で適用された例はなく、潤滑油中での用途
に対する被膜条件の最適化もなされていない。また、DL
Cの硬度を規定した例が数例ある(特開平1-226711号公
報、特開平5-117087号公報、特開平9-40494号公報、特
開平5-117856号公報)。これらはいずれもDLCと基材と
の密着力の改善を目的としており、潤滑油中における被
膜条件の最適化を目的としたものではない。
However, there is no example in which a hard carbon film is applied in a lubricating oil, and the coating conditions for use in a lubricating oil have not been optimized. Also, DL
There are several examples in which the hardness of C is specified (JP-A-1-226711, JP-A-5-17087, JP-A-9-40494, JP-A-5-117856). These are all aimed at improving the adhesion between the DLC and the substrate, and not at optimizing the coating conditions in the lubricating oil.

【0014】「固体−固体の摩擦係数Smを減らすこ
と」に関しては、現状、耐摩耗性と低摩擦係数を兼ね備
えたと言われる材料、例えばDLCでも摩擦係数は0.1程度
であり、これ以上に摩擦係数を低減させる材料の創製は
困難が予想される。従って、「固体−固体の摩擦係数S
mを減らすこと」のみによって潤滑油下の摩擦係数を更
に低下させることは難しい。
Regarding "reducing the solid-solid friction coefficient Sm", the friction coefficient of a material which is said to have both abrasion resistance and a low friction coefficient at present, such as DLC, is about 0.1. It is expected that it is difficult to create a material that reduces the odor. Therefore, "solid-solid friction coefficient S
It is difficult to further reduce the coefficient of friction under lubricating oil only by "reducing m."

【0015】また、「固体−固体接触の割合αを減らす
こと」に関しては、部品の使用条件がより過酷になる
中、潤滑油不足の下で摺動されることもあり、部品の摩
耗が生じる。超研磨加工やくぼみの導入は、摩耗によっ
てその表面形態が変化してしまうと効果を発揮できなく
なると言う問題があった。
Regarding “reducing the ratio α of solid-solid contact”, the parts may be slid under insufficient lubricating oil while the operating conditions of the parts become more severe, and the parts may be worn. . There is a problem that the effect of super-polishing and the introduction of a depression cannot be exerted if the surface morphology changes due to wear.

【0016】一方、磁気記録媒体の保護層としてのDLC
に関する文献は、全てCVD法やスパッタ法を用いて作製
された硬質カーボン被膜についてのものである。また、
これら硬質カーボン膜は約20at%以上の水素を含有して
いる。さらに、膜厚は磁気記録媒体の保護層としての機
能上、0.1μm未満と非常に薄い。
On the other hand, DLC as a protective layer of a magnetic recording medium
All the references described above relate to hard carbon coatings produced by CVD or sputtering. Also,
These hard carbon films contain about 20 at% or more of hydrogen. Further, the film thickness is extremely small, less than 0.1 μm, in terms of function as a protective layer of the magnetic recording medium.

【0017】それに対して、自動車のエンジン、燃料ポ
ンプ、各種機械などの摺動部に利用される部品を対象と
した場合、これらの使用領域は、磁気記録媒体に比べ、
より高い耐久性が要求される。これらの目的に対して
は、特開平5-296248号、同5-186287号公報などが提案さ
れているが、更なる低摩擦係数化、耐摩耗性向上などが
求められている。
On the other hand, when parts used for sliding parts such as an engine of an automobile, a fuel pump, and various machines are used, their use area is larger than that of a magnetic recording medium.
Higher durability is required. For these purposes, Japanese Patent Application Laid-Open Nos. 5-296248 and 5-186287 have been proposed, but a further reduction in friction coefficient and improvement in wear resistance are required.

【0018】従って、本発明の主目的は、耐摩耗性大、
耐焼き付き性大、相手攻撃性小という特性を有したま
ま、潤滑油中の低摩擦係数化、耐摩耗性向上を図ること
ができる硬質被膜とその被覆部材とを提供することにあ
る。
Therefore, the main object of the present invention is to provide high wear resistance,
It is an object of the present invention to provide a hard coating capable of achieving a low friction coefficient in a lubricating oil and improving abrasion resistance while having characteristics of high seizure resistance and low aggressiveness of a partner, and a coated member thereof.

【0019】[0019]

【課題を解決するための手段】本発明の硬質被膜は、上
記の目的を達成するためになされたもので、潤滑剤の存
在下で使用され、炭素を主成分とする層を具えることを
特徴とする。以下、各構成要件を詳しく説明する。
SUMMARY OF THE INVENTION The hard coating of the present invention has been made to achieve the above-mentioned object, and is to be used in the presence of a lubricant and to have a carbon-based layer. Features. Hereinafter, each component requirement will be described in detail.

【0020】(潤滑剤)本発明硬質被膜は、大気中でも
その効果を発揮することができるが、潤滑剤の存在下に
おいて低摩擦係数化の効果が大きい。潤滑剤は、エンジ
ン油、軽油、ガソリン油、ギヤ油、タービン油、スピン
ドル油、マシン油、モービル油、航空潤滑油およびグリ
ースよりなる群から選択された1種が好ましい。特に、
請求項3〜5の場合の潤滑剤は、前記の潤滑油に芳香族
化合物を含ませたものが好ましい。芳香族化合物とは、
ベンゼン核を持つ炭素環式化合物で、ベンゼン、ナフタ
レン、アントラセン等の芳香族炭化水素とその誘導体を
包括する有機化合物群を言う。この芳香族化合物の含有
量は、潤滑油中の全炭素量に対して芳香族環を形成して
いる炭素の割合が5重量%以上となるようにすることが
好ましい。この割合が5重量%未満では潤滑性の向上効
果が少ない。
(Lubricant) The hard coating of the present invention can exert its effect even in the air, but has a large effect of lowering the friction coefficient in the presence of a lubricant. The lubricant is preferably one selected from the group consisting of engine oil, light oil, gasoline oil, gear oil, turbine oil, spindle oil, machine oil, mobile oil, aviation lubricant, and grease. In particular,
The lubricant in the case of claims 3 to 5 is preferably one in which an aromatic compound is added to the lubricating oil. Aromatic compounds are
A group of organic compounds including aromatic hydrocarbons such as benzene, naphthalene, and anthracene and derivatives thereof, which are carbocyclic compounds having a benzene nucleus. The content of the aromatic compound is preferably such that the ratio of carbon forming an aromatic ring to the total carbon content in the lubricating oil is 5% by weight or more. When this ratio is less than 5% by weight, the effect of improving lubricity is small.

【0021】なお、DLCが芳香族化合物を含有した潤滑
油下において、それを含んでいない潤滑油下に比べて摩
擦係数を低減させ、耐摩耗性が向上する原因は明らかで
ないが、潤滑油での潤滑割合が増えているのではないか
と考えられる。摺動状態における材料表面での潤滑油分
子は、ファンデルワールス力によって吸着している。こ
の吸着カが高ければ、強固な油膜が形成されて油膜厚み
が増し、潤滑油での潤滑割合が増える。芳香族化合物は
DLC表面との吸着力が高いため、強固な油膜が形成され
やすく、摩擦面間の距離を増やすことで、潤滑油下にお
ける潤滑割合が増加していると考えられる。このよう
に、潤滑油の油膜厚さが厚くなって、潤滑油での潤滑割
合が高くなり、固体−固体接触の面積が低くなるため
に、結果的に摺動時の摩耗量が減少すると思われる。
It is not clear why DLC reduces the coefficient of friction and improves wear resistance under a lubricating oil containing an aromatic compound as compared to a lubricating oil not containing it. It is thought that the lubrication ratio of the steel has increased. The lubricating oil molecules on the material surface in the sliding state are adsorbed by Van der Waals force. If the adsorption power is high, a strong oil film is formed, the oil film thickness increases, and the lubricating oil lubrication ratio increases. Aromatic compounds
It is considered that a strong oil film is easily formed due to the high adsorptivity with the DLC surface, and the lubrication ratio under lubricating oil is increased by increasing the distance between the friction surfaces. As described above, since the oil film thickness of the lubricating oil is increased, the lubricating ratio in the lubricating oil is increased, and the area of the solid-solid contact is reduced. It is.

【0022】(硬質被膜の組成と構造)炭素を主成分と
する層の典型例としてはDLCが挙げられる。ここに言うD
LCには、実質的に炭素のみからなるもの及び実質的に炭
素と水素のみからなるものの双方を含む。「実質的に炭
素のみからなる」とは、作製上避けることのできない不
純物としての他元素を除くいかなる元素も被膜中に含有
されていないということである。硬質被膜の場合、特に
成膜時の反応雰囲気に存在する水素を含有している例が
多い。ただし、本発明における実質的に炭素のみからな
る硬質被膜の水素含有率は5at%以下、より好ましくは1
at%以下である。
(Composition and Structure of Hard Coating) A typical example of the layer mainly composed of carbon is DLC. Say D here
LC includes both those consisting essentially of carbon and those consisting essentially of carbon and hydrogen. “Consisting substantially of carbon” means that the coating does not contain any element other than the other elements as impurities which cannot be avoided in production. In the case of a hard coating, there are many examples in which hydrogen is present particularly in a reaction atmosphere at the time of film formation. However, the hydrogen content of the hard coating substantially consisting of only carbon in the present invention is 5 at% or less, more preferably 1 at% or less.
at% or less.

【0023】水素含有率の低い硬質被膜は、水素を含ま
ない雰囲気で成膜することで実現できる。また、水素を
含む雰囲気で成膜する場合でも、アセチレンやベンゼン
等、メタンに比べて水素含有率の低いガスを用いること
が好ましい。
A hard film having a low hydrogen content can be realized by forming the film in an atmosphere containing no hydrogen. Further, even in the case of forming a film in an atmosphere containing hydrogen, it is preferable to use a gas having a lower hydrogen content than methane, such as acetylene or benzene.

【0024】被膜構造としては、例えば、図1に示すよ
うに、基材1上に形成された被覆2がDLCのみからなる
ことが好ましい。ただし、DLC被覆に他の化合物が複合
されていてもよい。複合する他の化合物としては、周期
律表第IVa、Va、VIa族元素、鉄族金属、AlおよびSi、な
らびにこれらの炭化物、窒化物および炭窒化物から選択
された少なくとも一種を含むものが挙げられる。また、
複合の仕方には次の構成がある。
As for the coating structure, for example, as shown in FIG. 1, it is preferable that the coating 2 formed on the substrate 1 is composed of only DLC. However, another compound may be combined with the DLC coating. Other compounds to be compounded include those containing at least one selected from elements IVa, Va, Group VIa, iron group metals, Al and Si, and carbides, nitrides and carbonitrides of the Periodic Table. Can be Also,
There are the following configurations in the combining method.

【0025】DLCが他の元素と化合物層3を形成して
いる(図2)。この場合、他の元素とDLCが原子レベル
で混在して結合しており、他の元素とDLCが混在してい
るのは元素分析で確認されるが、XRD(X‐ray diffract
ion)回折のピークは観察されない。
DLC forms a compound layer 3 with other elements (FIG. 2). In this case, other elements and DLC are mixed and bonded at the atomic level, and it is confirmed by elemental analysis that other elements and DLC are mixed. However, XRD (X-ray diffract
ion) no diffraction peak is observed.

【0026】DLCのみからなる被覆層4の中に他の化
合物粒子5が複合されいる(図3A)。他の化合物が粒
状に複合しているとは、透過電子顕微鏡による観察で、
明確な積層構造が観察されず、かつXRD回折で他の化合
物の回折ピークが観察された場合である。このときのXR
D回折の半価幅から他の化合物の粒径を算出できる。他
の化合物の粒径は0.001〜0.5μmとすることが好まし
い。後述する試験では、粒径が0.001μm未満の他の化合
物は確認されなかった。また、粒径が0.5μmを越えると
他の化合物の摩擦摩耗特性の影響がでてきて、摩擦係数
が急激に高くなる。
The other compound particles 5 are composited in the coating layer 4 composed of only DLC (FIG. 3A). Observation with a transmission electron microscope shows that other compounds are composited in a granular form.
This is the case where no clear laminated structure was observed and diffraction peaks of other compounds were observed by XRD diffraction. XR at this time
The particle size of another compound can be calculated from the half width of D diffraction. The particle size of the other compound is preferably 0.001 to 0.5 μm. In the test described below, other compounds having a particle size of less than 0.001 μm were not confirmed. On the other hand, if the particle size exceeds 0.5 μm, the friction and wear characteristics of other compounds will be affected, and the friction coefficient will rapidly increase.

【0027】DLCのみからなる被覆層6と、他の化合
物層7とが交互に積層されている(図3B)。これは、
透過電子顕微鏡による観察で、明確な積層構造が観察さ
れた場合である。他の化合物層の1層当たりの厚みは0.
0005〜0.6μmとすることが望ましい。各層の厚みは以
下のようにして求められる。まずDLCのみからなる被覆
層と他の化合物からなる被覆層の各々の成膜速度を求め
る。そして、一層を形成するために要した時間から一層
あたりの層厚を求める。透過電子顕微鏡によって、積層
構造が観察される限界の層厚を調査したところ、0.0005
μm未満以下では積層構造が観察されなかった。また、
0.6μmを越えると摩擦係数が増加した。他の化合物
は、DLCのみからなる被覆に比較して、一般的に摩擦係
数が高いため、層厚が厚くなると、他の化合物の摩擦摩
耗特性の影響がでてきて、摩擦係数が急激に高くなる。
従って、積層構造の被覆の最表面にはDLCのみからなる
層を形成することが好適である。
A coating layer 6 composed of only DLC and another compound layer 7 are alternately laminated (FIG. 3B). this is,
This is a case where a clear laminated structure is observed by observation with a transmission electron microscope. The thickness per layer of other compound layers is 0.
It is desirable that the thickness be 0005 to 0.6 μm. The thickness of each layer is determined as follows. First, the deposition rates of the coating layer composed of DLC only and the coating layer composed of another compound are determined. Then, the layer thickness per layer is determined from the time required to form one layer. The transmission electron microscope was used to examine the critical layer thickness at which the laminated structure was observed.
At less than μm, no laminated structure was observed. Also,
Above 0.6 μm, the coefficient of friction increased. Other compounds generally have a higher coefficient of friction than coatings consisting of DLC only.Thicker layers have a greater effect on the friction and wear characteristics of other compounds, and the coefficient of friction increases rapidly. Become.
Therefore, it is preferable to form a layer consisting only of DLC on the outermost surface of the coating of the laminated structure.

【0028】なお、「DLCのみからなる部分(層)」、
「DLCが他の元素と化合物を形成している部分
(層)」、「DLCの中に他の化合物が粒状に複合されて
いる部分(層)」および「他の化合物部分(層)」を適
宜組み合わせて粒状複合構造または積層構造としてもよ
い。すなわち、図4(A)に示すように、被覆全体を粒
状部8と残部9とから構成される粒状複合構造とし、こ
の粒状部8または残部9の各々を「DLCのみからなる部
分」、「DLCが他の元素と化合物を形成している部
分」、「DLCの中に他の化合物が粒状に複合されている
部分」または「他の化合物部分」で構成する。また、図
4(B)に示すように、被覆全体を第一層10と第二層11
とからなる積層構造とし、第一層10または第二層11の各
々を「DLCのみからなる層」、「DLCが他の元素と化合物
を形成している層」、「DLCの中に他の化合物が粒状に
複合されている層」または「他の化合物層」で構成す
る。そして、特に「DLCが他の元素と化合物層3を形
成している複合構造」と「積層構造」の場合に、「他
の元素」は非晶質であってもよい。
Note that "a part (layer) consisting of only DLC"
"The part (layer) where DLC forms a compound with other elements", "the part (layer) where DLC is compounded with other compounds in a granular form" and "the other compound part (layer)" A granular composite structure or a laminated structure may be appropriately combined. That is, as shown in FIG. 4 (A), the entire coating has a granular composite structure composed of a granular portion 8 and a residual portion 9, and each of the granular portion 8 or the residual portion 9 is referred to as a “portion consisting only of DLC”, “ It is composed of "a part where DLC forms a compound with another element", "a part where DLC is compounded with another compound in a granular form", or "another compound part". Further, as shown in FIG. 4B, the entire coating is covered with the first layer 10 and the second layer 11.
Each of the first layer 10 or the second layer 11 is a “layer composed of only DLC”, “a layer in which DLC forms a compound with another element”, and It is composed of "a layer in which the compound is compounded in a granular form" or "another compound layer". In particular, in the case of “composite structure in which DLC forms compound layer 3 with another element” and “laminated structure”, “other element” may be amorphous.

