JP4331292B2 - Composite diamond-like carbon coating with low wear and excellent adhesion - Google Patents

Composite diamond-like carbon coating with low wear and excellent adhesion Download PDF

Info

Publication number
JP4331292B2
JP4331292B2 JP31043798A JP31043798A JP4331292B2 JP 4331292 B2 JP4331292 B2 JP 4331292B2 JP 31043798 A JP31043798 A JP 31043798A JP 31043798 A JP31043798 A JP 31043798A JP 4331292 B2 JP4331292 B2 JP 4331292B2
Authority
JP
Japan
Prior art keywords
film
dlc
carbon
thin film
diamond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31043798A
Other languages
Japanese (ja)
Other versions
JP2000128516A (en
Inventor
正樹 諸貫
聡 角屋
晃 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Original Assignee
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp filed Critical Riken Corp
Priority to JP31043798A priority Critical patent/JP4331292B2/en
Publication of JP2000128516A publication Critical patent/JP2000128516A/en
Application granted granted Critical
Publication of JP4331292B2 publication Critical patent/JP4331292B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Pistons, Piston Rings, And Cylinders (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【0001】
【産業上の利用分野】
本発明は耐摩耗性硬質皮膜である非晶質状ダイヤモンドライクカーボン(以下「DLC」と略することもある)皮膜の形成方法に関する。
DLCはHv2000〜10000もの高硬度を有しかつ低摩擦性も有する非晶質炭素膜であってプラズマCVDもしくは真空アーク放電法により成膜されている(例えば特開平6−10135号公報及び特表平9−506669号公報など参照)。
【0002】
【従来の技術】
これまでにDLC皮膜として実用化されているものにはハードディスク用記録媒体や磁気記録用ヘッドの保護膜がある(トライボロジスト、Vol.41,No.9,第56〜61頁参照)。これらの保護膜に用いられているDLC膜の製造方法は一般にプラズマCVD法が用いられている。プラズマCVD法においては材料ガスを真空チャンバー内に導入し、高周波放電プラズマによりイオン化し、基板に原子を付着させる。プラズマCVD法は他の成膜法に比較して装置のイニンシャルコスト及びランニングコスト共に低く、量産技術としてすぐれているために磁気ヘッド用皮膜の成膜に用いられている。
【0003】
また、工具などへのDLCコーティングも実用化されており(前掲トライボロジスト第62〜67頁)、成膜を行うためには真空アーク放電法がある。真空アーク放電法では材料である固体カーボンを真空中でアーク放電させ、それにより生じたプラズマ中のイオンを基板上に堆積させることにより皮膜が生成される。真空アーク放電法では水素を含まないダイヤモンド並の硬度のDLC膜を形成できるという利点がある。
真空蒸着法によるDLC皮膜と基板の密着を向上するために、これらの間にCとNなどの注入原子との混合層を形成することが提案されている(特開平7−90553号公報)。
【0004】
【発明が解決しようとする課題】
メタンなどの炭化水素ガスを使用して成膜したDLC皮膜をピストンリングの耐摩耗性皮膜とすることは公知である(米国特許第4974498号明細書)。
また、噴射ポンプの弁座用複合皮膜として、アセチレンガスなどを原料とする低摩耗DLC表面層、TiN,TiC,TiB2 などの耐摩耗性中間層及びTi,TiB2 などの付着層を基材に成膜することも公知である(特開平9−506669号公報)。
ところでDLC皮膜は表面が平滑で摩擦係数が低い、硬度がダイヤモンド並みである、金属元素を含まないために相手材と金属・金属摺接にならないので凝着が起こり難いなどの摺動部材として理想的性質をもっている。しかしながら従来のDLC皮膜は自動車部品や噴射ポンプ部品の耐摩耗性膜としては性能が十分ではないために、ハードディスク、工具などの皮膜ほどには普及していず、従来の硬質クロムめっき、PVD皮膜などを代替するには至っていない。
そこで本発明は母材との密着性が良く、且つ、摩擦係数の小さなDLC膜を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明は前記課題を解決すべくなされたもので、第1のDLC皮膜は、内燃機関のピストンリング母材に接して形成された水素を含まない第1のダイヤモンドライクカーボン膜よりなる下層と、摺動相手材に摺接する部分に形成されかつ水素を含む第2のダイヤモンドライクカーボン膜よりなる上層とを含んでなる複合構造をもつものである。ここで、水素を含まないDLCとはレーザーラマン散乱分光分析法で測定してベースラインスロープ(カウント数を波数で割った値)が0.1未満のDLCを指し、水素を含むDLCとはレーザーラマン散乱分光分析法で測定してベースラインスロープが0.1以上のものを指す。なお第2のDLC薄膜の水素濃度は一般に0.17〜0.34原子%である。
【0006】
本発明の第2に係るDLC皮膜は、炭素を用いる真空アーク法により、母材に接して形成された第1のダイヤモンドライクカーボン薄膜よりなる下層と、炭化水素を用いるRF(Radio frequency) 、ECR(Electron cyclotron resonance)もしくはプラズマCVD法により、摺動相手材に摺接する部分に形成された第2のダイヤモンドライクカーボン薄膜とを含んでなる複合構造をもつものである。
発明の第2においては、RFプラズマCVD法、ECRマイクロ波プラズマCVD法により、直鎖炭化水素ガス(例えばCH4 、C22 )や芳香族炭化化水素ガス(例えばC66 、C65 CH3 )を原料として成膜を行うことにより水素が含有される第2のDLC薄膜を形成する。また、真空アーク放電法により固体カーボン(例えばグラファイト、HOPG、炭素棒)を使用して成膜を行うと、膜中へは原料からの水素は取り込まれず、水素フリーのDLC薄膜を形成することができる。
【0007】
本発明において上層及び下層のDLC薄膜は、例えば水素含有量が異なるDLC膜を積層したもの、CVD条件などの成膜条件を変更した2以上のDLC膜を積層した2層以上の層であってもよい。
【0008】
本発明においてはシリンダーライナーなどの相手材と摺接する層は第2のDLC薄膜であり、この薄膜の厚さは0.2〜5μmであることが好ましい。さらに、ピストンリングなどの部品の母材と接触する層は第1のDLC薄膜であり、この薄膜の厚さは0.2〜5μmであることが好ましい。
以下、本発明をより詳しく説明する。
【0009】
プラズマCVD法により形成されるDLC薄膜は材料として直鎖炭化水素ガス(例えばCH4 、C22 )や芳香族炭化水素ガス(例えばC66 、C65 CH3 )を使用するため、膜中に水素が取り込まれやすいという特徴がある。図1(a)はRFプラズマCVD法により成膜されたDLC薄膜のレーザーラマン分光スペクトルのデータであるが、ベースラインの傾斜が0.4096と大きく膜中の水素含有量が多いことを示している。成膜時に母材にかかるバイアス電圧も数十から数百Vと低いため、プラズマ中のイオンの運動エネルギーも小さい。このような条件下では母材表面の改質があまり進まないためその上に形成されるDLC薄膜の密着性が低いという欠点がある。
プラズマのタイプは13.56MHzのRFプラズマでもDLC薄膜は成膜可能であるが、2.45GHzのマイクロ波プラズマで磁場をかけたECRプラズマではプラズマ効率が向上するため、RFプラズマよりも少ないガス流量で成膜できるという利点がある。また、材料についてはC66 などの芳香族炭化水素を使用した方がCH4 など直鎖炭化水素ガスを用いた場合に比べて成膜速度が早くでき、さらに液体であるため容積が少なくですみ貯蔵に場所を取らないというメリットもある。
【0010】
本発明の特徴は、水素を含むDLC薄膜の母材との密着性を高めるためにDLC膜自体を密着層として使用するところにある。すなわち、水素を含まないDLC膜あるいは炭素を用いる真空アーク法によるDLC膜を下層とする。一方、水素を含むDLC膜は摩擦係数は低く、かつ硬度も従来のイオンプレーティング皮膜よりはるかに高いが、この皮膜単独ではピストンリング皮膜としての特性は不良であり、具体的には皮膜の局部的脱落がきっかけとなって焼付が起こり易い。
【0011】
真空アーク放電法などにより形成されるDLC薄膜は材料として固体カーボン(例えばグラファイト、HOPG、炭素棒)を使用するため、膜中へは水素は取り込まれず、水素フリーのDLC薄膜を形成することができる。図1(b)は真空アーク放電法により形成されたDLC薄膜のレーザーラマン分光スペクトルデータであるが、ベースラインの傾斜は0.0295と小さく膜中水素の含有量が非常に小さいことが分かる。また、成膜時に母材にかかるバイアス電圧も数kVと高いため、プラズマ中のイオンの運動エネルギーが大きい。
本発明は上層(第2のDLC薄膜)と下層(第1のDLC薄膜)を基本層構造とするDLC皮膜に関する。この変形としては、上層と下層の間に任意のDLC薄膜を介在させることができ、又、好ましくは、上層(1層以上の第2のDLC薄膜)と下層(1層以上の第1のDLC薄膜)を直接上下に積層した構造とすることができる。
【0012】
内燃機関のピストンリングの母材は、鉄、鋳鉄、高合金、アルミニウムなどの各種材料より構成される。特にピストンリングの場合は母材は窒化したマルテンサイト系ステンレス鋼とすることが好ましい。母材の表面は通常の方法により、スケール、異物、油などを除去して清浄化する。又表面粗さは特に限定されないがRa0.02μm程度が好ましい。