【0029】(被膜の硬度)硬質被膜のヌープ硬度(H
k)を1800kg/mm以上、8000kg/mm以下とすること
が望ましい。特に、ヌープ硬度は2000kg/mm以上、600
0kg/mm以下であることが好ましい。
(Coating Hardness) Knoop Hardness (H
It is desirable that k) be 1800 kg / mm 2 or more and 8000 kg / mm 2 or less. In particular, Knoop hardness of 2000 kg / mm 2 or more, 600
It is preferably 0 kg / mm 2 or less.

【0030】硬度の測定は、押し込み式で行う。ダイヤ
モンド製のヌープ圧子を用い、荷重50g、荷重負荷時間1
0秒間とし、測定値10点の平均値とする。被膜表面の凹
凸が大きく圧痕の形状が見えにくい時は、♯8000のダイ
ヤモンドペーストでバフ研磨を施し、圧痕形状が観察で
きるようにする。
The measurement of the hardness is performed by a push-in method. Using a diamond Knoop indenter, load 50g, load load time 1
It is 0 seconds, and it is the average value of 10 measured values. If the surface of the coating is so uneven that the shape of the indentation is difficult to see, buff it with a # 8000 diamond paste so that the indentation shape can be observed.

【0031】硬度の増加が摩擦係数の減少を引き起こす
原因は明らかではないが以下のように考えている。一般
に摩擦力は、真実接触面積と荷重に比例する。固体同士
が接触するとき、巨視的な見かけの接触面全体が当たる
のではなく、表面の粗さやうねり等の微視的な突起部分
が接触する。これが真実接触面積である。この真実接触
面積が大きくなると摩擦力が大きくなり、摩擦係数も高
くなる。突起部分である真実接触面は荷重の増加に伴っ
て弾性限を越えて塑性変形に推移し、真実接触面積は増
加する。ここで、表面硬度を増加させると物質の弾性率
及び弾性限も高くなるために、同じ荷重であっても変形
量が少なくなり、真実接触面積は減少する。つまり、表
面硬度の増加は真実接触面積を減少させ、結果として、
摩擦力を減少させる。
It is not clear why the increase in hardness causes a decrease in the coefficient of friction, but the following is considered. Generally, the friction force is proportional to the true contact area and the load. When the solids come into contact with each other, the microscopic projections such as surface roughness and undulation do not contact the entire macroscopic contact surface. This is the true contact area. As the true contact area increases, the friction force increases, and the friction coefficient also increases. The true contact surface, which is a protruding portion, transits to plastic deformation beyond the elastic limit as the load increases, and the true contact area increases. Here, when the surface hardness is increased, the elastic modulus and elastic limit of the substance are also increased, so that the deformation amount is reduced even under the same load, and the true contact area is reduced. That is, an increase in surface hardness reduces the true contact area, and consequently,
Reduce frictional force.

【0032】(被膜の表面粗さ)硬質被膜の表面の粗さ
は、中心線平均粗さRaを0.005μm以上、0.2μm以下と
することが望ましい。
(Surface Roughness of Coating) As for the surface roughness of the hard coating, the center line average roughness Ra is desirably 0.005 μm or more and 0.2 μm or less.

【0033】硬質被膜の表面粗さを上記範囲とすれば、
潤滑油中の摩擦係数が低減できる。先に述べた真実接触
面積は、表面の突起が多い、即ちRaが大きい場合に増加
する。従って、Raが0.2μm以下であれば、潤滑油中の
摩擦係数は、単に高硬度(1800以上8000以下)である被
膜より低くなる。表面粗さは低いほど好ましいが、Raが
0.005μm未満の被膜を作製することは技術的に難し
い。従って、より低い摩擦係数を実現するためには、Ra
0.005μm以上、0.2μm以下であることが望ましい。表
面粗さRaの測定方法はJIS B0601に規定の方法に準じて
測定する。具体例的には、測定距離2.5mm、測定スピー
ド0.3mm/s、Cut-off値0.8mmとして、8点測定した平均
値とする。
If the surface roughness of the hard coating is within the above range,
The coefficient of friction in lubricating oil can be reduced. The above-mentioned true contact area increases when there are many protrusions on the surface, that is, when Ra is large. Therefore, when Ra is 0.2 μm or less, the coefficient of friction in the lubricating oil is lower than that of a coating having merely high hardness (1800 or more and 8000 or less). The lower the surface roughness, the better, but Ra
It is technically difficult to produce a coating of less than 0.005 μm. Therefore, to achieve a lower coefficient of friction, Ra
It is preferable that the thickness be 0.005 μm or more and 0.2 μm or less. The surface roughness Ra is measured according to the method specified in JIS B0601. Specifically, the measurement distance is 2.5 mm, the measurement speed is 0.3 mm / s, and the cut-off value is 0.8 mm.

【0034】硬質被膜の表面粗さを決定する要因のう
ち、最も重要なものは被膜が形成される基材の表面粗さ
である。そのため、被膜を形成する前に基材表面を研磨
剤や砥石などによりラッピングすることでRaを減少させ
たりする。Raが0.2μm程度であれば、研削加工で達成で
きる。また、被覆形成方法では、RF励起プラズマCVD法
やイオンビーム蒸着法、スパッタリング法などの場合、
かなり表面粗さを低減した被膜を形成できるが、真空ア
ーク放電蒸着法の場合、特に表面粗さを0.02μm以下に
低減させるには、成膜終了後、被膜のラッピングを研磨
剤や砥石を用いて行うことが有効である。
Among the factors that determine the surface roughness of the hard coating, the most important factor is the surface roughness of the substrate on which the coating is formed. For this reason, Ra is reduced by lapping the base material surface with an abrasive or a grindstone before forming a coating. If Ra is about 0.2 μm, it can be achieved by grinding. In addition, in the coating forming method, in the case of RF excitation plasma CVD method, ion beam evaporation method, sputtering method, etc.
A film with significantly reduced surface roughness can be formed.However, in the case of vacuum arc discharge vapor deposition, in order to reduce the surface roughness to 0.02 μm or less, use a polishing agent or grindstone to wrap the film after film formation. It is effective to do it.

【0035】また、上記硬度と表面粗さの双方の条件を
具えることが好ましい。その中でも、Ra(μm)×Hk
(kg/mm)=Aとした場合に、数値Aが500以下であるこ
とを満たす被膜が、相手攻撃性を小さく保つ上で望まし
い。被膜の硬度が高い場合、相手攻撃性が高くなる(相
手材の摩耗量が大きくなる)。また、表面粗さが粗くな
ることでも相手攻撃性は高くなる。しかし、上記数値A
を500以下とすることで、硬度が高くても表面粗さを減
少させれば相手攻撃性を低く抑えることができ、表面が
粗くても硬度を減少させると相手攻撃性を低くできるこ
とを見出した。特に、相手攻撃性を低く押さえるには、
300以下であることが好適である。
It is preferable that both the above-mentioned conditions of hardness and surface roughness are provided. Among them, Ra (μm) × Hk
When (kg / mm 2 ) = A, a film that satisfies that the numerical value A is 500 or less is desirable for keeping the opponent aggressiveness small. When the hardness of the coating film is high, the aggressiveness of the partner increases (the amount of wear of the partner material increases). Also, the opponent aggressiveness is enhanced by the rough surface roughness. However, the above numerical value A
By setting the surface roughness to 500 or less, it is possible to reduce the opponent's aggressiveness by reducing the surface roughness even if the hardness is high, and to reduce the opponent's aggressiveness by reducing the hardness even when the surface is rough. . In particular, to keep opponent aggression low,
Preferably it is 300 or less.

【0036】(被膜のスペクトル形状)硬質被膜は、ラ
マンスペクトルにおける波数500以上1000cm-1以下にピ
ークを有することが好適である。
(Spectral Shape of Coating) The hard coating preferably has a peak at a wave number of 500 to 1,000 cm -1 in the Raman spectrum.

【0037】このラマンスペクトルは、514.5nmの波長
を持つアルゴンイオンレーザーを用いたラマン分光分析
により得る。より詳しくは、得られたスペクトルの波形
からバックグラウンドを除去した後、ガウス関数でピー
ク波形を分離し、各ピークを非線型最小二乗法により最
適化する。
This Raman spectrum is obtained by Raman spectroscopy using an argon ion laser having a wavelength of 514.5 nm. More specifically, after removing the background from the waveform of the obtained spectrum, the peak waveform is separated by a Gaussian function, and each peak is optimized by the nonlinear least squares method.

【0038】本発明の硬質被膜では、500〜1000cm-1
間、1340cm-1付近および1560cm-1付近の合計3箇所に
ピーク波形が観測される。CVDで作製された従来の硬質
被膜では、500〜1000cm-1の間のピークは観測されな
い。500〜1000cm-1の間にピークを有する被膜構造とす
ることで、より一層の低摩擦係数が実現できる。
[0038] In the hard coating of the present invention, during the 500~1000Cm -1, a peak waveform is observed in the total three places around 1340 cm -1 and near 1560 cm -1. No peak between 500 and 1000 cm -1 is observed for conventional hard coatings made by CVD. By adopting a coating structure having a peak between 500 and 1000 cm- 1 , a further lower coefficient of friction can be realized.

【0039】さらに、波数500以上1000cm-1以下に存在
するピークの強度(I600)と1340cm -1付近に存在する
ピークの強度(I1340)との強度比(I600/I1340)が0.0
2以上2.5以下とすれば、低摩擦係数化と高耐摩耗性が可
能となる。
Further, the wave number is 500 to 1000 cm.-1Exists below
Peak intensity (I600) and 1340cm -1Exists nearby
The intensity ratio (I600 / I1340) to the peak intensity (I1340) is 0.0
If it is 2 or more and 2.5 or less, low friction coefficient and high wear resistance are possible.
It works.

【0040】これは、微小サイズのグラファイトや歪み
を持ったSP結合の量が増えることで、摩擦係数が低減
すると考えられる。ここでは、ピーク強度(高さ)を用
いて整理したが、ピーク積分強度比にも対応しており、
ピーク積分強度比(S600/S1340)は0.01以上2.5以下で
あることが望ましい。ピーク積分強度比が0.01未満であ
る場合、摩擦係数と耐摩耗性は、従来硬質被膜と同等で
ある。また、後述する本発明の実施形態では、ピーク強
度比が2.5以上の被膜を作製することはできなかった。
[0040] This is because the amount of SP 3 bond with graphite or distortion of micro size increases, considered the friction coefficient is reduced. Here, the peak intensity (height) is used to organize, but it also corresponds to the peak integrated intensity ratio,
The peak integrated intensity ratio (S600 / S1340) is desirably 0.01 or more and 2.5 or less. When the peak integrated intensity ratio is less than 0.01, the coefficient of friction and the wear resistance are equivalent to those of the conventional hard coating. Further, in an embodiment of the present invention described later, it was not possible to produce a coating film having a peak intensity ratio of 2.5 or more.

【0041】また、これらの硬質被膜は、実質的に炭素
のみからなることが好ましい。実質的に炭素のみからな
る硬質被膜では500以上1000cm-1以下にピークが観測さ
れる。
It is preferable that these hard coatings consist essentially of carbon only. In the case of a hard coating consisting essentially of carbon, a peak is observed at 500 or more and 1000 cm -1 or less.

【0042】また、実質的に炭素のみからなっている硬
質膜において、ラマンスペクトルにおける1560cm-1
近にあるピークの積分強度(S1560)と1340cm-1付近の
ピークの積分強度(S1340)との比(S1340/S1560)が0.
3以上3以下であれば、低摩擦係数、高耐摩耗性を示
す。従来提案されている硬質被膜は主に水素含有硬質被
膜について行われており、本発明硬質被膜とは膜組成が
異なる。
Further, the ratio of the hard film which is substantially made of only carbon, and integrated intensity of the peak around 1340 cm -1 and the integrated intensity of the peaks (S1560) in the vicinity 1560 cm -1 in the Raman spectrum (S1340) (S1340 / S1560) is 0.
When it is 3 or more and 3 or less, it shows a low coefficient of friction and high wear resistance. The conventionally proposed hard coating is mainly applied to a hydrogen-containing hard coating, and has a different film composition from the hard coating of the present invention.

【0043】さらに、ピークの積分強度だけでなく、ピ
ーク強度(高さ)比(I1340/I1560)にも対応してお
り、0.1以上1.2以下であれば低摩擦係数、高耐摩耗性を
示す。これら、1560cm-1付近にあるピーク強度と1340c
m-1付近のピーク強度との比は、SP/SP比ともいわ
れ、被膜内部の炭素の結合状態(SP、SP)の存在量
を表している。これらピーク強度比が、直接SPの含有
率を示しているわけではないが、相対的な含有量の順位
付けを行うことができる。1560cm-1付近のピーク強度
が高い場合に、より摩擦係数が低下することがわかっ
た。つまり、SP結合性が強い場合に摩擦係数が低減
し、耐摩耗性が向上していた。S1340/S1560が3を超え
てSP結合性が低い場合およびI1340/I1560が1.2を超え
る場合は、摩擦係数・耐摩耗性は従来の硬質被膜と同程
度であった。また、S1340/S1560が0.3未満以下およびI1
340/I1560が0.1未満の場合、SP結合性が高くなり、十
分な被膜との密着カが得られず、実用に耐えることがで
きなかった。
Furthermore, it corresponds not only to the integrated intensity of the peak, but also to the peak intensity (height) ratio (I1340 / I1560). When it is 0.1 or more and 1.2 or less, it shows a low friction coefficient and high wear resistance. These peak intensity near 1560cm- 1 and 1340c
m ratio of the peak intensity in the vicinity of -1, gratuitous both SP 2 / SP 3 ratio, represents the abundance of bound states of the coating inside the carbon (SP 2, SP 3). These peak intensity ratio, but not indicate the content of direct SP 2, it is possible to perform the ranking of the relative content. It was found that when the peak intensity around 1560 cm -1 was high, the friction coefficient was further reduced. That is, the coefficient of friction is reduced when SP 3 bonding is strong, the wear resistance was improved. If S1340 / S1560 is the case of a low SP 3 bond to beyond 3 and I1340 / I1560 exceeds 1.2, the friction coefficient and wear resistance were comparable to conventional hard coating. In addition, S1340 / S1560 is less than 0.3 and I1
When 340 / I1560 is less than 0.1, SP 3 bonding is increased, adhesion mosquito sufficient coating can not be obtained, could not withstand practical use.

【0044】そして、実質的に炭素のみからなり、ラマ
ンスペクトルにおける「1560cm-1付近のピーク」が156
0cm-1以上1580cm-1以下の間に存在していれば、低摩
擦係数、高耐摩耗性を実現できる。ラマンスペクトルの
ピーク位置は被膜内の応力の影響を受ける。一般的に
は、被膜内の応力が圧縮側に高い場合、ラマンピークは
高波数側にシフトし、逆に引張り側に高い場合は、低波
数側にシフトする。硬質被膜の応力が圧縮側に高い(ピ
ークがより高波数側にある)方が、より低摩擦係数、高
耐摩耗性を示すことを見出した。この圧縮応力を、基材
の合成前後の反り変化量(片持ち梁法)で求めた結果、
−4GPa以上、−10GPa以下の値であった。この圧縮応力
値と1560cm-1付近のラマンピークのピーク位置は、図
1のグラフに示すように、ほぼ比例関係を示していた。
Then, the sample substantially consists of only carbon, and the “peak near 1560 cm −1 ” in the Raman spectrum is 156.
If present between 0 cm -1 or more 1580 cm -1 or less, a low friction coefficient, high wear resistance can be realized. The peak position of the Raman spectrum is affected by the stress in the coating. In general, when the stress in the coating is high on the compression side, the Raman peak shifts to the high wavenumber side, and conversely, when the stress in the coating is high on the tension side, it shifts to the low wavenumber side. It has been found that the higher the stress of the hard coating on the compression side (the peak is on the higher wave number side), the lower the coefficient of friction and the higher the abrasion resistance. As a result of calculating this compressive stress by the amount of change in warpage before and after the synthesis of the base material (cantilever method),
The value was −4 GPa or more and −10 GPa or less. The compressive stress value and the peak position of the Raman peak near 1560 cm -1 showed a substantially proportional relationship as shown in the graph of FIG.

【0045】ラマン分光分析によって、以上の特徴の全
てを有している硬質被膜は、本発明中、最も低い摩擦係
数と高い耐摩耗性を示す。
By Raman spectroscopy, a hard coating having all of the above characteristics exhibits the lowest coefficient of friction and the highest wear resistance in the present invention.

【0046】(被膜の密度)被膜密度は、低摩擦係数化
と耐摩耗性向上の観点から2.6〜3.6g/cm3とすることが
好適である。特に、この密度範囲で実質的に炭素のみか
らなることが望ましい。この密度の測定は、成膜前後の
基板の重量変化を析出体積で割ったものを用いた。その
他、EELS(電子エネルギー損失分光)やXPS(X線光電子
分光)におけるプラズモンエネルギーから求める方法も
有効である。
(Coating Density) The coating density is preferably from 2.6 to 3.6 g / cm 3 from the viewpoint of lowering the friction coefficient and improving the wear resistance. In particular, it is desirable that substantially only carbon is contained in this density range. For the measurement of the density, a value obtained by dividing the change in weight of the substrate before and after film formation by the deposition volume was used. In addition, a method of obtaining from plasmon energy in EELS (electron energy loss spectroscopy) or XPS (X-ray photoelectron spectroscopy) is also effective.