【0013】
上述のように第1のDLC薄膜は母材に対して優れた密着性を有しており、母材と第1のDLC薄膜の優れた密着性は、母材表面の改質と膜生成エネルギーが高いことが寄与している。一方母材の金属と格子整合性がありかつDLCの炭素と親和力が大きく炭化物を形成する原子より構成される中間層を第1のDLC薄膜と母材の間に中間層として介在させることによっても、さらに高いレベルの密着性が得られる。すなわち、母材の金属材料より炭化物形成能が大きい元素からなるもしくは該元素を含む皮膜を中間層として該母材上に設けることもできる。炭化物形成元素はW,Ti,Nb及びSiからなる群より選択される少なくとも1種であることが好ましく、又これらの元素DLC薄膜にドープすることもできる。
【0014】
【作用】
母材に対して良好な密着性を確保しつつ摩擦係数の小さなDLC皮膜を形成することができる理由を本発明の実験に基いて考察する。
メタンガスを材料としてプラズマCVD法により形成されたDLC膜は膜中に水素が取り込まれている。
図2にはボールオンディスク摩擦摩耗試験機ボール:直径6mm、SUJ−2、荷重値:10N)による摩擦係数の摺動距離に伴う変化を示す。図3の写真にはスクラッチによる密着性試験(圧子:ダイヤモンド、先端径200μm、荷重速度:10N/mm、スクラッチ速度:10mm/sec)後の皮膜表面を示す。メタンを材料としてプラズマCVDにより成膜したDLC膜では摩擦係数は約0.2と小さい利点はあるが、臨界荷重値(Lc値)が10N程度と低いことに対応して、図3(a)に示したように母材との密着性が弱い部分で皮膜が基板から浮いた状態で割れ母材が露出する。
【0015】
一方固体カーボンを材料として真空アーク放電法によりタングステン中間層上に形成されたDLC膜は膜は図2に示したように摩擦係数は初期で約0.6と大きく摺動距離が長くなるにつれて約0.4程度まで低下する。スクラッチによる密着性試験ではLc値は15N程度とプラズマCVD法の場合に比べてやや大きく、膜の破壊は図3(b)に示したようにむしり取られたような状態になるが、母材が露出することはない。
すなわちプラズマCVD法により形成された水素を含んだDLC膜は摩擦特性は良好であるが母材との密着性が悪く、一方真空アーク放電法によりタングステン中間層上に形成された水素を含まないDLC膜は摩擦特性は悪いが、母材との密着性は良好であることが分かった。
上述のような特性を利用して上下層ともにDLC薄膜とし、但し水素を含むCVD薄膜を上層とし、水素を含まない真空アーク膜を下層とした。
以下、実施例によりさらに詳しく本発明を説明する。
【0016】
【実施例】
以下、図面に示す実施例についてさらに詳細に説明する。
図4は本発明による水素を含まない第1のDLC薄膜を形成するための真空アーク放電法による装置である。真空アーク放電装置1はガス導入口6を備えた真空チャンバー2、イオンソース3、マクロパーティクルフィルター4、アーク電源5から構成される。基板12には直径25mm、厚さ4mmのSKH51を用いた。ガス導入口6からArガス導入して基板12のクリーニングを行った後、10-5torrまで真空引きされる。
イオンソース3はカソード7、シールド8、イグニッション9からなり、第1のDLC薄膜の場合にはカソード7に固体カーボンを使用してイグニッション9によりカソード7前方にアークを発生させ、アノード10でイオンを引き出しマグネットコイル11を設けたマクロパーティクルフィルター4を通過させて細かな粒子のみを基板12上に堆積させる。このようにして水素を含まず、密着性の高い第1のDLC薄膜を厚さ0.8μm形成する。
なお本実施例ではDLC薄膜の母材との密着性を向上させるため予めSKH51基板上に真空アーク放電法によりW中間層を厚さ0.2μm形成しておいた。Siなどの金属薄膜を中間層として用いる場合にはあらかじめスパッタリング法などにより所定の厚さの中間層を形成しておく。また、SiをドープしたDLC薄膜を中間層とする場合にはあらかじめ基板上にTMS(テトラメチルシラン)を用いてプラズマCVD装置20(図5参照)によりSi−DLC膜を形成しておくことができる。
【0017】
次に図5に示したRFプラズマCVD装置により摩擦係数の小さい第2のDLC膜を形成する。図5は本発明による水素を含むDLC薄膜を形成するためのRFプラズマCVD法による成膜装置である。RFプラズマCVD装置20は上部電極22、基板24を乗せる下部電極23及びガス導入口6を備えた真空チャンバー21,プラズマを発生するためのRF電源25、スイッチ/マッチングボックス26、マッチングボックス27と真空ポンプ28から構成される。真空チャンバー21は図示しない真空ポンプ28により10-3torrの真空度に減圧される。最初にArガスによるプラズマを励起し基板24のクリーニングを行なった後、CH4 ガスによるプラズマを励起して水素を含んだ摩擦係数の小さな第2のDLC膜を厚さ1μ形成する。
【0018】
このようにW中間層上に真空アーク放電法による水素を含まない密着性の良い第1のDLC膜を下層とし、RFプラズマCVD法による水素を含んだ摩擦係数の小さい第2のDLC膜を上層とした構造のDLC薄膜のスクラッチ試験による密着性評価、摩擦係数は表1のようになり、母材との密着性が良好で且つ摩擦係数の小さなDLC膜が得られた。
【0019】
【表1】