【0047】(SP2結合の比率)硬質被膜におけるSP2
合を有する炭素成分が、1〜40at.%であることが望まし
い。SP2結合性が潤滑油下での被膜の耐摩耗性、摩擦係
数に影響を及ぼしていることは既に述べた。SP2結合を
有する炭素成分が上記の範囲であれば、低摩擦係数化と
耐摩耗性向上に有効である。この結合の存在比率の定量
に当たっては様様な方法が提案されている。本発明では
EELSにより、試料のスペクトルにおいてSP2結合炭素に
起因するピークの強度を、グラファイトの場合(100at.
%)のピーク強度で規格化してSP2比率を求めた。
[0047] (SP 2 bond ratio) of the carbon component having SP 2 bond in the hard coating is desirably 1~40at.%. It has already been mentioned that SP 2 binding affects the wear resistance and coefficient of friction of the coating under lubricating oil. When the carbon component having the SP 2 bond is in the above range, it is effective for lowering the friction coefficient and improving the wear resistance. Various methods have been proposed for quantifying the binding ratio. In the present invention
By EELS, the peak intensity attributable to SP 2 bonded carbon in the spectrum of the sample was determined for graphite (100 at.
%), And the SP 2 ratio was determined by normalizing the peak intensity.

【0048】(被膜の厚み)被膜全体の厚み(後述する
中間層がある場合、中間層の厚みは含まない)は0.05〜
100μmとすることが好適である。この厚みが0.05μm未
満では、摺動状態で摩擦係数を低減できる期間が短く、
実用に向かない。逆に100μmを越えると、被覆が脆くな
り破壊し易くなる。より望ましい範囲は0.05μm〜10μ
mであり、さらに望ましい範囲は0.1μm〜10μmであ
る。
(Thickness of Coating) The thickness of the entire coating (if an intermediate layer described later is present, the thickness of the intermediate layer is not included) is 0.05 to
The thickness is preferably 100 μm. When the thickness is less than 0.05 μm, the period during which the friction coefficient can be reduced in a sliding state is short,
Not suitable for practical use. Conversely, if it exceeds 100 μm, the coating becomes brittle and easily broken. A more desirable range is 0.05 μm to 10 μm
m, and a more desirable range is 0.1 μm to 10 μm.

【0049】(基材)上記の硬質被膜は基材上に形成す
る。基材は内燃機関の構成部品が好適である。特に、磁
気記録媒体など、その負荷領域が軽荷重であるところに
利用されるものではなく、高負荷(1kg/mm以上)の
機械部品、摺動部品分野など、より高い耐久性が要求さ
れる部品に対しての適用が好適である。
(Substrate) The above-mentioned hard coating is formed on a substrate. The substrate is preferably a component of an internal combustion engine. In particular, it is not used where the load area is light, such as a magnetic recording medium, and higher durability is required in the field of high load (1 kg / mm 2 or more) mechanical parts and sliding parts. It is suitable to be applied to such parts.

【0050】基材の材質は特に限定されない。セラミッ
クス、鉄系合金、アルミニウム合金および鉄系焼結体よ
りなる群から選択された少なくとも1種が好適である。
セラミックスとしては、窒化ケイ素、アルミナ、ジルコ
ニアなどが挙げられる。鉄系合金としては、高速度鋼、
ステンレス鋼、SKD等が挙げられる。アルミニウム合金
としてはジュラルミン等が挙げられる。さらに、WC基超
硬合金やサーメットなどでも良い。
The material of the substrate is not particularly limited. At least one selected from the group consisting of ceramics, iron-based alloys, aluminum alloys, and iron-based sintered bodies is suitable.
Examples of the ceramic include silicon nitride, alumina, zirconia, and the like. High-speed steel,
Examples include stainless steel and SKD. Examples of the aluminum alloy include duralumin. Further, a WC-based cemented carbide or cermet may be used.

【0051】(中間層の形成)上記の各被覆は基材上に
直接形成してもよいが、基材と被覆の間に中間層12(図
1〜図4参照)を設けて両者の密着力を高めることが好
ましい。中間層の材質としては、線膨張係数が基材と被
覆の中間であるものが好ましい。例えば、周期律表第IV
a、Va、VIa族元素、鉄族金属、AlおよびSi、ならびにこ
れらの炭化物、窒化物および炭窒化物から選択された少
なくとも一種が挙げられる。この中間層は、周期律表4
a,5a,6a族の元素およびこれらの窒化物、炭化物、
炭窒化物を単層で用いても効果があるが、より効果的に
は、基材表面には周期律表4a,5a,6a族の元素また
はSiからなる層(金属層)を配置し、被膜側にはこれら
の窒化物、炭化物、炭窒化物層(化合物層)を配置する
ようにする。この場合、金属層から化合物層への移行は
組成的に連続、すなわち炭素、窒素の元素含有率が連続
的に変化させることも効果的である。また、化合物層か
らアモルファス層への移行も、組成的にステップ状に移
行しても良いが、連続的に炭素含有率が増加しても良
い。このような中間層の厚みは、硬質被膜と基材との密
着性を向上させるには、0.01μm以上1μm以下が望ま
しい。
(Formation of Intermediate Layer) Each of the above-mentioned coatings may be formed directly on the substrate, but an intermediate layer 12 (see FIGS. It is preferable to increase the force. As the material of the intermediate layer, a material having a coefficient of linear expansion between the substrate and the coating is preferable. For example, Periodic Table IV
a, Va, VIa group elements, iron group metals, Al and Si, and at least one selected from carbides, nitrides and carbonitrides thereof. This intermediate layer is based on Periodic Table 4
a, 5a, 6a group elements and their nitrides, carbides,
It is effective to use carbonitride as a single layer, but more effectively, a layer (metal layer) composed of an element of the periodic table 4a, 5a, or 6a or Si is disposed on the surface of the base material. These nitride, carbide and carbonitride layers (compound layers) are arranged on the film side. In this case, it is also effective that the transition from the metal layer to the compound layer is continuous in composition, that is, the element contents of carbon and nitrogen are continuously changed. Further, the transition from the compound layer to the amorphous layer may be stepwise in terms of composition, but the carbon content may be continuously increased. The thickness of such an intermediate layer is preferably 0.01 μm or more and 1 μm or less in order to improve the adhesion between the hard coating and the substrate.

【0052】(被膜の形成方法)上記の被膜(中間層
も)を形成する手段としては、RFプラズマCVD法、DCマ
グネトロン・アンバランスドマグネトロンスパッタリン
グ法、真空アーク放電蒸着法法、イオンビーム蒸着法、
レーザーアブレーション法などが挙げられる。
(Method for Forming Coating) As means for forming the coating (including the intermediate layer), there are RF plasma CVD, DC magnetron / unbalanced magnetron sputtering, vacuum arc discharge evaporation, ion beam evaporation. ,
Laser ablation method and the like can be mentioned.

【0053】他の化合物を粒状に複合した層は、主に成
膜材料の変更と成膜時間を調整することで形成できる。
すなわち、膜の成長は、まず基材表面に核が形成され、
この核が成長して多数の島状体になる。これらの各島状
体が成長し、隣接する島状体と一体化することで層状の
膜が形成されるのである。そこで、各島状体が隣接する
島状体と合体する前に別の材料で膜形成を行い、島状体
の間に別な材料が侵入した膜を形成すると、この個所を
三次元的に見れば別の材料の中に他の化合物が粒状に複
合されている状態となるのである。
A layer in which another compound is composited in a granular form can be formed mainly by changing the film forming material and adjusting the film forming time.
That is, in the growth of the film, nuclei are first formed on the substrate surface,
This nucleus grows into numerous islands. Each of these islands grows and is integrated with an adjacent island to form a layered film. Therefore, before each island merges with the adjacent island, a film is formed with another material, and a film in which another material has penetrated between the islands is formed. If you look at it, you will be in a state where another compound is compounded in a granular form in another material.

【0054】また、積層構造の被覆は、ある原料での成
膜過程で完全に膜状になってから供給原料を他の材料に
変更し、変更後の材料でも完全に膜状になるまで成膜を
続け、この工程を繰り返すことで形成できる。
In addition, the coating of the laminated structure is formed by completely changing the supply material to another material after the film is completely formed in the process of forming a film with a certain raw material, and until the material after the change is completely formed into a film. The film can be formed by continuing the film and repeating this process.

【0055】(被覆の形成個所)被覆を形成する個所
は、耐摩耗性が要求される個所とする。例えば、基材の
うち、相手材と摺動する面、すなわち摺動面の全面が好
ましいが、基材の形状などに応じ、摺動面の一部として
もよい。
(Formation of coating) The coating is formed at a location where abrasion resistance is required. For example, of the base material, the surface that slides with the counterpart material, that is, the entire sliding surface is preferable, but may be a part of the sliding surface according to the shape of the base material.

【0056】[0056]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。炭素を主成分とする被膜を基材に直接または中間
層を介して形成し、被膜の剥離の有無、摩擦係数、摩耗
量を調べてみた。以下の条件は、後述する試験例1〜4
において共通である。
Embodiments of the present invention will be described below. A coating containing carbon as a main component was formed on a substrate directly or via an intermediate layer, and the presence or absence of peeling of the coating, the coefficient of friction, and the amount of wear were examined. The following conditions correspond to Test Examples 1 to 4 described below.
Is common in

【0057】基材には、WC基超硬合金、Si3N4、Al203
Al系合金、SKH51、SUS304c、SCM415を用いた。
As the base material, a WC-based cemented carbide, Si 3 N 4 , Al 2 O 3 ,
Al-based alloy, SKH51, SUS304c, SCM415 were used.

【0058】被膜の成膜法は、RFプラズマCVD(RF−CV
D)、イオンプレーテイング(IP)、真空アーク放電蒸
着法(VAD)、スパッタリング法(SP)を用いた。RF−C
VD/IPとは、それぞれを複合して用いた方法である。RF
−CVDを用いる場合は、炭化水素ガス(CH4)、アンモニ
ア又はN2および水素を用いる。金属元素を添加する場合
は、塩化物またはアルコキシドなどの気相状態で添加す
るか、固体原料の蒸発を行う。VAD法では、雰囲気ガス
を炭化水素−Ar系として金属またはセラミックスの固体
蒸発源を用いるか、Ar系ガス雰囲気または雰囲気ガスな
しで炭素および金属またはセラミックス固体蒸発源を用
いて成膜した。SP法は、RF−マグネトロンスパッタを用
い、Ar雰囲気で、炭素および金属またはセラミックス固
体蒸発源をスパッタリングした。各成膜法の具体的条件
範囲は表1〜4に示す通りである。表1はRF−CVDの条件
を、表2はVADの条件を、表3はSPの条件を、表4はIP
の条件を示している。
The film is formed by RF plasma CVD (RF-CV
D), ion plating (IP), vacuum arc discharge evaporation (VAD), and sputtering (SP) were used. RF-C
VD / IP is a method in which each is used in combination. RF
When using a -CVD, hydrocarbon gas (CH 4), using ammonia or N 2 and hydrogen. When adding a metal element, it is added in a gaseous state such as chloride or alkoxide, or a solid raw material is evaporated. In the VAD method, a film was formed by using a metal or ceramic solid evaporation source with an atmosphere gas of a hydrocarbon-Ar system or using a carbon and metal or ceramic solid evaporation source without an Ar gas atmosphere or an atmosphere gas. In the SP method, carbon and metal or ceramic solid evaporation sources were sputtered in an Ar atmosphere using RF-magnetron sputtering. The specific condition range of each film forming method is as shown in Tables 1-4. Table 1 shows RF-CVD conditions, Table 2 shows VAD conditions, Table 3 shows SP conditions, and Table 4 shows IP conditions.
Are shown.

【0059】[0059]

【表1】 [Table 1]

【0060】[0060]

【表2】 [Table 2]

【0061】[0061]

【表3】 [Table 3]

【0062】[0062]

【表4】 [Table 4]

【0063】中間層の材質は、TiN、TiCN、Al2O3、 SiC
などとし、その厚みは約0.05〜1.5μmとした。
The material of the intermediate layer is TiN, TiCN, Al 2 O 3 , SiC
And the thickness is about 0.05 to 1.5 μm.

【0064】摩耗評価に用いた摺動部材は、成膜後に剥
離の見られない試料または基材自体が変質していない試
料である。表5〜10に評価結果を示しているが、評価を
行えたものに○印を、行えなかったものに×印をつけ
た。評価は、ボールオンディスク試験法で行った。相手
材はφ6mmのSUJ2ボール、摺動半径1mm、回転速度500rp
m、総回転数10000回、荷重は10N、エンジンオイル(10W
−30)中の条件で試験し、摩擦力を測定する。そして、
摩擦係数を求めると共に、試験終了後の摩耗痕の溝断面
積を表面粗さ計を用いて測定し、耐摩耗性を評価した。
比較のため、SUS304の基材に被膜を形成していない比較
例1も用意した。耐摩耗性は、比較例1であるDLCの摩耗
痕の断面積を100としたとき、各試料における摩耗痕の
断面積比率で示した。各表における「摩耗量」がこの断
面積比率を示している。摩擦係数、摩耗痕の断面積比率
は、評価を行えた試料の平均値である。また、「添加あ
り・なし」はエンジンオイルへのドデシルベンゼンの添
加の有無を示している。潤滑油中の全炭素量に対してド
デシルベンゼンのベンゼン核を形成している炭素の割合
は10重量%であった。
The sliding member used for the abrasion evaluation is a sample in which no peeling is observed after film formation or a sample in which the substrate itself is not deteriorated. The evaluation results are shown in Tables 5 to 10, in which the evaluation was performed by a circle and the evaluation was not performed by a cross. The evaluation was performed by a ball-on-disk test method. Opponent material is φ6mm SUJ2 ball, sliding radius 1mm, rotation speed 500rp
m, total rotation speed 10,000 times, load 10N, engine oil (10W
-30) Test under the conditions described in (3) and measure the frictional force. And
The friction coefficient was determined, and the groove cross-sectional area of the wear mark after the test was measured using a surface roughness meter to evaluate the wear resistance.
For comparison, Comparative Example 1 in which a coating was not formed on the SUS304 substrate was also prepared. The abrasion resistance was represented by the ratio of the cross-sectional area of the wear mark in each sample, with the cross-sectional area of the wear mark of DLC as Comparative Example 1 being 100. “Amount of wear” in each table indicates this cross-sectional area ratio. The coefficient of friction and the cross-sectional area ratio of wear marks are the average values of the samples that were evaluated. "With / without addition" indicates whether or not dodecylbenzene was added to the engine oil. The ratio of carbon forming the benzene nucleus of dodecylbenzene to the total carbon content in the lubricating oil was 10% by weight.

【0065】(試験例1)図1および図2に記載の被膜構
造を持つ試料について上記の試験を行った。その結果を
表5に示す。なお、表5の各実施例における「他の化合
物」はいずれも非晶質である。例えば、スパッタリング
法や真空アーク放電蒸着法では、各蒸発源を同時に放電
させることで「他の化合物」を非晶質とできる。
(Test Example 1) The above-described test was performed on samples having the coating structures shown in FIGS. Table 5 shows the results. The “other compounds” in each example of Table 5 are all amorphous. For example, in a sputtering method or a vacuum arc discharge evaporation method, "another compound" can be made amorphous by discharging each evaporation source simultaneously.

【0066】[0066]

【表5】 [Table 5]

【0067】表5に示すように、No.1-1〜1-5が炭素の
みから構成される被膜で、No.1-6〜1-23は炭素が他の元
素と化合物を形成している被膜である。いずれの試料も
ドデシルベンゼンを潤滑油中に含有することで摩擦係数
が低下していることがわかる。また、成膜方法は、「RF
−CVD/IP」としたものの一部に被膜の剥離が見られた
ことからこれ以外の成膜方法が好ましい。
As shown in Table 5, Nos. 1-1 to 1-5 are coatings composed only of carbon, and Nos. 1-6 to 1-23 are coatings in which carbon forms a compound with another element. Film. It can be seen that the friction coefficient of any of the samples was reduced by containing dodecylbenzene in the lubricating oil. In addition, the film formation method is “RF
Since the peeling of the film was observed in a part of the film of “-CVD / IP”, another film forming method is preferable.

【0068】(試験例2)図3(A)に記載の被膜構造を
持つ試料について上記の試験を行った。すなわち、この
試料における被膜は、DLCのみからなる被膜中に他の化
合物が粒状に複合されている。試験結果を表6、7に示
す。この表において、「他の化合物構成元素」とは図3
(A)における「他の化合物粒子5」の構成元素を示
し、「粒径」とはその外径を示している。
(Test Example 2) The above test was performed on a sample having the coating structure shown in FIG. 3 (A). That is, the coating in this sample is a coating composed of only DLC and other compounds are combined in a granular form. The test results are shown in Tables 6 and 7. In this table, "other compound constituent elements"
The constituent elements of "other compound particles 5" in (A) are shown, and the "particle size" indicates the outer diameter thereof.

【0069】[0069]

【表6】 [Table 6]

【0070】[0070]

【表7】 [Table 7]

【0071】表6、7に示すように、いずれの試料もド
デシルベンゼンを潤滑油中に含有することで摩擦係数が
低下していることがわかる。また、成膜方法は、「RF−
CVD/IP」としたものの一部に被膜の剥離が見られたこ
とからこれ以外の成膜方法が好ましい。基材をWC基超硬
合金、Si3N4、Al203としたものは、いずれの成膜方法で
も被膜の剥離が見られなかった。
As shown in Tables 6 and 7, it can be seen that the friction coefficient of each of the samples is reduced by containing dodecylbenzene in the lubricating oil. In addition, the film formation method is “RF-
Since the peeling of the coating film was observed in a part of the sample of “CVD / IP”, another film forming method is preferable. WC based cemented carbide substrate, those with Si 3 N 4, Al 2 0 3 , the release of the film was not observed in any of the film forming method.

【0072】(試験例3)図3(B)に記載の被膜構造を
持つ試料について上記の試験を行った。本試験例では、
試料において中間層を形成した。試験結果を表8、9に
示す。この表において、「他の化合物層」とは図3(B)
における「他の化合物層7」の構成元素を示し、「他の
化合物層厚」とは「他の化合物層7」の一層当たりの厚
みを示し、「C層層厚」とは「DLCのみからなる被膜層
6」の一層当たりの厚みを示し、「膜厚」とは被膜層全
体の厚みを示している。なお、この試験例では全ての試
料において、いずれの成膜方法でも被膜の剥離が見られ
なかったため、評価の可否(○/×)は省略している。
(Test Example 3) The above test was performed on a sample having the film structure shown in FIG. 3 (B). In this test example,
An intermediate layer was formed on the sample. Tables 8 and 9 show the test results. In this table, "Other compound layer" refers to Fig. 3 (B)
Indicates the constituent elements of the “other compound layer 7”, “other compound layer thickness” indicates the thickness of one layer of “other compound layer 7”, and “C layer thickness” indicates “from only DLC”. The thickness of one layer of the “coating layer 6” is shown, and the “film thickness” indicates the thickness of the entire coating layer. In this test example, no peeling of the coating film was observed in any of the samples in any of the film forming methods, and thus the evaluation (O / X) was omitted.

【0073】[0073]

【表8】 [Table 8]

【0074】[0074]

【表9】 [Table 9]

【0075】表8、9に示すように、いずれの実施例も
比較例1に比べて摩擦係数が低くなっていることがわか
る。
As shown in Tables 8 and 9, it can be seen that the friction coefficient of each of the Examples is lower than that of Comparative Example 1.

【0076】(試験例4)図4に記載の被膜構造を持つ
試料について上記の試験を行った。本試験例では、全て
の試料において中間層を形成した。試験結果を表10に示
す。なお、この試験例では全ての試料において、いずれ
の成膜方法でも被膜の剥離が見られなかったため、評価
の可否(○/×)は省略している。この表において、
「層1」とは図4(A)記載の「残部9」または図4
(B)記載の「第一層10」を示し、「層2」とは図4
(A)記載の「粒状部8」または図4(B)記載の「第二
層11」を示している。また、「層1構造」、「層2構造」
とは、これら各層の構造が図2、図3(A)または図3
(B)のいずれに該当するかを示している。従って、図3
(A)の構造を取る場合、「層1または層2構成元素」の
欄には「他の化合物粒子」の構成元素を示した。さら
に、「膜構造」とは被膜の全体構成が図4(A)または
図4(B)のいずれであるかを示している。
(Test Example 4) The above-described test was performed on a sample having the coating structure shown in FIG. In this test example, an intermediate layer was formed in all samples. Table 10 shows the test results. In this test example, no peeling of the coating film was observed in any of the samples in any of the film forming methods, and thus the evaluation (O / X) was omitted. In this table,
“Layer 1” means “remainder 9” described in FIG. 4 (A) or FIG.
FIG. 4B shows the “first layer 10”, and “layer 2” refers to FIG.
The “granular portion 8” described in (A) or the “second layer 11” illustrated in FIG. 4B is shown. In addition, "layer 1 structure", "layer 2 structure"
Means that the structure of each of these layers is as shown in FIG. 2, FIG. 3 (A) or FIG.
(B) is shown. Therefore, FIG.
In the case of taking the structure of (A), the column of “elements of layer 1 or layer 2” shows the elements of “other compound particles”. Further, the “film structure” indicates whether the overall configuration of the coating is either FIG. 4 (A) or FIG. 4 (B).

【0077】例えば、No.4-4では全体構造が図4(B)
の積層構造であり、その「第一層」は「DLC中にCrが粒
子状に複合された層」で構成され、その「第二層」は
「DLC中に『NとTiの化合物』が粒子状に複合された層」
で構成されている。また、No.4-1では全体構造が図4
(A)の粒状複合構造であり、その「残部」は「DLC中に
Siが粒子状に複合された材料」で構成され、その「粒状
部」はさらに「DLC中に『CとSiの化合物』が粒子状に複
合された材料」で構成されている。
For example, in No. 4-4, the entire structure is as shown in FIG.
The “first layer” is composed of “a layer in which Cr is composited in the form of particles in DLC”, and the “second layer” is “a compound of N and Ti” in the DLC. Particle-Compounded Layer "
It is composed of No.4-1 shows the overall structure
(A) is a granular composite structure, the "remainder" of which
The "granular portion" is further composed of "a material in which" compound of C and Si "is combined in DLC in a particulate form".

【0078】[0078]

【表10】 [Table 10]

【0079】表10に示すように、いずれの実施例も比
較例1に比べて摩擦係数が低く、摩耗量も少ないことが
わかる。
As shown in Table 10, it can be seen that each of the examples has a lower coefficient of friction and a smaller amount of wear than Comparative Example 1.

【0080】(試験例5)RF励起プラズマCVD法と真空ア
ーク放電蒸着法により基材上にカーボン膜を成膜し、得
られた被膜の特性について試験を行った。基材は、高速
度鋼、ステンレス鋼、SKD等の鉄系合金、アルミニウム
合金、鉄系焼結体を用いた。基材は表面を清浄にするた
めに、アセトン中で超音波洗浄を10分以上行う。
(Test Example 5) A carbon film was formed on a substrate by an RF excitation plasma CVD method and a vacuum arc discharge vapor deposition method, and the characteristics of the obtained film were tested. The base material used was a high-speed steel, stainless steel, an iron-based alloy such as SKD, an aluminum alloy, or an iron-based sintered body. The substrate is subjected to ultrasonic cleaning in acetone for 10 minutes or more to clean the surface.

【0081】RF励起プラズマCVD装置を図5に示す。こ
の装置は、真空槽21内に水平板状の基材ホルダ22を具
え、基材ホルダ22を挟む対向する真空槽側壁にヒーター
23が設置されている。また、基材ホルダ22には、高周波
電源4および直流電源25が接続されている。そして、真
空槽21はガス導入口26とガス排気口27とを具えている。
FIG. 5 shows an RF-excited plasma CVD apparatus. This apparatus comprises a horizontal plate-shaped substrate holder 22 in a vacuum chamber 21 and a heater on a side of the vacuum chamber facing the substrate holder 22 with the substrate holder 22 interposed therebetween.
23 are installed. The high frequency power supply 4 and the DC power supply 25 are connected to the substrate holder 22. The vacuum chamber 21 has a gas inlet 26 and a gas outlet 27.

【0082】このような装置においてRF励起プラズマCV
D法で成膜する場合、原料ガスにはCH、CH、CH
を用いる。真空槽21内の基材ホルダ22に基材28をセッ
トした後、装置内を2×10−5Torr以下にガス排気口27
から真空排気する。装置内のヒーター3を所定の温度ま
で上昇させた後、Arガスをガス導入口26から真空槽21内
に導入し、装置内を20mTorrにする。同時に、基材ホル
ダ22に直流電圧を-1000V印加し、Arプラズマを発生さ
せ、Arイオンの基材28への衝突により、基材表面の汚れ
を除去する「Arボンバード処理」を行う。その後、表11
の条件で成膜を行った。
In such an apparatus, the RF excitation plasma CV
When the film is formed by the method D, the source gas is CH 4 , C 2 H 2 , C 6 H
6 is used. After setting the substrate 28 in the substrate holder 22 in the vacuum chamber 21, the inside of the apparatus is set to a gas exhaust port 27 of 2 × 10 −5 Torr or less.
Evacuate from. After the temperature of the heater 3 in the apparatus is raised to a predetermined temperature, Ar gas is introduced from the gas inlet 26 into the vacuum chamber 21 to make the inside of the apparatus 20 mTorr. At the same time, a DC voltage of -1000 V is applied to the substrate holder 22 to generate Ar plasma, and an “Ar bombarding process” for removing contamination on the substrate surface by colliding Ar ions with the substrate 28 is performed. Then, Table 11
The film was formed under the following conditions.

【0083】[0083]

【表11】 [Table 11]

【0084】真空アーク放電蒸着装置を図6に示す。こ
の装置は真空槽30内に水平円盤状の回転テーブル11を具
え、この回転テーブル31に垂直に固定された基材ホルダ
32を具える。基材ホルダ32を挟む対向する真空槽側壁に
はターゲット33(カソード電極)が設置され、各ターゲ
ット33は直流電源34に接続される。また、基材ホルダ32
には回転テーブル31に接続された直流電源35より所定の
電圧を付与することができる。そして、真空槽31はガス
導入口36とガス排気口37とが設けられている。
FIG. 6 shows a vacuum arc discharge vapor deposition apparatus. This apparatus comprises a horizontal disk-shaped rotary table 11 in a vacuum chamber 30 and a substrate holder fixed vertically to the rotary table 31.
With 32. Targets 33 (cathode electrodes) are provided on opposite vacuum chamber side walls with the substrate holder 32 interposed therebetween, and each target 33 is connected to a DC power supply 34. Also, the substrate holder 32
, A predetermined voltage can be applied from a DC power supply 35 connected to the turntable 31. The vacuum chamber 31 is provided with a gas inlet 36 and a gas exhaust port 37.

【0085】このような装置において、ターゲット13と
して固体炭素を用いる。真空槽30内に基材38をセットし
た後、装置内を2×10−5Torr以下にガス排気口37から
真空排気する。その後、Arガスをガス導入口36から真空
槽30内に導入し、装置内を20mTorrにする。同時に、基
材ホルダ32に直流電圧を-1000V印加し、Arボンバード処
理を行う。次いで、真空槽内にArガスを導入するか、ま
たはガスを導入せずに真空排気した状態で、表12の条件
にて硬質カーボン被膜を成膜した。
In such an apparatus, solid carbon is used as the target 13. After the substrate 38 is set in the vacuum chamber 30, the inside of the apparatus is evacuated to 2 × 10 −5 Torr or less from the gas exhaust port 37. Thereafter, Ar gas is introduced into the vacuum chamber 30 from the gas inlet 36, and the inside of the apparatus is set to 20 mTorr. At the same time, a DC voltage of -1000 V is applied to the substrate holder 32 to perform an Ar bombarding process. Next, a hard carbon film was formed under the conditions shown in Table 12 while introducing Ar gas into the vacuum chamber or evacuating without introducing gas.

【0086】[0086]

【表12】 [Table 12]

【0087】硬度測定は、ダイヤモンド製のヌープ圧子
を用い、荷重50g、荷重負荷時間10秒間とし、測定値10
点の平均値を採用した。被膜表面の凹凸が大きく圧痕の
形状が見えにくい時は、#8000のダイヤモンドペースト
でバフ研磨を施し、圧痕形状が観察できるようにした。
The hardness was measured using a Knoop indenter made of diamond with a load of 50 g and a load application time of 10 seconds.
The average value of the points was adopted. When the unevenness of the coating surface was so large that the shape of the indentation was difficult to see, buffing was performed with a # 8000 diamond paste so that the indentation shape could be observed.

【0088】表面粗さは、測定距離2.5mm、測定スピー
ド0.3mm/s、Cut-off値0.8mmとして、8点測定した平均値
とした。
The surface roughness was an average value measured at eight points with a measurement distance of 2.5 mm, a measurement speed of 0.3 mm / s, and a cut-off value of 0.8 mm.

【0089】摩擦係数は、ピンオンディスク試験機を用
いて測定した。試験条件は、負荷重10N、回転速度104mm
/s、直径6mmのSUJ2を相手材ピンとして、エンジンオイ
ル中雰囲気で摩擦係数を測定した。エンジンオイルは10
W-40-SHで、試験温度は室温である。
The coefficient of friction was measured using a pin-on-disk tester. Test conditions are: load weight 10N, rotation speed 104mm
The friction coefficient was measured in an atmosphere in engine oil using SUJ2 having a diameter of 6 mm / s and a mating member of SUJ2. Engine oil is 10
For W-40-SH, the test temperature is room temperature.

【0090】なお、RF励起プラズマCVD法により成膜し
たカーボン被膜の表面粗さは、主に基材表面に研削加工
から研磨剤を用いてラッピングを行い、そのラッピング
時間、研磨剤粒度を変化させることで調整する。真空ア
ーク放電蒸着法により成膜したカーボン膜も、主には基
材表面の加工状態によって変化させたが、表面粗さRaを
0.02μm未満にする場合は、カーボン膜表面をダイヤモ
ンドペーストを用いてラッピングした。これら表面粗さ
の調整手段は後述する各実施例においても同様である。
The surface roughness of the carbon film formed by the RF excitation plasma CVD method is mainly changed by lapping the base material surface from the grinding process using an abrasive, and changing the lapping time and the abrasive particle size. Adjust by doing. The carbon film formed by the vacuum arc discharge evaporation method was also changed mainly depending on the processing state of the substrate surface.
When the thickness was less than 0.02 μm, the surface of the carbon film was wrapped using a diamond paste. These surface roughness adjusting means are the same in each embodiment described later.

【0091】表13に表面粗さがRa=0.2を超え、ヌープ
硬度が1800以上8000以下の被膜について、表面粗さRa、
被膜硬度、基材種類、膜厚、摩擦係数についてまとめ
た。比較例として、Raが0.2を超えて、かつヌープ硬度
が1738の比較例5-1の摩擦係数を測定した。つまり、硬
度が1800以上8000以下の被膜であれば、摩擦係数の低減
に効果的である。なお、本発明被膜は原子%で60%以上
は炭素からなっており、XRD:(X‐ray diffractio
n)による分析で非晶質であることが確認された。これ
らの点は、次述する表14、15における本発明被膜および
後述する各実施例において同様である。
Table 13 shows that, for a coating having a surface roughness exceeding Ra = 0.2 and a Knoop hardness of 1800 or more and 8000 or less, the surface roughness Ra,
The film hardness, substrate type, film thickness, and coefficient of friction were summarized. As a comparative example, the friction coefficient of Comparative Example 5-1 where Ra exceeded 0.2 and Knoop hardness was 1738 was measured. That is, a coating having a hardness of 1800 or more and 8000 or less is effective in reducing the friction coefficient. The coating of the present invention is composed of carbon in an atomic percentage of 60% or more, and XRD: (X-ray diffractio
Analysis by n) confirmed that it was amorphous. These points are the same in the coating of the present invention in Tables 14 and 15 described below and in each of Examples described later.

【0092】[0092]

【表13】 [Table 13]

【0093】表14に、ヌープ硬度が1800以下であり、Ra
が0.005以上0.2以下の被膜について表面粗さRa、被膜硬
度、基材種類、膜厚、摩擦係数についてまとめた。比較
例5-1と比較して、摩擦係数が低くなっている。つま
り、Raが0.005以上0.2以下の被膜であれば、硬度が1800
以下であっても摩擦係数の低減に効果的である。
Table 14 shows that the Knoop hardness is 1800 or less and Ra
The surface roughness Ra, coating hardness, substrate type, film thickness, and coefficient of friction were summarized for coatings having a value of 0.005 to 0.2. The coefficient of friction is lower than that of Comparative Example 5-1. In other words, if the coating Ra is 0.005 or more and 0.2 or less, the hardness is 1800
It is effective to reduce the coefficient of friction even if it is below.