Figure 0004331292
【0020】
【発明の効果】
以上述べたように本発明によるDLC皮膜は摩擦係数が低くかつ密着性が優れているために内燃機関のピストンリングとしての用途に好ましく用いられる。
【図面の簡単な説明】
【図1】(a)はRFプラズマCVD法によるDLC膜のレーザーラマン分光スペクトルを示す図である。(b)は真空アーク放電法によるDLC膜のレーザーラマン分光スペクトルを示す図である。
【図2】真空アーク放電、RFプラズマCVDによるDLC膜の摩擦係数を示すグラフである。
【図3】(a)はRFプラズマCVD法によるDLC膜のスクラッチ痕の写真である。(b)真空アーク放電によるDLC膜のスクラッチ痕の写真である。
【図4】真空アーク放電成膜装置。
【図5】RFプラズマCVD成膜装置
【符号の説明】
1.真空アーク放電装置
2.真空チャンバー
3.イオンソース
4.マクロパーティクルフィルター
5.アーク電源
6.ガス導入口
7.カソード
8.シールド
9.イグニッション
10.アノード
11.マグネットコイル
12.基板
20.RFプラズマCVD装置
21.真空チャンバー
22.上部電極
23.下部電極
24.基板
25.RF電源
26.スイッチ/マッチングボックス
27.マッチングボックス
28.真空ポンプ [0001]
[Industrial application fields]
The present invention relates to a method for forming an amorphous diamond-like carbon (hereinafter sometimes abbreviated as “DLC”) film which is an abrasion-resistant hard film.
DLC is an amorphous carbon film having a high hardness of Hv 2000 to 10000 and low friction, and is formed by plasma CVD or a vacuum arc discharge method (for example, JP-A-6-10135 and special table). No. 9-506669).
[0002]
[Prior art]
What has been put to practical use as a DLC film so far includes a protective film for a recording medium for a hard disk and a magnetic recording head (see Tribologist, Vol. 41, No. 9, pages 56 to 61). A plasma CVD method is generally used as a manufacturing method of the DLC film used for these protective films. In the plasma CVD method, a material gas is introduced into a vacuum chamber, ionized by high frequency discharge plasma, and atoms are attached to the substrate. The plasma CVD method has low initial cost and running cost of the apparatus as compared with other film forming methods, and is excellent in mass production technology. Therefore, the plasma CVD method is used for forming a film for a magnetic head.
[0003]
In addition, DLC coating on tools and the like has been put into practical use (the above-mentioned tribologist, pages 62 to 67), and there is a vacuum arc discharge method for film formation. In the vacuum arc discharge method, a solid carbon as a material is arc-discharged in a vacuum, and ions in the plasma generated thereby are deposited on a substrate to form a coating. The vacuum arc discharge method has an advantage that a DLC film having a hardness comparable to diamond that does not contain hydrogen can be formed.
In order to improve the adhesion between the DLC film by vacuum deposition and the substrate, it has been proposed to form a mixed layer of implanted atoms such as C and N between them (JP-A-7-90553).
[0004]
[Problems to be solved by the invention]
It is known to use a DLC film formed using a hydrocarbon gas such as methane as a wear-resistant film for a piston ring (US Pat. No. 4,974,498).
The substrate as a valve seat for the composite film of the injection pump, low wear DLC surface layer acetylene gas or the like as a raw material, TiN, TiC, wear resistance intermediate layer, such as TiB 2 and Ti, the adhesion layer, such as TiB 2 It is also known to form a film (Japanese Patent Laid-Open No. 9-506669).
By the way, DLC film is ideal as a sliding member with a smooth surface, low friction coefficient, hardness similar to diamond, and because it does not contain metal elements, it does not come into metal / metal sliding contact with the counterpart material, making it difficult for adhesion to occur. It has a special nature. However, conventional DLC coatings are not as widespread as coatings for hard disks, tools, etc. because of their poor performance as wear-resistant coatings for automobile parts and injection pump parts. Conventional hard chrome plating, PVD coatings, etc. Has not yet been replaced.
Accordingly, an object of the present invention is to provide a DLC film having good adhesion to a base material and a small friction coefficient.
[0005]
[Means for Solving the Problems]
The present invention has been made to solve the above problems, and the first DLC film is a lower layer made of a first diamond-like carbon film not containing hydrogen formed in contact with a piston ring base material of an internal combustion engine , It has a composite structure including an upper layer formed of a second diamond-like carbon film containing hydrogen and formed in a portion in sliding contact with the sliding partner material. Here, DLC that does not contain hydrogen refers to DLC that has a baseline slope (a value obtained by dividing the number of counts by the wave number) measured by laser Raman scattering spectroscopy, and DLC that contains hydrogen is a laser. This refers to those having a baseline slope of 0.1 or more as measured by Raman scattering spectroscopy. The hydrogen concentration of the second DLC thin film is generally 0.17 to 0.34 atomic%.
[0006]
The DLC film according to the second aspect of the present invention includes a lower layer made of a first diamond-like carbon thin film formed in contact with a base material by a vacuum arc method using carbon, RF (Radio frequency) using hydrocarbons, ECR. (Electron cyclotron resonance) or a plasma CVD method has a composite structure including a second diamond-like carbon thin film formed in a portion that is in sliding contact with a sliding partner material.
In the second aspect of the invention, a straight chain hydrocarbon gas (eg, CH 4 , C 2 H 2 ) or an aromatic hydrocarbon gas (eg, C 6 H 6 , C 2 ) is obtained by RF plasma CVD or ECR microwave plasma CVD. A second DLC thin film containing hydrogen is formed by performing film formation using 6 H 5 CH 3 ) as a raw material. Further, when a film is formed using solid carbon (eg, graphite, HOPG, carbon rod) by the vacuum arc discharge method, hydrogen from the raw material is not taken into the film, and a hydrogen-free DLC thin film can be formed. it can.
[0007]
In the present invention, the upper and lower DLC thin films are, for example, those obtained by laminating DLC films having different hydrogen contents, or two or more layers obtained by laminating two or more DLC films in which film forming conditions such as CVD conditions are changed. Also good.
[0008]
In the present invention, the layer in sliding contact with the counterpart material such as a cylinder liner is the second DLC thin film, and the thickness of this thin film is preferably 0.2 to 5 μm. Furthermore, the layer in contact with the base material of a component such as a piston ring is the first DLC thin film, and the thickness of this thin film is preferably 0.2 to 5 μm.
Hereinafter, the present invention will be described in more detail.
[0009]
The DLC thin film formed by the plasma CVD method uses a linear hydrocarbon gas (for example, CH 4 , C 2 H 2 ) or an aromatic hydrocarbon gas (for example, C 6 H 6 , C 6 H 5 CH 3 ) as a material. Therefore, there is a feature that hydrogen is easily taken into the film. FIG. 1A shows laser Raman spectrum data of a DLC thin film formed by the RF plasma CVD method, showing that the baseline slope is as large as 0.4096 and the hydrogen content in the film is large. Yes. Since the bias voltage applied to the base material during film formation is as low as several tens to several hundreds V, the kinetic energy of ions in the plasma is also small. Under such conditions, the surface of the base material is not improved so much that there is a drawback that the adhesion of the DLC thin film formed thereon is low.
DLC thin film can be formed even with 13.56 MHz RF plasma, but plasma efficiency is improved with 2.45 GHz microwave plasma applied ECR plasma, so the gas flow rate is lower than that of RF plasma. There is an advantage that the film can be formed by. As for materials, the use of aromatic hydrocarbons such as C 6 H 6 can increase the film formation speed compared to the case of using straight chain hydrocarbon gases such as CH 4, and the volume is small because it is liquid. There is also the merit of saving space for storage.
[0010]
The feature of the present invention resides in that the DLC film itself is used as an adhesion layer in order to improve the adhesion with the base material of the DLC thin film containing hydrogen. That is, the lower layer is a DLC film not containing hydrogen or a DLC film formed by vacuum arc using carbon. On the other hand, a DLC film containing hydrogen has a low coefficient of friction and a hardness much higher than that of a conventional ion plating film, but this film alone has poor properties as a piston ring film. Occurrence of seizure tends to cause seizure.
[0011]
Since a DLC thin film formed by a vacuum arc discharge method or the like uses solid carbon (eg, graphite, HOPG, carbon rod) as a material, hydrogen is not taken into the film, and a hydrogen-free DLC thin film can be formed. . FIG. 1B shows laser Raman spectrum data of a DLC thin film formed by a vacuum arc discharge method, and it can be seen that the baseline slope is as small as 0.0295 and the hydrogen content in the film is very small. Further, since the bias voltage applied to the base material during film formation is as high as several kV, the kinetic energy of ions in the plasma is large.
The present invention relates to a DLC film having a basic layer structure of an upper layer (second DLC thin film) and a lower layer (first DLC thin film). As this modification, an arbitrary DLC thin film can be interposed between the upper layer and the lower layer, and preferably, the upper layer (one or more second DLC thin films) and the lower layer (one or more first DLC thin films). Thin film) can be directly stacked on top and bottom.
[0012]
The base material of the piston ring of the internal combustion engine is composed of various materials such as iron, cast iron, high alloy, and aluminum. In particular, in the case of a piston ring, the base material is preferably a nitrided martensitic stainless steel. The surface of the base material is cleaned by removing scales, foreign matter, oil, and the like by an ordinary method. The surface roughness is not particularly limited, but is preferably about Ra 0.02 μm.
[0013]
As described above, the first DLC thin film has excellent adhesion to the base material, and the excellent adhesion between the base material and the first DLC thin film is due to modification of the surface of the base material and film formation energy. High is contributing. On the other hand, an intermediate layer composed of atoms having lattice matching with the base metal and having a high affinity with DLC carbon and forming carbides may be interposed as an intermediate layer between the first DLC thin film and the base material. A higher level of adhesion can be obtained. That is, a film made of an element having a larger carbide forming ability than the metal material of the base material or containing the element can be provided on the base material as an intermediate layer. The carbide-forming element is preferably at least one selected from the group consisting of W, Ti, Nb and Si, and these elements can be doped into the DLC thin film.
[0014]
[Action]
The reason why a DLC film with a small friction coefficient can be formed while ensuring good adhesion to the base material will be considered based on the experiment of the present invention.
In the DLC film formed by the plasma CVD method using methane gas as a material, hydrogen is taken into the film.
FIG. 2 shows the change of the friction coefficient with the sliding distance according to the ball-on-disk friction wear tester ball: diameter 6 mm, SUJ-2, load value: 10 N). The photograph in FIG. 3 shows the surface of the coating after a scratch adhesion test (indenter: diamond, tip diameter 200 μm, load speed: 10 N / mm, scratch speed: 10 mm / sec). A DLC film formed by plasma CVD using methane as a material has an advantage that the friction coefficient is as small as about 0.2, but corresponding to the low critical load value (Lc value) of about 10 N, FIG. As shown in the above, the cracked base material is exposed in a state where the film is lifted from the substrate at the portion having low adhesion to the base material.