【0094】[0094]

【表14】 [Table 14]

【0095】表15に、ヌープ硬度が1800以上8000以下で
あり、かつRaが0.005以上0.2以下の被膜について表面粗
さRa、被膜硬度、基材種類、膜厚、摩擦係数、トルク低
減率についてまとめた。図7に、硬度と摩擦係数の関係
を示す。表13の比較例5-1を×、表面粗さRaが0.2を超え
る被膜を△、表面粗さRaが0.005以上、0.2以下の被膜を
○としてプロットしている。ヌープ硬度が1800以上8000
以下であり、かつRaが0.005以上0.2以下である場合に最
も摩擦係数が低くなっている。
Table 15 summarizes the surface roughness Ra, coating hardness, substrate type, film thickness, coefficient of friction, and torque reduction rate for coatings having a Knoop hardness of 1800 or more and 8000 or less and Ra of 0.005 or more and 0.2 or less. Was. FIG. 7 shows the relationship between the hardness and the coefficient of friction. In Table 13, Comparative Example 5-1 is plotted as x, a coating having a surface roughness Ra exceeding 0.2 is plotted as Δ, and a coating having a surface roughness Ra of 0.005 or more and 0.2 or less is plotted as ○. Knoop hardness of 1800 or more and 8000
And the coefficient of friction is lowest when Ra is 0.005 or more and 0.2 or less.

【0096】[0096]

【表15】 [Table 15]

【0097】(試験例6)まず、基材表面を清浄にする
ため、アセトン中で超音波洗浄を行う。その後、RF2極
スパッタリング法によって各種中間層を形成した。成膜
条件は、スパッタ雰囲気ガスがArガスで、雰囲気圧力0.
5Pa、雰囲気温度400℃、ターゲット印加電力500W、基板
ホルダ印加電力20Wである。中間層を形成した後、RF励
起プラズマCVD法、または真空アーク放電蒸着法によっ
てアモルファスカーボン被膜を形成する。RF励起プラズ
マCVD法、及び真空アーク放電蒸着法の成膜方法、成膜
条件は試験例5によるものとする。
(Test Example 6) First, ultrasonic cleaning is performed in acetone to clean the surface of the base material. Thereafter, various intermediate layers were formed by the RF bipolar sputtering method. The deposition conditions are as follows: the sputtering atmosphere gas is Ar gas, and the atmosphere pressure is
5 Pa, ambient temperature 400 ° C., target applied power 500 W, substrate holder applied power 20 W. After the formation of the intermediate layer, an amorphous carbon film is formed by RF excitation plasma CVD or vacuum arc discharge evaporation. The film formation method and the film formation conditions of the RF excitation plasma CVD method and the vacuum arc discharge vapor deposition method are based on Test Example 5.

【0098】摩擦係数の測定も試験例5のピンオンディ
スク試験と同条件で行った。
The measurement of the coefficient of friction was also performed under the same conditions as in the pin-on-disk test of Test Example 5.

【0099】表16、17、18に中間層、中間層膜厚、表面
粗さRa、被膜硬度、基材種類、膜についてまとめた。
Tables 16, 17, and 18 summarize the intermediate layer, the thickness of the intermediate layer, the surface roughness Ra, the coating hardness, the type of the base material, and the film.

【0100】[0100]

【表16】 [Table 16]

【0101】[0101]

【表17】 [Table 17]

【0102】[0102]

【表18】 [Table 18]

【0103】さらに、図8に硬度と摩擦係数の関係を示
す。表13の比較例5-1を×、表面粗さRaが0.2を超える被
膜を△、表面粗さRaが0.005以上、0.2以下の被膜を○と
してプロットしている。この結果も、試験例5と同様
に、ヌープ硬度が1800以上8000以下であり、かつRaが0.
005以上0.2以下である場合に最も摩擦係数が低くなって
いた。従って、中間層を導入することは、摩擦係数に何
ら悪影響を与えなかった。
FIG. 8 shows the relationship between hardness and coefficient of friction. In Table 13, Comparative Example 5-1 is plotted as x, a coating having a surface roughness Ra exceeding 0.2 is plotted as Δ, and a coating having a surface roughness Ra of 0.005 or more and 0.2 or less is plotted as ○. This result also has a Knoop hardness of 1800 or more and 8000 or less and Ra of 0.
The coefficient of friction was lowest when the value was 005 or more and 0.2 or less. Therefore, the introduction of the intermediate layer had no adverse effect on the coefficient of friction.

【0104】(試験例7)基材との密着力を求めるため
に、スクラッチ試験による臨界剥離荷重を測定した。先
端半径200μmのダイヤモンド円錐を垂直方向から押し
付けながら、横方向に移動させる。このとき、押しつけ
荷重は11.5N/mmで増加させる。基材が膜から剥離すると
きに発生するAE(Acoustic emission)をセンサーによ
って検出し、AEが発生したときの押しつけ荷重を臨界剥
離荷重とした。このとき、AEの発生と実際の剥離箇所が
異なる場合もあるので、目視により剥離荷重の最終決定
を行った。
Test Example 7 In order to determine the adhesion to the substrate, a critical peeling load was measured by a scratch test. A diamond cone with a tip radius of 200 μm is moved in the lateral direction while pressing it vertically. At this time, the pressing load is increased at 11.5 N / mm. AE (Acoustic emission) generated when the substrate peeled from the film was detected by a sensor, and the pressing load when AE occurred was defined as the critical peeling load. At this time, since the occurrence of AE and the actual peeling position may be different, the final determination of the peeling load was made visually.

【0105】試験片として、スパッタリング法によって
基材上に中間層をつけて、その上にアモルファスカーボ
ン被膜を形成した被膜を用いた。結果を表19に示す。比
較例として、中間層を形成せず、直接基材上に形成した
アモルファスカーボン膜を示す。中間層の導入により、
密着力が増加していることがわかった。
As a test piece, a film in which an intermediate layer was provided on a substrate by a sputtering method and an amorphous carbon film was formed thereon was used. Table 19 shows the results. As a comparative example, an amorphous carbon film formed directly on a base material without forming an intermediate layer is shown. With the introduction of the middle class,
It was found that the adhesion was increased.

【0106】[0106]

【表19】 [Table 19]

【0107】(試験例8)試験例1と同様の成膜方法に
て前記表11、12に示す条件で成膜を行った。硬度測定、
表面粗さの測定方法は試験例5で説明した通りである。
摩擦係数は、ピンオンディスク試験機を用いて測定し
た。試験条件は、負荷重10N、速度26mm/s、総すべり距
離290m、直径6mmのSUJ2を相手材ピンとして、エンジン
オイル中で摩擦係数を測定した。エンジンオイルは10W-
40-SHで、試験温度は室温である。摩擦試験後の相手材
摩耗量は、ピンについた摩耗痕の投影面積で代用した。
Test Example 8 A film was formed in the same manner as in Test Example 1 under the conditions shown in Tables 11 and 12. Hardness measurement,
The method for measuring the surface roughness is as described in Test Example 5.
The friction coefficient was measured using a pin-on-disk tester. The test conditions were as follows: The load coefficient was 10 N, the speed was 26 mm / s, the total slip distance was 290 m, and the friction coefficient was measured in engine oil using SUJ2 having a diameter of 6 mm as a mating pin. Engine oil is 10W-
At 40-SH, the test temperature is room temperature. The wear amount of the mating member after the friction test was replaced by the projected area of the wear mark on the pin.

【0108】表20に表面粗さがRa=0.2を超え、ヌープ
硬度が2000以上6000以下の被膜について、表面粗さRa、
被膜硬度、基材種類、膜厚、摩擦係数についてまとめ
た.比較例として、Raが0.2を超えて、かつヌープ硬度
が1738のアモルファスカーボン膜(比較例8-5)の摩擦
係数を測定した。比較例8-5と比べると、摩擦係数が低
減している。つまり、硬度が2000以上6000以下の被膜で
あれば、摩擦係数の低減に効果的である。
Table 20 shows that, for a coating having a surface roughness exceeding Ra = 0.2 and a Knoop hardness of 2,000 to 6,000, the surface roughness Ra,
The film hardness, substrate type, film thickness, and coefficient of friction are summarized. As a comparative example, the friction coefficient of an amorphous carbon film having Ra of more than 0.2 and a Knoop hardness of 1738 (Comparative Example 8-5) was measured. Compared with Comparative Example 8-5, the coefficient of friction is reduced. In other words, a coating having a hardness of 2,000 or more and 6,000 or less is effective in reducing the coefficient of friction.

【0109】[0109]

【表20】 [Table 20]

【0110】表21に、ヌープ硬度が2000以上6000以下で
あり、かつRaが0.005以上0.2以下の被膜について表面粗
さRa、被膜硬度、基材種類、膜厚、摩擦係数についてま
とめた。
Table 21 summarizes the surface roughness Ra, coating hardness, substrate type, film thickness, and friction coefficient of coatings having a Knoop hardness of 2,000 or more and 6000 or less and Ra of 0.005 or more and 0.2 or less.

【0111】[0111]

【表21】 [Table 21]

【0112】図9に、硬度と摩擦係数の関係を示す。表2
0の比較例8-5を×、表面粗さRaが0.2を超える被膜を
△、表面粗さRaが0.005以上、0.2以下の被膜を○として
プロットしている。ヌープ硬度が2000以上6000以下であ
り、かつRaが0.005以上、0.2以下の範囲内である場合に
最も摩擦係数が低くなっている。
FIG. 9 shows the relationship between hardness and friction coefficient. Table 2
Comparative Example 8-5 of 0 is plotted as x, a film having a surface roughness Ra exceeding 0.2 is plotted as △, and a film having a surface roughness Ra of 0.005 or more and 0.2 or less is plotted as ○. The coefficient of friction is lowest when the Knoop hardness is 2000 or more and 6000 or less and Ra is in the range of 0.005 or more and 0.2 or less.

【0113】表22に、表21に記載された試料について相
手材ピンSUJ2の摩耗量を示した。摩耗量は、ピン摩耗
部を荷重押しつけ方向からみた投影面積である。TiN
(硬度1748、Ra=0.113)の相手材摩粍量によって各被
膜の相手材摩耗量を規格化した値(摩耗量比=各被膜の
相手材摩耗量/TiN(硬度1748、Ra=0.113)の相手材摩
耗量)も表22に示した。
Table 22 shows the wear amount of the mating member pin SUJ2 for the samples described in Table 21. The wear amount is a projected area when the pin wear portion is viewed from the load pressing direction. TiN
The value obtained by standardizing the wear amount of the counterpart material of each coating by the wear amount of the counterpart material (hardness 1748, Ra = 0.113) (wear ratio = wear amount of the counterpart material of each coating / TiN (hardness 1748, Ra = 0.113) Table 22 also shows the wear amount of the counterpart material.

【0114】[0114]

【表22】 [Table 22]

【0115】図10にRa(μm)×Hk(kg/mm)と摩耗
量比との関係をプロットした。その結果、アモルファス
カーボン膜は、Ra(μm)×Hk(kg/mm)に摩耗量比
が比例していることがわかった。また、同じRa(μm)
×Hk(kg/mm)であっても、アモルファスカーボン膜
は、TiNやCrN、(Ti,Al)N膜に比べて、相手攻撃性が
低いことがわかった。アモルファスカーボン膜が、その
他の窒化物よりも低い相手攻撃性を持つためには、Ra
(μm)×Hk(kg/mm)が500以下であれば良い。従っ
て、低摩擦係数と共により低い相手攻撃性を達成しよう
とするならば、Ra(μm)×Hk(kg/mm)=Aとした場
合に、数値Aが500以下であることを満たす被膜であるこ
とが望ましいことがわかる。
FIG. 10 plots the relationship between Ra (μm) × Hk (kg / mm 2 ) and the wear ratio. As a result, it was found that the wear ratio of the amorphous carbon film was proportional to Ra (μm) × Hk (kg / mm 2 ). In addition, the same Ra (μm)
Even at × Hk (kg / mm 2 ), it was found that the amorphous carbon film had lower aggressiveness than the TiN, CrN and (Ti, Al) N films. In order for an amorphous carbon film to have a lower aggressiveness than other nitrides, Ra
(Μm) × Hk (kg / mm 2 ) may be 500 or less. Therefore, if it is intended to achieve a lower opponent aggressiveness with a low coefficient of friction, a coating satisfying that the numerical value A is 500 or less when Ra (μm) × Hk (kg / mm 2 ) = A is used. It turns out that it is desirable.

【0116】(試験例9)試験例6と同様の方法・条件
により中間層を形成する。その後、RF励起プラズマCVD
法または真空アーク放電蒸着法によってアモルファスカ
ーボン被膜を形成する。RF励起プラズマCVD法、及び真
空アーク放電蒸着法の成膜方法、成膜条件は試験例5に
よるものとする。
Test Example 9 An intermediate layer is formed by the same method and conditions as in Test Example 6. After that, RF excitation plasma CVD
The amorphous carbon film is formed by a vacuum method or a vacuum arc discharge evaporation method. The film formation method and the film formation conditions of the RF excitation plasma CVD method and the vacuum arc discharge vapor deposition method are based on Test Example 5.

【0117】摩擦係数の測定も試験例1のピンオンディ
スク試験と同条件で行った。表23、24に、中間層、中間
層膜厚、表面粗さRa、被膜硬度、基材種類、膜厚、摩擦
係数についてまとめた。図11に、硬度と摩擦係数の関係
を示す。表20の比較例5を×、表面粗さRaが0.2を超え
るまたは0.005未満の被膜を△、表面粗さRaが0.005以
上、0.2以下の被膜を○としてプロットしている。ヌー
プ硬度が2000〜6000の範囲内であり、かつRaが0.005以
上、0.2以下の範囲内である場合に最も摩擦係数が低く
なっている。これは試験例8と同様の結果であり、中間
層を導入することは、摩擦係数に何ら悪影響を与えなか
った。
The measurement of the coefficient of friction was also performed under the same conditions as in the pin-on-disk test of Test Example 1. Tables 23 and 24 summarize the intermediate layer, intermediate layer thickness, surface roughness Ra, coating hardness, substrate type, film thickness, and friction coefficient. FIG. 11 shows the relationship between hardness and friction coefficient. Comparative Example 5 in Table 20 is plotted as x, a film having a surface roughness Ra of more than 0.2 or less than 0.005 as Δ, and a film having a surface roughness Ra of 0.005 or more and 0.2 or less as ○. The coefficient of friction is lowest when the Knoop hardness is in the range of 2000 to 6000 and Ra is in the range of 0.005 or more and 0.2 or less. This is the same result as in Test Example 8, and the introduction of the intermediate layer had no adverse effect on the coefficient of friction.

【0118】[0118]

【表23】 [Table 23]

【0119】[0119]

【表24】 [Table 24]

【0120】(試験例10)試験例7と同様の方法によ
りスクラッチ試験を行い、基材と被膜の密着力を調べ
た。試験方法・条件は試験例7と同様である。結果を表2
5、26に示す。比較例として、中間層を形成せず、直接
基材上に形成したアモルファスカーボン膜を示す。中間
層の導入により、密着力が増加していることがわかっ
た。
(Test Example 10) A scratch test was performed in the same manner as in Test Example 7, and the adhesion between the substrate and the coating film was examined. The test method and conditions are the same as in Test Example 7. Table 2 shows the results
See Figures 5 and 26. As a comparative example, an amorphous carbon film formed directly on a base material without forming an intermediate layer is shown. It was found that the adhesion was increased by the introduction of the intermediate layer.

【0121】[0121]

【表25】 [Table 25]

【0122】[0122]

【表26】 [Table 26]

【0123】(試験例11)次に、上記被膜をエンジン
部品のカム上に形成し、モータリング試験によりトルク
を測定した。実施例5-3、6-2、6-6、7-5、7-16、8-14、
8-38についてモータリング試験を行ったところ、比較例
5-1と比較して10〜30%のトルク低減が確認された。
(Test Example 11) Next, the above-mentioned coating film was formed on a cam of an engine part, and the torque was measured by a motoring test. Examples 5-3, 6-2, 6-6, 7-5, 7-16, 8-14,
A motoring test was performed on 8-38, and a comparative example was obtained.
A torque reduction of 10 to 30% was confirmed as compared with 5-1.

【0124】(試験例12)成膜は、RFマグネトロンス
パッタリング(SP)法、アンバランストマグネトロンス
パッタリング(UBM)法、真空アーク放電蒸着法(VAD)
法、熱フィラメントCVD(HCVD)法により形成した。基
材は、高速度鋼、ステンレス鋼、SKD等の鉄系合金、ア
ルミニウム合金、鉄系焼結体を用いた。基材の表面を清
浄にするために、アセトン中で超音波洗浄を10分以上行
う。
(Test Example 12) Film formation was performed by RF magnetron sputtering (SP), unbalanced magnetron sputtering (UBM), and vacuum arc discharge evaporation (VAD).
It was formed by a hot filament CVD (HCVD) method. The base material used was a high-speed steel, stainless steel, an iron-based alloy such as SKD, an aluminum alloy, or an iron-based sintered body. In order to clean the surface of the substrate, ultrasonic cleaning is performed in acetone for 10 minutes or more.