[0015]
On the other hand, the DLC film formed on the tungsten intermediate layer by the vacuum arc discharge method using solid carbon as the material has a large friction coefficient of about 0.6 at the initial stage as shown in FIG. It decreases to about 0.4. In the adhesion test by scratch, the Lc value is about 15 N, which is slightly larger than that of the plasma CVD method, and the film is broken as shown in FIG. 3B. There is no exposure.
That is, the DLC film containing hydrogen formed by the plasma CVD method has good frictional characteristics but poor adhesion to the base material, while the DLC film formed on the tungsten intermediate layer by the vacuum arc discharge method does not contain hydrogen. The film was found to have good frictional properties but good adhesion to the base material.
Utilizing the above characteristics, the upper and lower layers were both DLC thin films, except that a CVD thin film containing hydrogen was the upper layer, and a vacuum arc film not containing hydrogen was the lower layer.
Hereinafter, the present invention will be described in more detail with reference to examples.
[0016]
【Example】
Hereinafter, the embodiment shown in the drawings will be described in more detail.
FIG. 4 shows a vacuum arc discharge apparatus for forming a first DLC thin film containing no hydrogen according to the present invention. The vacuum arc discharge device 1 includes a vacuum chamber 2 having a gas inlet 6, an ion source 3, a macro particle filter 4, and an arc power source 5. As the substrate 12, SKH51 having a diameter of 25 mm and a thickness of 4 mm was used. After cleaning the substrate 12 by introducing Ar gas from the gas inlet 6, it is evacuated to 10 −5 torr.
The ion source 3 includes a cathode 7, a shield 8, and an ignition 9. In the case of the first DLC thin film, solid carbon is used for the cathode 7, an arc is generated in front of the cathode 7 by the ignition 9, and ions are generated at the anode 10. Only fine particles are deposited on the substrate 12 by passing through the macro particle filter 4 provided with the extraction magnet coil 11. In this way, a first DLC thin film that does not contain hydrogen and has high adhesion is formed to a thickness of 0.8 μm.
In this example, in order to improve the adhesion of the DLC thin film to the base material, a W intermediate layer having a thickness of 0.2 μm was previously formed on the SKH51 substrate by a vacuum arc discharge method. When a metal thin film such as Si is used as the intermediate layer, an intermediate layer having a predetermined thickness is formed in advance by a sputtering method or the like. When a DLC thin film doped with Si is used as an intermediate layer, a Si-DLC film may be formed on the substrate in advance by using a plasma CVD apparatus 20 (see FIG. 5) using TMS (tetramethylsilane). it can.
[0017]
Next, a second DLC film having a small friction coefficient is formed by the RF plasma CVD apparatus shown in FIG. FIG. 5 shows a film forming apparatus by RF plasma CVD for forming a DLC thin film containing hydrogen according to the present invention. The RF plasma CVD apparatus 20 includes an upper electrode 22, a lower electrode 23 on which a substrate 24 is placed, and a vacuum chamber 21 having a gas inlet 6, an RF power source 25 for generating plasma, a switch / matching box 26, a matching box 27 and a vacuum. The pump 28 is configured. The vacuum chamber 21 is decompressed to a vacuum degree of 10 −3 torr by a vacuum pump 28 (not shown). After performing the cleaning of the first to excite the plasma with Ar gas substrate 24, CH 4 gas by exciting the plasma to smaller second DLC film thickness 1 [mu] m formed in the friction coefficient containing hydrogen.
[0018]
Thus, on the W intermediate layer, the first DLC film having good adhesion not containing hydrogen by the vacuum arc discharge method is used as the lower layer, and the second DLC film containing hydrogen by RF plasma CVD method and having a small friction coefficient is used as the upper layer. The DLC thin film having the structure as described above was evaluated for adhesion by a scratch test, and the friction coefficient was as shown in Table 1. A DLC film having good adhesion to the base material and a small friction coefficient was obtained.
[0019]
[Table 1]
Figure 0004331292
[0020]
【The invention's effect】
As described above, the DLC film according to the present invention is preferably used for a piston ring of an internal combustion engine because of its low friction coefficient and excellent adhesion.
[Brief description of the drawings]
FIG. 1A is a diagram showing a laser Raman spectrum of a DLC film by an RF plasma CVD method. (B) is a figure which shows the laser Raman spectroscopy spectrum of the DLC film by a vacuum arc discharge method.
FIG. 2 is a graph showing a friction coefficient of a DLC film by vacuum arc discharge and RF plasma CVD.
FIG. 3A is a photograph of scratch marks on a DLC film formed by RF plasma CVD. (B) is a photograph of scratch marks on the DLC film by vacuum arc discharge.
FIG. 4 is a vacuum arc discharge film forming apparatus.
[Fig. 5] RF plasma CVD film deposition system
1. 1. Vacuum arc discharge device 2. Vacuum chamber Ion source 4. Macro particle filter Arc power supply Gas inlet 7. Cathode 8. Shield 9. Ignition 10. Anode 11. Magnet coil 12. Substrate 20. RF plasma CVD apparatus 21. Vacuum chamber 22. Upper electrode 23. Lower electrode 24. Substrate 25. RF power supply 26. Switch / matching box 27. Matching box 28. Vacuum pump