【0125】RFマグネトロンスパッタリング法には、固
体炭素ターゲットを使用し、Arガス雰囲気中で成膜を行
った。ターゲット及び基材ホルダーには、RF電力を印加
できる。実施例は、基材印加バイアス150W以下、雰囲気
圧力4Pa以下、基板温度873K以下にて各条件を変化させ
ることで、任意のラマンスペクトル形状を有する硬質カ
ーボン被膜を作製することができた。
In the RF magnetron sputtering method, a film was formed in an Ar gas atmosphere using a solid carbon target. RF power can be applied to the target and the substrate holder. In the example, a hard carbon coating having an arbitrary Raman spectrum shape was able to be produced by changing each condition at a substrate applied bias of 150 W or less, an atmospheric pressure of 4 Pa or less, and a substrate temperature of 873 K or less.

【0126】一方、アンバランストマグネトロンスパッ
タリング法では、原料に固体炭素ターゲットを、雰囲気
にCH4、CH、CHを0〜50%添加したアルゴンガ
スを導入し、ターゲットにパルスDCを印加して、基材に
もパルスまたはノンパルスDCを印加した。実施例は、基
材印加バイアス600V以下、雰囲気圧力4Pa以下、CH4、C
H、CH添加量、基板温度873K以下にて各条件を
変化させることで、任意のラマンスペクトル形状を有す
る硬質カーボン被膜を作製することができた。
On the other hand, in the unbalanced magnetron sputtering method, a solid carbon target is introduced as a raw material, an argon gas containing 0 to 50% of CH 4 , C 6 H 6 and C 2 H 2 is introduced into an atmosphere, and a pulse is applied to the target. DC was applied, and pulsed or non-pulsed DC was also applied to the substrate. In the embodiment, the substrate applied bias is 600 V or less, the atmospheric pressure is 4 Pa or less, CH 4 , C
By changing each condition under the addition amounts of 6 H 6 and C 2 H 2 and the substrate temperature of 873 K or less, a hard carbon film having an arbitrary Raman spectrum shape could be produced.

【0127】真空アーク放電蒸着法においても、固体炭
素ターゲットを使用して、成膜を行った。真空またはAr
などの不活性ガス雰囲気中で炭素ターゲット表面に陰極
アーク放電を発生、炭素を気化させる。そして、気化し
た炭素はアークプラズマによりイオン化、活性化し、負
に印加された基材上に到達し硬質カーボン膜が堆積す
る。実施例は、雰囲気圧力4Pa以下、基材温度873K以
下、基材電圧300V以下にて各条件を変化させることで任
意のラマンスペクトル形状を有する硬質カーボン被膜を
作製することができた。
Also in the vacuum arc discharge deposition method, a film was formed using a solid carbon target. Vacuum or Ar
Cathodic arc discharge is generated on the surface of a carbon target in an inert gas atmosphere such as the above to vaporize carbon. Then, the vaporized carbon is ionized and activated by the arc plasma, reaches the negatively applied substrate, and deposits a hard carbon film. In the examples, a hard carbon film having an arbitrary Raman spectrum shape could be produced by changing each condition at an atmosphere pressure of 4 Pa or less, a substrate temperature of 873 K or less, and a substrate voltage of 300 V or less.

【0128】熱フィラメントCVD法は、CH4、CH及び
CHから選択したガスを原料として、水素雰囲気中で
成膜を行った。このときの雰囲気圧力、フィラメント-
基材距離、CH4、CH、CH量を変更することで、
任意のラマンスペクトル形状を有する硬質カーボン被膜
を作製することができた。特に、実施例はCH4、C
H 、CH量を50vol%以下とすることで実現でき
る。
The hot filament CVD method uses CHFour, C6H6as well as
C2H2In a hydrogen atmosphere, using a gas selected from
A film was formed. Atmospheric pressure at this time, filament-
Substrate distance, CHFour, C6H6, C2H2By changing the amount,
Hard carbon coating with arbitrary Raman spectrum shape
Could be produced. In particular, the embodiment is CHFour, C
6H 6, C2H2Can be realized by reducing the volume to 50 vol% or less.
You.

【0129】以上の方法により、厚さの異なる硬質カー
ボン膜を形成した。得られた被膜は、514.5nmの波長を
持つアルゴンイオンレーザーによって、ラマン分光分析
を行う。得られたスペクトルに対して、バックグラウン
ドの除去とガウス関数による波形分離とを行い、ピーク
強度、ピーク積分強度を算出した。ピークは、500cm-
〜1000cm-1の間、1340cm-1付近、1560cm-1付近に存
在する3つのピークに分離される。
By the above method, hard carbon films having different thicknesses were formed. The obtained film is subjected to Raman spectroscopic analysis by an argon ion laser having a wavelength of 514.5 nm. For the obtained spectrum, background removal and waveform separation using a Gaussian function were performed, and peak intensity and peak integrated intensity were calculated. The peak is 500cm - 1
During the ~1000Cm -1, it is separated into three peaks present 1340cm around -1, around 1560 cm -1.

【0130】得られた硬質カーボン膜につき、ピン・オ
ン・ディスク法による摩擦摩耗試験を行なった。雰囲気
は、ガソリン油、軽油及びエンジンオイル10W-30SGの滴
下による潤滑とし、硬質カーボン膜をディスク、相手材
は先端曲率半径R3mmのSUJ2製ピン、加重10N、回転速
度250rpm(摺動速度50mm/sec)、回転回数5万回とし
た。5万回の摺動試験終了時に摩擦係数を、摺動試験後
にディスク摩耗痕の形状を表面粗さ計で測定し、その幾
何学的形状から摩耗断面積を算出した。そして、比較例
12-4の摩耗量を1としたときの各膜の摩耗量を表に示し
た。併せて各硬質カーボン膜の膜厚ならびに水素含有量
も測定した。その結果を表27、28に示す。
The obtained hard carbon film was subjected to a friction and wear test by a pin-on-disk method. Atmosphere is lubrication by dropping 10W-30SG of gasoline oil, light oil and engine oil, hard carbon film disk, mating material is SUJ2 pin with tip radius R3mm, load 10N, rotation speed 250rpm (sliding speed 50mm / sec) ), The number of rotations was 50,000 times. At the end of the 50,000 sliding tests, the coefficient of friction was measured. After the sliding test, the shape of the disc wear mark was measured with a surface roughness meter, and the wear cross-sectional area was calculated from the geometric shape. And the comparative example
The wear amount of each film when the wear amount of 12-4 was set to 1 is shown in the table. In addition, the thickness and hydrogen content of each hard carbon film were measured. The results are shown in Tables 27 and 28.

【0131】[0131]

【表27】 [Table 27]

【0132】[0132]

【表28】 [Table 28]

【0133】(試験例13)続いて、φ8mmの軸の外周
に、実施例12-2、4、8、10、16、20、22、23、25、27、
29、31の硬質カーボン被膜を形成した。その後、窒化ケ
イ素製またはAlO 製の軸受と組み合わせてエンジン
オイル10W-30SGの滴下による潤滑下で使用した。比較例
12-1〜4のカーボン被膜を形成したものと比較して、破
壊寿命及び摩耗量は、1.5〜4倍になった。
(Test Example 13) Subsequently, the outer circumference of a φ8 mm shaft
In Examples 12-2, 4, 8, 10, 16, 20, 22, 23, 25, 27,
29 and 31 hard carbon films were formed. Then,
Made of silicon or Al2O 3Engine in combination with bearings made of
It was used under lubrication by dropping oil 10W-30SG. Comparative example
12-1 to 4
The decay life and the amount of wear increased 1.5 to 4 times.

【0134】(試験例14)次に、アルミ合金AC8A製
のエンジンのピストンスカート部に、実施例12-2、4、
8、10、16、20、22、23、25、27、29、31の硬質カーボ
ン膜を形成し、エンジンオイル10W-30SGの滴下による潤
滑下で使用した。これらの摩擦抵抗を測定したところ、
比較例12-1〜4に比べて2〜8割程度の摩擦係数低減が
見られた。
(Test 14) Next, the piston skirt of the engine made of aluminum alloy AC8A was placed on the piston skirts of Examples 12-2, 4 and
Hard carbon films of 8, 10, 16, 20, 22, 23, 25, 27, 29 and 31 were formed and used under lubrication by dropping engine oil 10W-30SG. When these frictional resistances were measured,
A reduction in friction coefficient of about 20 to 80% was observed as compared with Comparative Examples 12-1 to 12-4.

【0135】(試験例15)次に、バルブにおけるシム
表面に実施例12-3、7、11、16、20、21、24、26、28、3
0の硬質カーボン被膜を形成し、エンジンオイル10W-30S
Gの滴下による潤滑下で使用してカムのトルクを測定し
た。比較例12-1〜4の被膜を形成したものと比較して1.5
〜6割程度の減少が見られた。
(Test Example 15) Next, Examples 12-3, 7, 11, 16, 20, 21, 24, 26, 28, and 3 were applied to the shim surface of the valve.
Form a hard carbon coating of 0, engine oil 10W-30S
The cam torque was measured under lubrication by dropping G. Comparative Examples 12-1 to 1.5 compared with the coating formed 1-4
A decrease of about 60% was observed.

【0136】(試験例16)試験例12と同様の成膜法で
基材上に硬質被膜を作製し、同様の試験で摩擦係数およ
び摩耗量の測定を行った。摩耗量は比較例16-1の摩耗量
を1として規格化している。また、得られた硬質被膜に
ついて密度も求めた。密度は、成膜前後の基板の重量変
化を析出体積で割って求めた。各試験条件と結果を表29
に示す。
Test Example 16 A hard coating was formed on a substrate by the same film forming method as in Test Example 12, and the friction coefficient and the wear amount were measured by the same test. The wear amount is standardized with the wear amount of Comparative Example 16-1 as 1. The density of the obtained hard coating was also determined. The density was determined by dividing the weight change of the substrate before and after film formation by the deposition volume. Table 29 shows the test conditions and results.
Shown in

【0137】[0137]

【表29】 [Table 29]

【0138】この表に示すように、密度が2.6g/cm3
上である各実施例は、いずれも比較例16-1に比べて摩擦
係数が小さく、磨耗量も少ないことがわかる。
As shown in this table, it can be seen that each of the examples having a density of 2.6 g / cm 3 or more has a smaller coefficient of friction and a smaller amount of wear than Comparative Example 16-1.

【0139】(試験例17)試験例12と同様の成膜法で
基材上に硬質被膜を作製し、同様の試験で摩擦係数およ
び摩耗量の測定を行った。摩耗量は比較例17-1の摩耗量
を1として規格化している。また、得られた硬質被膜に
ついてSP2結合を有する炭素成分量も求めた。この炭素
成分量は、EELSにより試料のスペクトルにおいてSP2
合炭素に起因するピークの強度を、グラファイトの場合
(100at.%)のピーク強度で規格化して求めた。各試験
条件と結果を表30に示す。
Test Example 17 A hard film was formed on a substrate by the same film forming method as in Test Example 12, and the friction coefficient and the wear amount were measured by the same test. The wear amount is standardized with the wear amount of Comparative Example 17-1 as 1. In addition, the amount of carbon component having SP 2 bonds in the obtained hard coating was also determined. The carbon component amounts, the intensity of the peak due to SP 2 bonded carbon in the spectrum of the sample by EELS, was determined by normalizing the peak intensity in the case of the graphite (100at.%). Table 30 shows the test conditions and results.

【0140】[0140]

【表30】 [Table 30]

【0141】この表に示すように、SP2結合を有する炭
素成分が1〜40at.%の範囲内である各実施例は、比較例
17-1に比べて摩擦係数が小さく、磨耗量も少ないことが
わかる。
As shown in the table, each of the examples in which the carbon component having an SP 2 bond is in the range of 1 to 40 at.
It can be seen that the coefficient of friction is smaller and the amount of wear is smaller than that of 17-1.

【0142】尚、本発明の硬質被膜及び被覆部品は、上
述の具体例にのみ限定されるものではなく、本発明の要
旨を逸脱しない範囲内において種々変更を加え得ること
は勿論である。
Incidentally, the hard coating and the coated part of the present invention are not limited to the above-mentioned specific examples, and it is a matter of course that various changes can be made without departing from the gist of the present invention.

【0143】[0143]

【発明の効果】以上説明したように、本発明によれば、
基材表面に炭素を主成分とする被膜を設け、潤滑剤の存
在下で用いることで、摩擦係数を低減させ、耐摩耗性を
高めることができる。従って、耐摩耗性、摺動特性、耐
食性および表面保護機能向上のため、産業、一般家庭分
野において潤滑油を介して利用される摺動部材としての
利用が期待される。特に、自動車のエンジン、燃料ポン
プ、各種機械などの摺動部に利用することが期待され
る。
As described above, according to the present invention,
By providing a coating containing carbon as a main component on the surface of the base material and using the coating in the presence of a lubricant, the friction coefficient can be reduced and the wear resistance can be increased. Therefore, in order to improve wear resistance, sliding characteristics, corrosion resistance and surface protection function, it is expected to be used as a sliding member used via lubricating oil in the fields of industry and households. In particular, it is expected to be used for sliding parts of automobile engines, fuel pumps, various machines, and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】DLCのみからなる被覆を有する本発明摺動部材
の断面図である。
FIG. 1 is a cross-sectional view of a sliding member of the present invention having a coating made of only DLC.

【図2】DLCと他の化合物が結合した被覆を有する本発
明摺動部材の断面図である。
FIG. 2 is a cross-sectional view of the sliding member of the present invention having a coating in which DLC and another compound are bonded.

【図3】(A)はDLCのみからなる層の中に他の化合物が
粒状に複合された本発明摺動部材の断面図で、(B)はD
LCのみからなる層と他の化合物層とを積層構造にした本
発明主導部材の断面図である。
FIG. 3 (A) is a cross-sectional view of the sliding member of the present invention in which another compound is compounded in a layer made of only DLC, and FIG.
It is sectional drawing of the lead member of this invention which made the layer which consists only of LC, and another compound layer into laminated structure.

【図4】(A)は残部中に粒状部が複合された本発明摺
動部材の断面図で、(B)は第一層と第二層とを積層構
造にした本発明主導部材の断面図である。
FIG. 4A is a cross-sectional view of the sliding member of the present invention in which a granular portion is compounded in the remaining portion, and FIG. 4B is a cross-sectional view of the leading member of the present invention in which a first layer and a second layer have a laminated structure. FIG.

【図5】RF励起プラズマCVD装置の概略図である。FIG. 5 is a schematic view of an RF excitation plasma CVD apparatus.

【図6】真空アーク放電蒸着装置の概略図である。FIG. 6 is a schematic view of a vacuum arc discharge vapor deposition apparatus.

【図7】ヌープ硬度が1800以上8000以下であり、かつRa
が0.005以上0.2以下の被膜について硬度と摩擦係数の関
係を示すグラフである。
FIG. 7: Knoop hardness is 1800 or more and 8000 or less, and Ra
3 is a graph showing the relationship between hardness and coefficient of friction for films having a value of 0.005 or more and 0.2 or less.

【図8】中間層を形成した本発明被膜における硬度と摩
擦係数の関係を示すグラフである。
FIG. 8 is a graph showing the relationship between hardness and coefficient of friction in the coating of the present invention having an intermediate layer formed thereon.

【図9】ヌープ硬度が2000以上6000以下であり、かつRa
が0.005以上0.2以下の被膜について硬度と摩擦係数の関
係を示すグラフである。
FIG. 9: Knoop hardness is 2000 or more and 6000 or less, and Ra
3 is a graph showing the relationship between hardness and coefficient of friction for films having a value of 0.005 or more and 0.2 or less.

【図10】Ra×Hkと摩耗量比との関係を示すグラフであ
る。
FIG. 10 is a graph showing a relationship between Ra × Hk and a wear amount ratio.

【図11】中間層を形成した本発明被膜における硬度と
摩擦係数の関係を示すグラフである。
FIG. 11 is a graph showing the relationship between the hardness and the coefficient of friction in the coating of the present invention having an intermediate layer formed thereon.

【図12】応力とSPピーク位置の関係を示すグラフで
ある。
12 is a graph showing the relationship between stress and SP 3 peak position.

【符号の説明】[Explanation of symbols]

1 基材 2 被覆 3 化合物層 4 炭素と窒素の
みからなる被覆層 5 他の化合物粒子 6 炭素と窒素のみからなる被覆
層 7 他の化合物層 8 粒状部 9 残部 10 第一層
11 第二層 12 中間層 21、30 真空槽 22、32 基材ホルダ 23
ヒーター 24 高周波電源 25、34、35 直流電源 26、36 ガス
導入口 27、37 ガス排気口 28、38 基材 31 回転テーブル
33 ターゲット
DESCRIPTION OF SYMBOLS 1 Base material 2 Coating 3 Compound layer 4 Coating layer consisting only of carbon and nitrogen 5 Other compound particles 6 Coating layer consisting only of carbon and nitrogen 7 Other compound layer 8 Granular part 9 Remaining part 10 First layer
11 Second layer 12 Intermediate layer 21, 30 Vacuum tank 22, 32 Substrate holder 23
Heater 24 High frequency power supply 25, 34, 35 DC power supply 26, 36 Gas inlet 27, 37 Gas outlet 28, 38 Base material 31 Rotary table
33 targets

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C23C 14/06 C23C 14/06 F M 16/27 16/27 16/30 16/30 28/00 28/00 B // C10N 30:06 C10N 30:06 30:12 30:12 40:02 40:02 Fターム(参考) 4H104 AA04A AA08A AA12A AA17A AA21A BA03A EA08A FA03 FA04 FA05 FA06 FA08 JA01 LA03 LA06 PA01 PA33 PA34 QA12 RA01 4K029 AA02 AA04 BA01 BA03 BA06 BA07 BA09 BA11 BA12 BA16 BA17 BA34 BA35 BA54 BA55 BA58 BB02 BB10 BC02 BD04 EA01 4K030 BA02 BA10 BA18 BA22 BA27 BA36 BA37 BA38 BA41 BA56 BA57 BA58 BB05 CA02 CA03 CA05 JA01 LA01 LA23 4K044 AA02 AA03 AA06 AA09 AA13 BA02 BA10 BA11 BA13 BA18 BB02 BB17 BC01 BC02 BC06 CA13 CA14 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (Reference) C23C 14/06 C23C 14/06 FM 16/27 16/27 16/30 16/30 28/00 28 / 00 B // C10N 30:06 C10N 30:06 30:12 30:12 40:02 40:02 F term (reference) 4H104 AA04A AA08A AA12A AA17A AA21A BA03A EA08A FA03 FA04 FA05 FA06 FA08 JA01 LA03 LA06 PA01 PA33 PA34 QA12 RA01 4K029 AA02 AA04 BA01 BA03 BA06 BA07 BA09 BA11 BA12 BA16 BA17 BA34 BA35 BA54 BA55 BA58 BB02 BB10 BC02 BD04 EA01 4K030 BA02 BA10 BA18 BA22 BA27 BA36 BA37 BA38 BA41 BA56 BA57 BA58 BB05 CA02 CA03 CA05 JA01 A01A23 A03 A04 A03 A03 A02 A03 A03 A02 A03 A03 A03 A03 A03 A02 BA11 BA13 BA18 BB02 BB17 BC01 BC02 BC06 CA13 CA14

Claims (27)

【特許請求の範囲】[Claims] 【請求項1】 潤滑剤の存在下で使用され、炭素を主成
分とする層を具えることを特徴とする硬質被膜。
1. A hard coating which is used in the presence of a lubricant and comprises a carbon-based layer.
【請求項2】 前記硬質被膜が実質的に炭素と水素のみ
からなることを特徴とする請求項1に記載の硬質被膜。
2. The hard coating according to claim 1, wherein the hard coating consists essentially of only carbon and hydrogen.
【請求項3】 前記硬質被膜は、他の化合物として、さ
らに周期律表第IVa、Va、VIa族元素、鉄族金属、Alおよ
びSi、ならびにこれらの炭化物、窒化物および炭窒化物
から選択された少なくとも一種を含み、この他の化合物
が非晶質であることを特徴とする請求項1記載の硬質被
膜。
3. The hard coating is further selected from the group consisting of elements IVa, Va, VIa, iron group metals, Al and Si, and carbides, nitrides and carbonitrides thereof, as other compounds. 2. The hard coating according to claim 1, wherein the other compound is amorphous.
【請求項4】 前記硬質被膜は、炭素を主成分とする層
と、他の化合物層とが交互に積層され、 他の化合物層は、周期律表第IVa、Va、VIa族元素、鉄族
金属、AlおよびSi、ならびにこれらの炭化物、窒化物お
よび炭窒化物から選択された少なくとも一種を含み、 他の化合物層の1層当たりの厚みが0.0005〜0.6μmで
あることを特徴とする請求項1記載の硬質被膜。
4. The hard coating according to claim 1, wherein a layer containing carbon as a main component and another compound layer are alternately laminated, and the other compound layer is made of a group IVa, Va, VIa element or an iron group of the periodic table. A metal, Al and Si, and at least one selected from carbides, nitrides and carbonitrides thereof, wherein the other compound layer has a thickness per layer of 0.0005 to 0.6 μm. The hard coating according to 1.
【請求項5】 前記硬質被膜は、炭素を主成分とする層
の中に他の化合物が粒状に複合され、 他の化合物は、周期律表第IVa、Va、VIa族元素、鉄族金
属、AlおよびSi、ならびにこれらの炭化物、窒化物およ
び炭窒化物から選択された少なくとも一種を含み、 他の化合物の粒径が0.001〜0.5μmであることを特徴と
する請求項1に記載の硬質被膜。
5. The hard coating, wherein another compound is granularly compounded in a layer containing carbon as a main component, and the other compound is a group IVa, Va, group VIa element, an iron group metal, The hard coating according to claim 1, comprising Al and Si, and at least one selected from carbides, nitrides and carbonitrides thereof, wherein the other compound has a particle size of 0.001 to 0.5 µm. .
【請求項6】 前記硬質被膜の厚みが0.05〜100μmで
あることを特徴とする請求項1に記載の硬質被膜。
6. The hard coating according to claim 1, wherein the thickness of the hard coating is 0.05 to 100 μm.
【請求項7】 前記硬質被膜は、非晶質で、ヌープ硬度
(Hk)が1800kg/mm 以上、8000kg/mm以下であるこ
とを特徴とする請求項1に記載の硬質被膜。
7. The hard coating is amorphous and has a Knoop hardness.
(Hk) is 1800kg / mm 2More than 8000kg / mm2Must be
The hard coating according to claim 1, wherein:
【請求項8】 前記硬質被膜は、非晶質で、表面の粗さ
Raが0.005μm以上、0.2μm以下であることを特徴とす
る請求項1に記載の硬質被膜。
8. The hard coating is amorphous and has a surface roughness.
The hard coating according to claim 1, wherein Ra is not less than 0.005 µm and not more than 0.2 µm.
【請求項9】 前記硬質被膜は、非晶質で、ヌープ硬度
(Hk)が1800kg/mm 以上、8000kg/mm以下で、かつ
表面の粗さRaが0.005μm以上、0.2μm以下であること
を特徴とする請求項1に記載の硬質被膜。
9. The hard coating is amorphous and has a Knoop hardness.
(Hk) is 1800kg / mm 2More than 8000kg / mm2Below and
Surface roughness Ra is 0.005 μm or more and 0.2 μm or less
The hard coating according to claim 1, wherein:
【請求項10】 Ra×Hk=Aとした場合のAが500以下
であることを特徴とする請求項9に記載の硬質被膜。
10. The hard coating according to claim 9, wherein A when Ra × Hk = A is 500 or less.
【請求項11】 ヌープ硬度が2000kg/mm以上、6000k
g/mm以下であることを特徴とする請求項7または8に
記載の硬質被膜。
11. Knoop hardness of 2000 kg / mm 2 or more, 6000 k
The hard coating according to claim 7, wherein the hardness is not more than g / mm 2 .
【請求項12】 514.5nmの波長を持つアルゴンイオン
レーザーを用いたラマン分光分析により得られるラマン
スペクトルにおいて、波数500以上1000cm-1以下にピー
クを有することを特徴とする請求項1に記載の硬質被
膜。
12. The hard material according to claim 1, wherein the Raman spectrum obtained by Raman spectroscopy using an argon ion laser having a wavelength of 514.5 nm has a peak at a wave number of 500 or more and 1000 cm -1 or less. Coating.
【請求項13】 波数500以上1000cm-1以下に存在する
ピークの強度(I600)と1340cm-1付近に存在するピー
クの強度(I1340)との強度比(I600/I1340)が0.02以
上2.5以下であることを特徴とする請求項12記載の硬質
被膜。
13. wavenumber 500 above 1000 cm -1 intensity of peaks present below (I600) and 1340cm intensity of peaks present in the vicinity of -1 (I1340) and the intensity ratio of the (I600 / I1340) of 0.02 to 2.5 or less 13. The hard coating according to claim 12, wherein:
【請求項14】 波数500以上1000cm-1以下に存在する
ピークの積分強度(S600)と1340cm-1付近に存在する
ピークの積分強度(S1340)との強度比(S600/S1340)
が0.01以上2.5以下であることを特徴とする請求項12ま
たは13に記載の硬質被膜。
14. integrated intensity of a peak existing near 1340 cm -1 and the integrated intensity of the peak (S600) existing in a wave number of 500 or more 1000 cm -1 or less (S1340) and the intensity ratio of (S600 / S1340)
14. The hard coating according to claim 12, wherein is not less than 0.01 and not more than 2.5.
【請求項15】 実質的に炭素のみからなり、514.5nm
の波長を持つアルゴンイオンレーザーを用いたラマン分
光分析により得られるラマンスペクトルにおいて、1560
cm-1付近のピークの強度(I1560)と1340cm-1付近の
ピークの強度(I1340)との比(I1340/I1560)が0.1以
上1.2以下であることを特徴とする請求項1に記載の硬
質被膜。
15. Substantially only carbon, 514.5 nm
Raman spectrum obtained by Raman spectroscopy using an argon ion laser having a wavelength of 1560
hard of claim 1 cm -1 vicinity of the peak intensity (I1560) and 1340 cm -1 vicinity of the peak intensity (I1340) and the ratio of (I1340 / I1560) is characterized in that 0.1 to 1.2 Coating.
【請求項16】 実質的に炭素のみからなり、514.5nm
の波長を持つアルゴンイオンレーザーを用いたラマン分
光分析により得られるラマンスペクトルにおいて、1560
cm-1付近のピークの積分強度(S1560)と1340cm-1
近のピークの積分強度(S1340)との比(S1340/S1560)
が0.3以上3以下であることを特徴とする請求項1に記
載の硬質被膜。
16. Substantially only carbon, 514.5 nm
Raman spectrum obtained by Raman spectroscopy using an argon ion laser having a wavelength of 1560
Ratio (S1340 / S1560) between the integrated intensity of the peak near cm- 1 (S1560) and the integrated intensity of the peak near 1340cm- 1 (S1340)
3. The hard coating according to claim 1, wherein is not less than 0.3 and not more than 3.
【請求項17】 実質的に炭素のみからなり、514.5nm
の波長を持つアルゴンイオンレーザーを用いたラマン分
光分析により得られるラマンスペクトルにおいて、1560
cm-1付近のピークが1560cm-1以上1580cm-1以下に存
在することを特徴とする請求項1に記載の硬質被膜。
17. Substantially only carbon, 514.5 nm
Raman spectrum obtained by Raman spectroscopy using an argon ion laser having a wavelength of 1560
hard coating according to claim 1, peak near cm -1 is characterized by the presence in the 1560 cm -1 or 1580 cm -1 or less.
【請求項18】 前記硬質被膜の被膜密度が2.6〜3.6g
/cm3であることを特徴とする請求項1に記載の硬質被
膜。
18. The coating density of the hard coating is 2.6 to 3.6 g.
2. The hard coating according to claim 1, wherein the ratio is / cm 3 .
【請求項19】 実質的に炭素のみからなることを特徴
とする請求項1、12〜14、18のいずれかに記載の硬質被
膜。
19. The hard coating according to claim 1, wherein the hard coating consists essentially of carbon only.
【請求項20】 前記硬質被膜におけるSP2結合を有す
る炭素成分が、1〜40at.%であることを特徴とする請求
項1に記載の硬質被膜。
20. The hard coating according to claim 1, wherein a carbon component having an SP 2 bond in the hard coating is 1 to 40 at.%.
【請求項21】 前記硬質被膜の膜厚が0.05μm〜10μ
mであることを特徴とする請求項7〜20のいずれかに記
載の硬質被膜。
21. The film thickness of the hard coating is 0.05 μm to 10 μm.
The hard coating according to any one of claims 7 to 20, wherein m is m.
【請求項22】 潤滑剤が、芳香族化合物を含むことを
特徴とする請求項1記載の硬質被膜。
22. The hard coating according to claim 1, wherein the lubricant contains an aromatic compound.
【請求項23】 潤滑剤が、エンジン油、軽油、ガソリ
ン油、ギヤ油、タービン油、スピンドル油、マシン油、
モービル油、航空潤滑油およびグリースよりなる群から
選択された1種であることを特徴とする請求項1に記載
の硬質被膜。
23. A lubricant comprising: engine oil, light oil, gasoline oil, gear oil, turbine oil, spindle oil, machine oil,
The hard coating according to claim 1, wherein the hard coating is one selected from the group consisting of mobile oil, aviation lubricating oil, and grease.
【請求項24】 基材の少なくとも一部に硬質被膜が形
成された被覆部材であって、 前記硬質被膜が請求項1〜23のいずれかに記載の硬質被
膜であることを特徴とする被覆部材。
24. A coating member having a hard coating formed on at least a part of a substrate, wherein the hard coating is the hard coating according to any one of claims 1 to 23. .
【請求項25】 基材と硬質被膜との間に中間層を具
え、 この中間層は、周期律表4a,5a,6a族の元素、鉄族
金属、AlおよびSiならびにこれらの窒化物、炭化物、炭
窒化物から選択された少なくとも1種よりなることを特
徴とする請求項24記載の被覆部材。
25. An intermediate layer between the base material and the hard coating, the intermediate layer comprising an element of the 4a, 5a, 6a group of the periodic table, an iron group metal, Al and Si, and nitrides and carbides thereof. 25. The covering member according to claim 24, comprising at least one member selected from the group consisting of carbonitrides.
【請求項26】 中間層の厚みが0.01〜1μmであるこ
とを特徴とする請求項25に記載の被覆部材。
26. The covering member according to claim 25, wherein the thickness of the intermediate layer is 0.01 to 1 μm.
【請求項27】 基材が、セラミックス、鉄系合金、ア
ルミニウム合金および鉄系焼結体よりなる群から選択さ
れた少なくとも1種であることを特徴とする請求項24に
記載の被覆部材。
27. The covering member according to claim 24, wherein the base material is at least one selected from the group consisting of ceramics, iron-based alloys, aluminum alloys, and iron-based sintered bodies.
JP36784499A 1998-12-25 1999-12-24 Hard coating and covering member Expired - Lifetime JP4251738B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP36784499A JP4251738B2 (en) 1998-12-25 1999-12-24 Hard coating and covering member
DE60040365T DE60040365D1 (en) 1999-07-08 2000-02-09 Hard coating and coated component
EP00301009A EP1067211B1 (en) 1999-07-08 2000-02-09 Hard coating and coated member
EP08016391.8A EP2000560B1 (en) 1999-07-08 2000-02-09 Hard coating and coated member

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP37025698 1998-12-25
JP19509999 1999-07-08
JP11-304284 1999-10-26
JP10-370256 1999-10-26
JP30428499 1999-10-26
JP11-195099 1999-10-26
JP36784499A JP4251738B2 (en) 1998-12-25 1999-12-24 Hard coating and covering member

Publications (2)

Publication Number Publication Date
JP2001192864A true JP2001192864A (en) 2001-07-17
JP4251738B2 JP4251738B2 (en) 2009-04-08

Family

ID=27475745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36784499A Expired - Lifetime JP4251738B2 (en) 1998-12-25 1999-12-24 Hard coating and covering member

Country Status (1)

Country Link
JP (1) JP4251738B2 (en)