Claims (5)

炭素を用いる真空アーク法により、内燃機関のピストンリング 母材に接して形成された水素を含まない第1のダイヤモンドライクカーボン薄膜よりなる下層と、炭化水素を用いるRFもしくはECRプラズマCVD法により、摺動相手材に摺接する部分に形成されかつ水素を含む第2のダイヤモンドライクカーボン薄膜よりなる上層とを含んでなることを特徴とする低摩耗性と優れた密着性を有する複合ダイヤモンドライクカーボン皮膜。By means of a vacuum arc method using carbon, a lower layer made of a first diamond-like carbon thin film not containing hydrogen formed in contact with a piston ring base material of an internal combustion engine, and an RF or ECR plasma CVD method using hydrocarbons are used for sliding. A composite diamond-like carbon film having low wear and excellent adhesion, characterized by comprising an upper layer made of a second diamond-like carbon thin film containing hydrogen and formed in a portion that is in sliding contact with the moving partner material. 1層以上の前記下層と、この下層上に形成された1層以上の前記上層とからなる請求項1記載の低摩耗性と優れた密着性を有する複合ダイヤモンドライクカーボン皮膜。 The composite diamond-like carbon film having low wear and excellent adhesion according to claim 1, comprising one or more lower layers and one or more upper layers formed on the lower layers. 前記母材の金属材料より炭化物形成能が大きい元素からなるもしくは該元素を含む皮膜を中間層として該母材上に設けたことを特徴とする請求項1又は2記載の低摩耗性と優れた密着性を有する複合ダイヤモンドライクカーボン皮膜。 3. The low wear and excellent resistance according to claim 1 or 2, wherein a film comprising an element having a larger carbide forming ability than the metal material of the base material or a film containing the element is provided on the base material as an intermediate layer. Adhesive composite diamond-like carbon film. 前記元素がW,Ti,Nb及びSiからなる群より選択される少なくとも1種である請求項3記載の低摩耗性と優れた密着性を有する複合ダイヤモンドライクカーボン皮膜。 The composite diamond-like carbon film having low wear and excellent adhesion according to claim 3, wherein the element is at least one selected from the group consisting of W, Ti, Nb and Si. 前記中間層が前記元素をドープしたダイヤモンドライクカーボン薄膜である請求項3又は4記載の低摩耗性及び優れた密着性を有する複合ダイヤモンドライクカーボン皮膜。 The composite diamond-like carbon film having low wear and excellent adhesion as claimed in claim 3 or 4, wherein the intermediate layer is a diamond-like carbon thin film doped with the element.
JP31043798A 1998-10-30 1998-10-30 Composite diamond-like carbon coating with low wear and excellent adhesion Expired - Fee Related JP4331292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31043798A JP4331292B2 (en) 1998-10-30 1998-10-30 Composite diamond-like carbon coating with low wear and excellent adhesion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31043798A JP4331292B2 (en) 1998-10-30 1998-10-30 Composite diamond-like carbon coating with low wear and excellent adhesion