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003029685A1 (en) * 2001-09-27 2003-04-10 Kabushiki Kaisha Toyota Chuo Kenkyusho High friction sliding member
JP2004137535A (en) * 2002-10-16 2004-05-13 Nissan Motor Co Ltd Hard carbon film slide member
EP1479946A2 (en) * 2003-05-23 2004-11-24 Nissan Motor Company, Limited Piston for internal combustion engine
WO2005014763A1 (en) * 2003-08-06 2005-02-17 Nippon Oil Corporation System having dlc contacting faces, method for lubricating the system and lubricating oil for the system
WO2005014760A1 (en) * 2003-08-06 2005-02-17 Nippon Oil Corporation System having dlc contacting faces, method for lubricating the system and lubricating oil for the system
JP2005054609A (en) * 2003-08-07 2005-03-03 Nissan Motor Co Ltd High pressure fuel pump
JP2005089735A (en) * 2003-08-08 2005-04-07 Nissan Motor Co Ltd Sliding member
WO2005014761A3 (en) * 2003-08-06 2005-04-07 Nissan Motor Low-friction sliding mechanism, low-friction agent composition and method of friction reduction
JP2005090738A (en) * 2003-08-13 2005-04-07 Nissan Motor Co Ltd Rolling bearing
JP2005097570A (en) * 2003-08-21 2005-04-14 Nissan Motor Co Ltd Low frictional sliding member and low frictional sliding mechanism by using the same
JP2005253894A (en) * 2004-03-15 2005-09-22 Seiko Epson Corp Ornament, production method thereof and timepiece
JP2005253893A (en) * 2004-03-15 2005-09-22 Seiko Epson Corp Ornament, production method thereof and timepiece
JP2005314454A (en) * 2004-04-27 2005-11-10 Toyota Central Res & Dev Lab Inc Low-friction slide member
JP2006125254A (en) * 2004-10-27 2006-05-18 Toyota Central Res & Dev Lab Inc Engine valve system component
JP2006194106A (en) * 2005-01-11 2006-07-27 Nissan Motor Co Ltd Valve device of engine
JP2006199836A (en) * 2005-01-21 2006-08-03 Nissan Motor Co Ltd Low friction sliding mechanism
JP2006213745A (en) * 2005-02-01 2006-08-17 Nissan Motor Co Ltd Low frictional, oil-impregnated sliding mechanism
JP2007504337A (en) * 2003-09-05 2007-03-01 ザ ルブリゾル コーポレイション Lubricating parts with partially hard coating that can reduce the amount of anti-wear additive
JP2007099965A (en) * 2005-10-06 2007-04-19 Toyota Motor Corp Combined sliding member
JP2007100189A (en) * 2005-10-06 2007-04-19 Toyota Motor Corp Metal-compounded diamond-like carbon (dlc) film, method and device for depositing the same, and sliding member
JP2007099947A (en) * 2005-10-05 2007-04-19 Toyota Motor Corp Sliding structure and sliding method
JP2007119907A (en) * 2005-09-10 2007-05-17 Schaeffler Kg Wear-resistant coating, and its manufacturing method
JP2007229917A (en) * 2001-12-26 2007-09-13 Sumitomo Electric Hardmetal Corp Surface-coated machining tool
US7273655B2 (en) 1999-04-09 2007-09-25 Shojiro Miyake Slidably movable member and method of producing same
CN100362216C (en) * 2003-08-08 2008-01-16 日产自动车株式会社 Valve train for internal combustion engine
JP2008051867A (en) * 2006-08-22 2008-03-06 Fuji Xerox Co Ltd Cleaning method, cleaning device and image forming apparatus
US7368168B2 (en) 2004-04-27 2008-05-06 Kabushiki Kaisha Toyota Chuo Kenkyusho Low-friction sliding member
JP2008106361A (en) * 2007-10-18 2008-05-08 Sumitomo Electric Ind Ltd Carbon film
US7416786B2 (en) 2003-02-26 2008-08-26 Sumitomo Electric Industries, Ltd. Amorphous carbon film, process for producing the same and amorphous carbon film-coated material
WO2008149824A1 (en) * 2007-06-01 2008-12-11 Onward Ceramic Coating Co., Ltd. Dlc-coated tool
JP2009519379A (en) * 2005-12-13 2009-05-14 ユナイテッド テクノロジーズ コーポレイション Method for depositing amorphous carbon
JP2009203541A (en) * 2008-02-29 2009-09-10 Ntn Corp Sliding member
JP2009544844A (en) * 2006-07-26 2009-12-17 ロバート ボッシュ ゲーエムベーハー Method of applying a coating material and coating for a metal surface
US7650976B2 (en) 2003-08-22 2010-01-26 Nissan Motor Co., Ltd. Low-friction sliding member in transmission, and transmission oil therefor
US7771821B2 (en) 2003-08-21 2010-08-10 Nissan Motor Co., Ltd. Low-friction sliding member and low-friction sliding mechanism using same
US8096205B2 (en) 2003-07-31 2012-01-17 Nissan Motor Co., Ltd. Gear
US8152377B2 (en) 2002-11-06 2012-04-10 Nissan Motor Co., Ltd. Low-friction sliding mechanism
WO2014003172A1 (en) * 2012-06-29 2014-01-03 株式会社神戸製鋼所 Molded body of dlc film
JP2014091844A (en) * 2012-11-01 2014-05-19 Toyota Motor Corp Slide member, method for manufacturing the same, and slide structure
JP2015055006A (en) * 2013-09-13 2015-03-23 株式会社ジェイテクト Coating film and slide member
JP2016500761A (en) * 2012-10-23 2016-01-14 マーレ インターナショナル ゲゼルシャフト ミット ベシュレンクテルハフツングMAHLE International GmbH Component having coating and method for manufacturing the same
JP2016502591A (en) * 2012-10-23 2016-01-28 マーレ インターナショナル ゲゼルシャフト ミット ベシュレンクテルハフツングMAHLE International GmbH Component having coating and method for manufacturing the same
WO2016047984A1 (en) * 2014-09-22 2016-03-31 한국기계연구원 Base material comprising diamond-like carbon layer and method for manufacturing same
JP2016079483A (en) * 2014-10-20 2016-05-16 株式会社中山アモルファス Coating for sliding, sliding component, and production method of them
JPWO2016017438A1 (en) * 2014-07-28 2017-06-08 日本アイ・ティ・エフ株式会社 Carbon thin film, plasma apparatus for manufacturing the same, and manufacturing method
JP2017122262A (en) * 2016-01-06 2017-07-13 株式会社アルバック Film deposition method
JP2018145455A (en) * 2017-03-02 2018-09-20 トヨタ自動車株式会社 Abrasion resistant material, and manufacturing method for the same
WO2019058587A1 (en) * 2017-09-20 2019-03-28 日本アイ・ティ・エフ株式会社 Arc-based film formation device and film formation method
US20220275498A1 (en) * 2019-07-31 2022-09-01 Oerlikon Surface Solutions Ag, Pfäffikon Graded hydrogen-free carbon-based hard material layer coated onto a substrate

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7273655B2 (en) 1999-04-09 2007-09-25 Shojiro Miyake Slidably movable member and method of producing same
US7537835B2 (en) 2001-09-27 2009-05-26 Kabushiki Kaisha Toyota Chuo Kenkyusho High friction sliding member
WO2003029685A1 (en) * 2001-09-27 2003-04-10 Kabushiki Kaisha Toyota Chuo Kenkyusho High friction sliding member
JPWO2003029685A1 (en) * 2001-09-27 2005-01-20 株式会社豊田中央研究所 High friction sliding member
JP2007229917A (en) * 2001-12-26 2007-09-13 Sumitomo Electric Hardmetal Corp Surface-coated machining tool
JP2004137535A (en) * 2002-10-16 2004-05-13 Nissan Motor Co Ltd Hard carbon film slide member
US8152377B2 (en) 2002-11-06 2012-04-10 Nissan Motor Co., Ltd. Low-friction sliding mechanism
US7416786B2 (en) 2003-02-26 2008-08-26 Sumitomo Electric Industries, Ltd. Amorphous carbon film, process for producing the same and amorphous carbon film-coated material
EP1479946A3 (en) * 2003-05-23 2005-01-12 Nissan Motor Company, Limited Piston for internal combustion engine
EP1479946A2 (en) * 2003-05-23 2004-11-24 Nissan Motor Company, Limited Piston for internal combustion engine
US8096205B2 (en) 2003-07-31 2012-01-17 Nissan Motor Co., Ltd. Gear
US8206035B2 (en) 2003-08-06 2012-06-26 Nissan Motor Co., Ltd. Low-friction sliding mechanism, low-friction agent composition and method of friction reduction
WO2005014761A3 (en) * 2003-08-06 2005-04-07 Nissan Motor Low-friction sliding mechanism, low-friction agent composition and method of friction reduction
WO2005014760A1 (en) * 2003-08-06 2005-02-17 Nippon Oil Corporation System having dlc contacting faces, method for lubricating the system and lubricating oil for the system
WO2005014763A1 (en) * 2003-08-06 2005-02-17 Nippon Oil Corporation System having dlc contacting faces, method for lubricating the system and lubricating oil for the system
US7951756B2 (en) 2003-08-06 2011-05-31 Nippon Oil Corporation System having DLC contact surfaces, method of lubricating the system, and lubricant for the system
US7968502B2 (en) 2003-08-06 2011-06-28 Nippon Oil Corporation System having DLC contact surfaces, method of lubricating the system, and lubricant for the system
JP2005054609A (en) * 2003-08-07 2005-03-03 Nissan Motor Co Ltd High pressure fuel pump
JP2005089735A (en) * 2003-08-08 2005-04-07 Nissan Motor Co Ltd Sliding member
US8575076B2 (en) 2003-08-08 2013-11-05 Nissan Motor Co., Ltd. Sliding member and production process thereof
CN100362216C (en) * 2003-08-08 2008-01-16 日产自动车株式会社 Valve train for internal combustion engine
JP2005090738A (en) * 2003-08-13 2005-04-07 Nissan Motor Co Ltd Rolling bearing
US7771821B2 (en) 2003-08-21 2010-08-10 Nissan Motor Co., Ltd. Low-friction sliding member and low-friction sliding mechanism using same
JP2011089644A (en) * 2003-08-21 2011-05-06 Nissan Motor Co Ltd Low friction sliding member and low friction sliding mechanism using the same
JP2005097570A (en) * 2003-08-21 2005-04-14 Nissan Motor Co Ltd Low frictional sliding member and low frictional sliding mechanism by using the same
US7650976B2 (en) 2003-08-22 2010-01-26 Nissan Motor Co., Ltd. Low-friction sliding member in transmission, and transmission oil therefor
JP2007504337A (en) * 2003-09-05 2007-03-01 ザ ルブリゾル コーポレイション Lubricating parts with partially hard coating that can reduce the amount of anti-wear additive
JP2005253894A (en) * 2004-03-15 2005-09-22 Seiko Epson Corp Ornament, production method thereof and timepiece
JP2005253893A (en) * 2004-03-15 2005-09-22 Seiko Epson Corp Ornament, production method thereof and timepiece
JP2005314454A (en) * 2004-04-27 2005-11-10 Toyota Central Res & Dev Lab Inc Low-friction slide member
US7368168B2 (en) 2004-04-27 2008-05-06 Kabushiki Kaisha Toyota Chuo Kenkyusho Low-friction sliding member
JP2006125254A (en) * 2004-10-27 2006-05-18 Toyota Central Res & Dev Lab Inc Engine valve system component
JP2006194106A (en) * 2005-01-11 2006-07-27 Nissan Motor Co Ltd Valve device of engine
JP2006199836A (en) * 2005-01-21 2006-08-03 Nissan Motor Co Ltd Low friction sliding mechanism
JP2006213745A (en) * 2005-02-01 2006-08-17 Nissan Motor Co Ltd Low frictional, oil-impregnated sliding mechanism
JP2007119907A (en) * 2005-09-10 2007-05-17 Schaeffler Kg Wear-resistant coating, and its manufacturing method
JP2007099947A (en) * 2005-10-05 2007-04-19 Toyota Motor Corp Sliding structure and sliding method
JP2007100189A (en) * 2005-10-06 2007-04-19 Toyota Motor Corp Metal-compounded diamond-like carbon (dlc) film, method and device for depositing the same, and sliding member
JP2007099965A (en) * 2005-10-06 2007-04-19 Toyota Motor Corp Combined sliding member
JP4736684B2 (en) * 2005-10-06 2011-07-27 トヨタ自動車株式会社 Combination sliding member
JP4696823B2 (en) * 2005-10-06 2011-06-08 トヨタ自動車株式会社 Metal composite diamond-like carbon (DLC) film, method for forming the same, and sliding member
US8222189B2 (en) 2005-12-13 2012-07-17 United Technologies Corporation Process for deposition of amorphous carbon
JP2009519379A (en) * 2005-12-13 2009-05-14 ユナイテッド テクノロジーズ コーポレイション Method for depositing amorphous carbon
JP2009544844A (en) * 2006-07-26 2009-12-17 ロバート ボッシュ ゲーエムベーハー Method of applying a coating material and coating for a metal surface
JP2008051867A (en) * 2006-08-22 2008-03-06 Fuji Xerox Co Ltd Cleaning method, cleaning device and image forming apparatus
WO2008149824A1 (en) * 2007-06-01 2008-12-11 Onward Ceramic Coating Co., Ltd. Dlc-coated tool
JP2008106361A (en) * 2007-10-18 2008-05-08 Sumitomo Electric Ind Ltd Carbon film
JP2009203541A (en) * 2008-02-29 2009-09-10 Ntn Corp Sliding member
JP2014122415A (en) * 2012-06-29 2014-07-03 Kobe Steel Ltd Dlc film formed body
WO2014003172A1 (en) * 2012-06-29 2014-01-03 株式会社神戸製鋼所 Molded body of dlc film
JP2016500761A (en) * 2012-10-23 2016-01-14 マーレ インターナショナル ゲゼルシャフト ミット ベシュレンクテルハフツングMAHLE International GmbH Component having coating and method for manufacturing the same
JP2016502591A (en) * 2012-10-23 2016-01-28 マーレ インターナショナル ゲゼルシャフト ミット ベシュレンクテルハフツングMAHLE International GmbH Component having coating and method for manufacturing the same
US10059899B2 (en) 2012-10-23 2018-08-28 Mahle International Gmbh Component having a coating and method for the production thereof
JP2014091844A (en) * 2012-11-01 2014-05-19 Toyota Motor Corp Slide member, method for manufacturing the same, and slide structure
JP2015055006A (en) * 2013-09-13 2015-03-23 株式会社ジェイテクト Coating film and slide member
JPWO2016017438A1 (en) * 2014-07-28 2017-06-08 日本アイ・ティ・エフ株式会社 Carbon thin film, plasma apparatus for manufacturing the same, and manufacturing method
WO2016047984A1 (en) * 2014-09-22 2016-03-31 한국기계연구원 Base material comprising diamond-like carbon layer and method for manufacturing same
JP2016079483A (en) * 2014-10-20 2016-05-16 株式会社中山アモルファス Coating for sliding, sliding component, and production method of them
JP2017122262A (en) * 2016-01-06 2017-07-13 株式会社アルバック Film deposition method
JP2018145455A (en) * 2017-03-02 2018-09-20 トヨタ自動車株式会社 Abrasion resistant material, and manufacturing method for the same
WO2019058587A1 (en) * 2017-09-20 2019-03-28 日本アイ・ティ・エフ株式会社 Arc-based film formation device and film formation method
US20220275498A1 (en) * 2019-07-31 2022-09-01 Oerlikon Surface Solutions Ag, Pfäffikon Graded hydrogen-free carbon-based hard material layer coated onto a substrate

Also Published As

Publication number Publication date
JP4251738B2 (en) 2009-04-08

Similar Documents

Publication Publication Date Title
JP4251738B2 (en) Hard coating and covering member
EP1841896B1 (en) Amorphous carbon film, process for forming the same, and high wear-resistant sliding member with amorphous carbon film provided
US8202615B2 (en) Nitrogen-containing amorphous carbon-type film, amorphous carbon-type lamination film, and sliding member
EP1067211A1 (en) Hard coating and coated member
Hainsworth et al. Diamond like carbon coatings for tribology: production techniques, characterisation methods and applications
JP4331292B2 (en) Composite diamond-like carbon coating with low wear and excellent adhesion
Chang et al. Microstructure and adhesion characteristics of diamond-like carbon films deposited on steel substrates
CN110770362B (en) Sliding member and coating film
US20070141347A1 (en) Hard carbon film, production method thereof, and sliding member
EP1154035A1 (en) Amorphous carbon film containing oxide
Kiryukhantsev-Korneev et al. Comparative study of sliding, scratching, and impact-loading behavior of hard CrB 2 and Cr–B–N films
JP4876464B2 (en) Low friction sliding member
CN104812928A (en) Component having a coating and method for the production thereof
Hao et al. Mechanical and cutting performance of cemented carbide tools with Cr/x/DLC composite coatings
JP4427706B2 (en) High wear resistance and high seizure resistance sliding member and manufacturing method thereof
US11643733B2 (en) ta-C based coatings with improved hardness
Mo et al. Tribological characterization of chromium nitride coating deposited by filtered cathodic vacuum arc
JP2003247060A (en) Method of producing amorphous carbon film and amorphous carbon-coated sliding parts
WO2019078052A1 (en) Sliding member and piston ring
JPH0625826A (en) Sliding material and its production
Masuko et al. Effect of surface roughening of substrate steel on the improvement of delamination strength and tribological behavior of hydrogenated amorphous carbon coating under lubricated conditions
Santhosh et al. Mechanical and Tribological Performance of Diamond-Like Carbon Coatings: An Overview
Dai et al. A Study on Metal‐Doped Diamond‐Like Carbon Film Synthesized by Ion Source and Sputtering Technique
JP2006207691A (en) Hard film coated sliding member
JP6604557B2 (en) Piston ring and engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060710

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061025

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070125

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090120

R150 Certificate of patent or registration of utility model

Ref document number: 4251738

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140130

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term