Publications (2)

Publication Number Publication Date
JP2000128516A JP2000128516A (en) 2000-05-09
JP4331292B2 true JP4331292B2 (en) 2009-09-16

Family

ID=18005244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31043798A Expired - Fee Related JP4331292B2 (en) 1998-10-30 1998-10-30 Composite diamond-like carbon coating with low wear and excellent adhesion

Country Status (1)

Country Link
JP (1) JP4331292B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101910388B (en) * 2008-01-11 2013-05-29 新日铁住金株式会社 Lubricant for hot working and process for manufacturing seamless steel pipe
CN107923533A (en) * 2015-08-10 2018-04-17 日本Itf株式会社 Piston ring and its manufacture method
US10246767B2 (en) 2014-04-02 2019-04-02 Mahle Metal Leve S/A Sliding element, internal combustion engine and process for obtaining sliding element

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4793531B2 (en) * 2001-07-17 2011-10-12 住友電気工業株式会社 Amorphous carbon coating, method for producing amorphous carbon coating, and coating member for amorphous carbon coating
JP4683177B2 (en) * 2001-07-17 2011-05-11 住友電気工業株式会社 Amorphous carbon coating, method for producing amorphous carbon coating, and coating member for amorphous carbon coating
JP3714337B2 (en) * 2002-04-08 2005-11-09 住友電気工業株式会社 Optical connector
US7416786B2 (en) 2003-02-26 2008-08-26 Sumitomo Electric Industries, Ltd. Amorphous carbon film, process for producing the same and amorphous carbon film-coated material
EP1498597A1 (en) * 2003-07-17 2005-01-19 Sorevi S.A. Piston with a skirt having a low coefficient of friction
JP4973971B2 (en) 2003-08-08 2012-07-11 日産自動車株式会社 Sliding member
CA2542124A1 (en) * 2003-10-10 2005-04-28 Cellular Bioengineering, Inc. Composition and methods for cell culturing and tissue culture platforms
JP2006138404A (en) 2004-11-12 2006-06-01 Kobe Steel Ltd Sliding member with excellent abrasion resistance in wet environment
KR100655860B1 (en) * 2005-10-18 2006-12-13 주식회사 만도 Coating pinion shaft of steering apparatus
JP2007131893A (en) * 2005-11-09 2007-05-31 Osg Corp Dlc coating film and dlc-coated tool
JP4918656B2 (en) 2005-12-21 2012-04-18 株式会社リケン Amorphous hard carbon film
JP4968715B2 (en) * 2006-07-31 2012-07-04 日産自動車株式会社 High-strength gear, transmission mechanism, and high-strength gear manufacturing method
WO2009151402A1 (en) * 2008-06-09 2009-12-17 Nanofilm Technologies International Pte Ltd A process for producing an image on a substrate
FR2948039B1 (en) * 2009-07-17 2011-11-25 Commissariat Energie Atomique PROCESS FOR TEXTURING DLC-TYPE COATINGS, AND DLC-TYPE COATINGS THUS TEXTURED
DE102009028504C5 (en) 2009-08-13 2014-10-30 Federal-Mogul Burscheid Gmbh Piston ring with a coating
PL223008B1 (en) 2012-03-15 2016-09-30 Borowski Józef Przedsiębiorstwo Produkcyjno Usługowo Handlowe Medgal Method for producing the silicon-containing carbon layer on medical implants
JP5891897B2 (en) * 2012-03-28 2016-03-23 株式会社豊田中央研究所 Sliding member
DE102012214284B4 (en) * 2012-08-10 2014-03-13 Federal-Mogul Burscheid Gmbh Sliding element, in particular piston ring, with a resistant coating
DE102012219930A1 (en) * 2012-10-31 2014-04-30 Federal-Mogul Burscheid Gmbh Sliding element, in particular piston ring, with a coating
US10087513B2 (en) 2014-01-31 2018-10-02 Nippon Piston Ring Co., Ltd Piston ring and manufacturing method therefor
US10118229B2 (en) 2014-04-24 2018-11-06 Kyocera Corporation Coated tool
JP5918326B2 (en) * 2014-09-16 2016-05-18 株式会社リケン Covered sliding member
US10578214B2 (en) 2015-07-31 2020-03-03 Nippon Piston Ring Co., Ltd Piston ring and manufacturing method therefor
JP6599251B2 (en) * 2016-01-25 2019-10-30 株式会社リケン Sliding member and manufacturing method thereof
DE102016225449A1 (en) * 2016-12-19 2018-06-21 Robert Bosch Gmbh Process for coating a metallic component with a wear protection layer, metallic component and fuel injection system
JP7162799B2 (en) * 2018-03-08 2022-10-31 日本アイ・ティ・エフ株式会社 Composite coating and method of forming composite coating
CN113984505B (en) * 2021-11-10 2024-05-24 中国航发北京航空材料研究院 Method for testing friction and abrasion life of diamond-like film
CN114855143A (en) * 2022-05-10 2022-08-05 西南石油大学 Solid film coating for oil pump plunger

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101910388B (en) * 2008-01-11 2013-05-29 新日铁住金株式会社 Lubricant for hot working and process for manufacturing seamless steel pipe
US10246767B2 (en) 2014-04-02 2019-04-02 Mahle Metal Leve S/A Sliding element, internal combustion engine and process for obtaining sliding element
CN107923533A (en) * 2015-08-10 2018-04-17 日本Itf株式会社 Piston ring and its manufacture method

Also Published As

Publication number Publication date
JP2000128516A (en) 2000-05-09

Similar Documents

Publication Publication Date Title
JP4331292B2 (en) Composite diamond-like carbon coating with low wear and excellent adhesion
Bhushan Chemical, mechanical and tribological characterization of ultra-thin and hard amorphous carbon coatings as thin as 3.5 nm: recent developments
US6821497B2 (en) Amorphous hard carbon film, mechanical parts and method for producing amorphous hard carbon film
US6299425B1 (en) Member having sliding contact surface, compressor and rotary compressor
US8202615B2 (en) Nitrogen-containing amorphous carbon-type film, amorphous carbon-type lamination film, and sliding member
US6562445B2 (en) Diamond-like carbon hard multilayer film and component excellent in wear resistance and sliding performance
EP1841896B1 (en) Amorphous carbon film, process for forming the same, and high wear-resistant sliding member with amorphous carbon film provided
JP4696823B2 (en) Metal composite diamond-like carbon (DLC) film, method for forming the same, and sliding member
JP2001192864A (en) Hard film and coated member
JP5273337B2 (en) Low friction sliding member
JP4793531B2 (en) Amorphous carbon coating, method for producing amorphous carbon coating, and coating member for amorphous carbon coating
JP2002322555A (en) Diamond-like carbon multilayered film
JP2000256850A (en) Diamondlike carbon thin film and its production
JP2004169137A (en) Sliding member
JP4360082B2 (en) Method for producing amorphous carbon coating and sliding part with amorphous carbon coating
Kolawole et al. The improvement of diamond-like carbon coatings for tribological and tribo-corrosion applications in automobile engines: an updated review study
JP5077293B2 (en) Method for producing amorphous carbon coating and sliding part with amorphous carbon coating
JP4720052B2 (en) Apparatus and method for forming amorphous carbon film
JP2001214269A (en) Hard carbon laminated film and deposition method therefor
JP5150861B2 (en) Hard carbon film and method for forming the same
JP2013087325A (en) Hard carbon film, and method for forming the same
Yamamoto et al. Ultrathin amorphous C: H overcoats by pCVD on thin film media
JP4612147B2 (en) Amorphous hard carbon film and method for producing the same
JP2000177046A (en) Member coated with diamondlike carbon film
Chan et al. Deposition and properties of tetrahedral amorphous carbon films prepared on magnetic hard disks

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080916

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090512

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090618

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080916

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150626

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees