JP2004169137A - Sliding member - Google Patents

Sliding member Download PDF

Info

Publication number
JP2004169137A
JP2004169137A JP2002337357A JP2002337357A JP2004169137A JP 2004169137 A JP2004169137 A JP 2004169137A JP 2002337357 A JP2002337357 A JP 2002337357A JP 2002337357 A JP2002337357 A JP 2002337357A JP 2004169137 A JP2004169137 A JP 2004169137A
Authority
JP
Japan
Prior art keywords
layer
hard
bond
film structure
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002337357A
Other languages
Japanese (ja)
Inventor
Masaya Takahashi
雅也 高橋
Shizuka Yamaguchi
静 山口
Noboru Baba
昇 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002337357A priority Critical patent/JP2004169137A/en
Publication of JP2004169137A publication Critical patent/JP2004169137A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sliding member having excellent load resistance and adhesiveness. <P>SOLUTION: The sliding member having a film on a substrate has, successively from a substrate side, a bond layer, an intermediate layer, a hard bond layer, and a hard carbon film layer on the extreme surface and is characterized in that the Vickers hardness of the intermediate layer is Hv 1,500 to 3,000, that the Vickers hardness of the hard bond layer is Hv 1,000 to 3,000, and that the Vickers hardness of the hard carbon film layer is Hv 1,000 to 5,000. Thereby the hard carbon film layer which has the excellent load resistance and adhesiveness and is applicable under high-load sliding can be provided by inclining a hardness distribution of a depth direction. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は硬質炭素被膜層を有する摺動部材に関する。
【0002】
【従来の技術】
近年、環境への負荷低減を目的として製品の小型化,高性能化,高効率化が産業界で要求されている。なかでも摺動機構を備える製品においては、エネルギーロスを低減し、高性能化を図るための低フリクションか技術が求められている。これらの要求に応える新しい表面改質技術として硬質炭素被膜層が注目されている。硬質炭素被膜層は、一般的には、DLC(Diamond Like Carbon),アモルファスカーボン,i−カーボンと表現されている。
硬質炭素被膜層は、低フリクション特性を有するグラファイトと高高度のダイヤモンドからなるため、両方の特性を兼備している。摩擦係数は0.05〜0.2と低く、また酸・アルカリに対しても化学的に安定である。これらの特性は、制膜方法やガスの種類,混合比率により、グラファイトとダイヤモンドの割合や水素含有量が異なることにより変化する。また最近では、膜に金属をドープさせるDLCやイオンを注入するDLC,窒化炭素膜(CxNy)等も開発されている。
【0003】
しかしながら、一般的に硬質炭素被膜層は非常に高い内部残留応力を有するため、割れ,剥離が生じやすく、密着性,耐過重性に劣る。また厚膜化も困難である。そのため、高負荷下で摺動する自動車やコンプレッサー等の部品への硬質炭素被膜層の適用が困難であった。
【0004】
この問題を解決するため、下記特許文献1には、基材と硬質炭素被膜層の間に硬質セラミック層を1層設ける技術が開示されている。
【0005】
【特許文献1】
特開2000−316800号公報
【0006】
【発明が解決しようとする課題】
しかしながら、上記技術では基材上に直接硬質セラミック層を成膜するため、基材と硬質セラミック層間の密着性において課題を有している。更に深さ方向の硬さ分布が傾斜化されていないため、耐荷重性が十分でない。
【0007】
以上本発明は上記課題を解決し、耐荷重性,密着性に優れた摺動部材を提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成するための手段の一つとしては、基材上に被膜を有する摺動部材であって、基板側から中間層と、硬質ボンド層と、最表面の硬質炭素被膜層と、を有し、中間層のビッカース硬さがHv1500〜3000であり、硬質ボンド層のビッカース硬さがHv1000〜3000であり、硬質炭素被膜層のビッカース硬さがHv1000〜5000であることを特徴とする。即ち、深さ方向の硬さ分布を傾斜化させることで、耐荷重性,密着性に優れ高負荷摺動下で適用可能な硬質炭素被膜層を提供することが可能である。
【0009】
【発明の実施の形態】
〔実施例1〕
図1は、本発明により作成した膜構造1を示す図である。図1の膜構造は基材上に被膜を有する摺動部材であって、基板側からボンド層3と、中間層4と、硬質ボンド層と、最表面の硬質炭素被膜層と、を有している。ここで基材2は合金工具工、ボンド層3はCr、中間層4はCn、硬質ボンド層5はCrC、硬質炭素被膜層6はDLCである。
【0010】
この成膜方法について説明する。まず基材2を成膜装置にセットし、真空廃棄後、Arイオンボンバードで基材表面の酸化膜を除去した。その後、スパッタ法でボンド層3としてCr層、中間層4としてCrN、硬質ボンド層5としてCrC層、硬質炭素被膜層6としてDLCを順番で形成した。膜構造形成時のスパッタガス及び反応性ガスは、Cr層にArガス、CrN層にN ガス、CrC層,DLC層にCH ガスをそれぞれ用いた。ここで、基材2は、超硬合金,工具鋼,高速度鋼,軸受鋼,ステンレス鋼,炭素鋼,Cr−Mo等の鋼材でも同様の効果があるが、硬さが硬いほど、耐荷重性に優れる。また硬質炭素被膜層6は、メタルをドープしたDLC,Cでも同様の効果が得られ、成膜方法もイオン化蒸着法,プラズマCVD法,イオンプレーティングでも同様の効果が得られ、ガスもC,Cでも同様の効果が得られる。
【0011】
今回作製した膜構造の厚さは、ボンド層3としてCr層0.5μm 、中間層4としてCrN層3.0μm 、硬質ボンド層5としてCrC層0.4μm 、硬質炭素被膜層6としてDLC1.5μm である。ボンド層3の厚さが0.01μm 以下、中間層4の厚さが0.5μm 以下、硬質ボンド層5の厚さが0.1μm 以下、硬質炭素被膜層6の厚さが0.1μm 以下の場合、膜厚が薄すぎるため、耐荷重性の向上に効果を発揮しないこと、また膜厚制御が困難であることから用いることが困難である。また逆にボンド層3の厚さが0.5μm 以上、中間層4の厚さが30μm以上、硬質ボンド層の厚さが5.0μm 以上、硬質炭素被膜層の厚さが5μm以上の場合、各層の残留応力が高くなり、割れや剥離が生じやすくなるため、耐荷重性,密着性が低下する。
【0012】
この膜構造1の優位性を検討するため、比較構造として、膜構造7,膜構造8,膜構造9,膜構造10,膜構造11,膜構造12,膜構造13を作製し、比較検討を行った。図2〜図8にそれぞれの膜構造を示す。
【0013】
図9〜図16に、本実施例の膜構造1と比較構造7〜13の硬さ分布を示す。これらの膜構造の中で、硬さ分布が最も傾斜化されているのが膜構造1及び7であり、最も高負荷摺動下で耐えうる構造になっていることがわかる。
【0014】
図17に、本実施例の膜構造1と比較構造7〜13の圧子押込試験による耐荷重性評価結果を示す。これらの膜構造の中で、最も押込荷重が大きいのが、膜構造1及び7であり、耐荷重性に優れていることがわかる。これは、DLCの直下層の硬さが高いほど、また深さ方向の硬さ分布が傾斜化されているほど、耐荷重性が優れるためである。
【0015】
図18に、本実施例の膜構造1と比較構造7〜13のスクラッチ試験による密着性評価結果を示す。これらの膜構造の中で、最も臨界荷重(膜が剥離した荷重)が大きいのが、膜構造1及び7であり、最も密着性に優れていることがわかる。これは、基材とCrNの間に活性金属であるCrを設けることや、CrNとDLCの間にCrCを設けることで、層間の界面で強い結合が生じ密着性が優れるためである。またガスのみを変更する連続処理を行うことで、各層間に酸化膜ができないことも要因である。
【0016】
図19は、膜構造1,7〜13の分極試験による耐食性評価結果を示す。これらの膜構造の中で、最も孔食電位が高いのが、膜構造1及び7であり、最も耐食性に優れていることがわかる。これは、最も耐食性の低い基材の上に高耐食性のCrN,CrCを設けることで、腐食液のバリア効果が増加するためである。
【0017】
以上のことから、膜構造1が、耐荷重性,密着性および耐食性に優れた膜構造であることがわかる。
【0018】
〔実施例2〕
膜構造1を用いて、ボンド層3にTiを用いて実施例1と同様に検討を行った。
【0019】
成膜方法として、基材2を成膜装置にセットし、真空排気後、Arイオンボンバードで基材表面の酸化膜を除去した。その後、スパッタ法でボンド層3としてTi層、中間層4としてCrN層、硬質ボンド層5としてCrC層、硬質炭素被膜層6としてDLCの順番で膜構造を形成した。膜構造形成時のスパッタガス及び反応性ガスは、Ti層にArガス、CrN層にN ガス、CrC層,DLC層にCH ガスをそれぞれ用いた。
【0020】
今回作製した膜構造の厚さは、ボンド層3としてTi層0.5μm 、中間層4としてCrN層3.0μm 、硬質ボンド層5としてCrC層0.4μm 、硬質炭素被膜層6としてDLC1.5μm である。
【0021】
このボンド層3にTiを用いた場合でも、実施例1とほぼ同様に硬さ分布が傾斜化され、ほぼ同様の押込荷重,臨界荷重,孔食電位を示した。
【0022】
以上のことから、ボンド層3にTiを用いた場合でも、実施例1と同様に耐荷重性,密着性および耐食性に優れた膜構造であることがわかる。
【0023】
またボンド層3にW,Al,Zn,Fe,Siを用いて、同様の比較検討を行った。その結果、Cr,Tiを用いた場合とほぼ同様の結果になった。
【0024】
〔実施例3〕
膜構造1を用いて、中間層4にTiNを用いて実施例1と同様に検討を行った。
【0025】
成膜方法として、基材2を成膜装置にセットし、真空排気後、Arイオンボンバードで基材表面の酸化膜を除去した。その後、スパッタ法でボンド層3としてCr層、中間層4としてTiN層、硬質ボンド層5としてCrC層、硬質炭素被膜層6としてDLCの順番で膜構造を形成した。膜構造形成時のスパッタガス及び反応性ガスは、Ti層にArガス、CrN層にN ガス、CrC層,DLC層にCH ガスをそれぞれ用いた。
【0026】
今回作製した膜構造の厚さは、ボンド層3としてCr層0.5μm 、中間層4としてTiN層3.0μm 、硬質ボンド層5としてCrC層0.4μm 、硬質炭素被膜層6としてDLC1.5μm である。
【0027】
この中間層4にTiNを用いた場合でも、実施例1とほぼ同様に硬さ分布が傾斜化され、ほぼ同様の押込荷重,臨界荷重,孔食電位を示した。
【0028】
以上のことから、中間層4にTiNを用いた場合でも、実施例1と同様に耐荷重性,密着性および耐食性に優れた膜構造であることがわかる。
【0029】
また中間層4にTiAlN,TiCN,TiCを用いて、同様の比較検討を行った。その結果、CrN,TiNを用いた場合とほぼ同様の結果になった。
【0030】
以上のことから、中間層4には、CrN,TiN,TiAlN,TiCN,TiCを用いることができる。また中間層4にTiCN,TiCを用いる場合は、ボンド層3にTiを、中間層4にCrNを用いる場合は、ボンド層3にCrを用いることで、ガスの変更のみで成膜できるため、低コスト化が可能である。
【0031】
〔実施例4〕
膜構造1を用いて、硬質ボンド層5にTiCを用いて実施例1と同様に検討を行った。
【0032】
成膜方法として、基材2を成膜装置にセットし、真空排気後、Arイオンボンバードで基材表面の酸化膜を除去した。その後、スパッタ法でボンド層3としてCr層、中間層4としてCrN層、硬質ボンド層5としてTiC層、硬質炭素被膜層6としてDLCの順番で膜構造を形成した。膜構造形成時のスパッタガス及び反応性ガスは、Cr層にArガス、CrN層にN ガス、TiC層,DLC層にCH ガスをそれぞれ用いた。
【0033】
今回作製した膜構造の厚さは、ボンド層3としてCr層0.5μm 、中間層4としてCrN層3.0μm 、硬質ボンド層5としてTiC層0.3μm 、硬質炭素被膜層6としてDLC1.5μm である。
【0034】
この硬質ボンド層5にCrC層を用いた場合でも、実施例1とほぼ同様に硬さ分布が傾斜化され、ほぼ同様の押込荷重,臨界荷重,孔食電位を示した。
【0035】
以上のことから、硬質ボンド層5にTiC層を用いた場合でも、実施例1と同様に耐荷重性,密着性および耐食性に優れた膜構造であることがわかる。
【0036】
また硬質ボンド層5にWC,AlC,FeC,SiCを用いて、同様の比較検討を行った。その結果、CrC,TiCを用いた場合とほぼ同様の結果になった。
【0037】
さらにガス量を調節することで作製できる、炭化物層および金属層からなる傾斜層を用いて同様の比較検討を行った。その結果、CrC,TiCを用いた場合とほぼ同様の結果になった。
【0038】
以上のことから、硬質ボンド層5には、CrC,TiC,WC,AlC,FeC,SiC及び炭化物層および金属層からなる傾斜層を用いることができる。また中間層4の主金属と合わせることで、ガスの変更のみで成膜できるため、低コスト化が可能である。
【0039】
〔実施例5〕
膜構造1を用いて、硬質ボンド層5に硬質Crを用いて実施例1と同様に検討を行った。
【0040】
成膜方法として、基材2を成膜装置にセットし、真空排気後、Arイオンボンバードで基材表面の酸化膜を除去した。その後、スパッタ法でボンド層3としてCr層、中間層4としてCrN層、硬質ボンド層5として硬質Cr層、硬質炭素被膜層6としてDLCの順番で膜構造を形成した。膜構造形成時のスパッタガス及び反応性ガスは、Cr層,硬質Cr層にArガス、CrN層にN ガス、DLC層にCH ガスをそれぞれ用いた。また硬質Cr層成膜時の真空度は、1Paであった。
【0041】
今回作製した膜構造の厚さは、ボンド層3としてCr層0.5μm 、中間層4としてCrN層3.0μm 、硬質ボンド層5として硬質Cr層0.3μm 、硬質炭素被膜層6としてDLC1.5μm である。
【0042】
この硬質ボンド層5の効果を調べるため、実施例1で用いたCrC層と比較検討を行った。その結果、実施例1とほぼ同様に硬さ分布が傾斜化され、ほぼ同様の押込荷重,臨界荷重,孔食電位を示した。
【0043】
以上のことから、硬質ボンド層5に硬質Cr層を用いた場合でも、実施例1と同様に耐荷重性,密着性および耐食性に優れた膜構造であることがわかる。
【0044】
また硬質ボンド層5に硬質Ti,W,Al,Zn,Fe,Siを用いて、同様の比較検討を行った。その結果、CrCや硬質Crを用いた場合とほぼ同様の結果になった。
【0045】
以上のことから、硬質ボンド層5には、硬質Cr,Ti,W,Al,Zn,Fe,Siを用いることができる。また中間層4の主金属と合わせることで、ガスの変更のみで成膜できるため、低コスト化が可能である。
【0046】
〔実施例6〕
図20は、本実施例により作製した膜構造14である。膜構造14を用いて、拡散硬化層15の効果を検討した。
【0047】
成膜方法として、基材2を成膜装置にセットし、真空排気後、410℃×00hでイオン窒化を行い、拡散硬化層15を形成した。その後、スパッタ法でボンド層3としてCr層、中間層4としてCrN層、硬質ボンド層5としてCrC層、硬質炭素被膜層6としてDLCの順番で膜構造を形成した。膜構造形成時のスパッタガス及び反応性ガスは、Cr層にArガス、CrN層にN ガス、CrC,DLC層にCH ガスをそれぞれ用いた。
【0048】
今回作製した膜構造の厚さは、ボンド層3としてCr層0.5μm 、中間層4としてCrN層3.0μm 、硬質ボンド層5としてCrC0.3μm 、硬質炭素被膜層6としてDLC1.5μm である。
【0049】
この拡散硬化層15の効果を調べるため、実施例1で用いた膜構造1と比較検討を行った。
【0050】
図21に、硬さ分布を示す。膜構造1以上に、硬さ分布が傾斜化されていることがわかる。
【0051】
図22に、圧子押込試験による耐荷重性評価結果を示す。膜構造1とほぼ同様な限界押込荷重を示していることから、耐荷重性に優れていることがわかる。
【0052】
図23に、スクラッチ試験による密着性評価結果を示す。膜構造1とほぼ同様な臨界荷重を示していることから、密着性に優れていることがわかる。
【0053】
図24に、分極試験による耐食性評価結果を示す。膜構造1とほぼ同様な孔食電位を示していることから、耐食性に優れていることがわかる。
【0054】
以上のことから、拡散硬化層15を形成した膜構造14は、膜構造1と同様に耐荷重性,密着性および耐食性に優れた膜構造であることがわかる。
【0055】
以上によれば、基材上にボンド層,中間層,硬質ボンド層を形成し、さらにその上に硬質炭素被膜層を成膜し、深さ方向の硬さ分布を傾斜化させることで、耐荷重性,密着性に優れ高負荷摺動下で適用可能な硬質炭素被膜層を提供することが可能である。
【0056】
【発明の効果】
以上、耐荷重性,密着性に優れた摺動部材を提供することができる。
【図面の簡単な説明】
【図1】膜構造1を表す図。
【図2】膜構造7を表す図。
【図3】膜構造8を表す図。
【図4】膜構造9を表す図。
【図5】膜構造10を表す図。
【図6】膜構造11を表す図。
【図7】膜構造12を表す図。
【図8】膜構造13を表す図。
【図9】膜構造1の硬さ分布を表す図。
【図10】膜構造7の硬さ分布を表す図。
【図11】膜構造8の硬さ分布を表す図。
【図12】膜構造9の硬さ分布を表す図。
【図13】膜構造10の硬さ分布を表す図。
【図14】膜構造11の硬さ分布を表す図。
【図15】膜構造12の硬さ分布を表す図。
【図16】膜構造13の硬さ分布を表す図。
【図17】膜構造1,7〜13の耐荷重性を表す図。
【図18】膜構造1,7〜13の密着性を表す図。
【図19】膜構造1,7〜13の耐食性を表す図。
【図20】膜構造14を表す図。
【図21】膜構造14の硬さ分布を表す図。
【図22】膜構造1,13,14の耐荷重性を表す図。
【図23】膜構造1,13,14の密着性を表す図。
【図24】膜構造1,13,14の耐食性を表す図。
【符号の説明】
1,7,8,9,10,11,12,13,14…膜構造、2…基材、3…ボンド層、4…中間層、5…硬質ボンド層、6…硬質炭素被膜、15…拡散硬化層。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a sliding member having a hard carbon coating layer.
[0002]
[Prior art]
In recent years, there has been a demand in the industrial world for miniaturization, high performance, and high efficiency of products for the purpose of reducing the burden on the environment. Above all, in a product having a sliding mechanism, there is a demand for a technology with low friction to reduce energy loss and improve performance. A hard carbon coating layer has attracted attention as a new surface modification technology that meets these requirements. The hard carbon coating layer is generally expressed as DLC (Diamond Like Carbon), amorphous carbon, or i-carbon.
The hard carbon coating layer is made of graphite having low friction characteristics and high-altitude diamond, and therefore has both characteristics. The coefficient of friction is as low as 0.05 to 0.2, and it is chemically stable to acids and alkalis. These characteristics change depending on the ratio of graphite to diamond and the hydrogen content depending on the film control method, the type of gas, and the mixing ratio. Recently, DLC for doping metal into the film, DLC for implanting ions, carbon nitride film (CxNy), and the like have been developed.
[0003]
However, since the hard carbon coating layer generally has a very high internal residual stress, it is easily cracked and peeled off, and is inferior in adhesion and resistance to overload. It is also difficult to increase the film thickness. For this reason, it has been difficult to apply the hard carbon coating layer to parts such as automobiles and compressors that slide under a high load.
[0004]
In order to solve this problem, Patent Literature 1 below discloses a technique in which one hard ceramic layer is provided between a substrate and a hard carbon coating layer.
[0005]
[Patent Document 1]
JP 2000-316800 A
[Problems to be solved by the invention]
However, in the above technique, since the hard ceramic layer is formed directly on the base material, there is a problem in adhesion between the base material and the hard ceramic layer. Further, since the hardness distribution in the depth direction is not inclined, the load resistance is not sufficient.
[0007]
It is an object of the present invention to solve the above problems and to provide a sliding member excellent in load resistance and adhesion.
[0008]
[Means for Solving the Problems]
One of the means for achieving the above object is a sliding member having a coating on a base material, wherein an intermediate layer, a hard bond layer, and a topmost hard carbon coating layer are formed from the substrate side. The Vickers hardness of the intermediate layer is Hv 1500 to 3000, the Vickers hardness of the hard bond layer is Hv 1000 to 3000, and the Vickers hardness of the hard carbon coating layer is Hv 1000 to 5000. That is, by inclining the hardness distribution in the depth direction, it is possible to provide a hard carbon coating layer which is excellent in load resistance and adhesion and can be applied under high load sliding.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
[Example 1]
FIG. 1 is a diagram showing a film structure 1 prepared according to the present invention. The film structure of FIG. 1 is a sliding member having a film on a substrate, and has a bond layer 3, an intermediate layer 4, a hard bond layer, and a hard carbon film layer on the outermost surface from the substrate side. ing. Here, the base material 2 is an alloy tool, the bond layer 3 is Cr, the intermediate layer 4 is Cn, the hard bond layer 5 is CrC, and the hard carbon coating layer 6 is DLC.
[0010]
This film forming method will be described. First, the substrate 2 was set in a film forming apparatus, and after vacuum disposal, an oxide film on the substrate surface was removed by Ar ion bombardment. Thereafter, a Cr layer was formed as the bond layer 3, a CrN was formed as the intermediate layer 4, a CrC layer was formed as the hard bond layer 5, and a DLC was formed as the hard carbon coating layer 6 in this order by sputtering. As a sputtering gas and a reactive gas at the time of forming the film structure, Ar gas was used for the Cr layer, N 2 gas was used for the CrN layer, and CH 4 gas was used for the CrC layer and the DLC layer. Here, the base material 2 has the same effect with steel materials such as cemented carbide, tool steel, high-speed steel, bearing steel, stainless steel, carbon steel, and Cr—Mo. Excellent in nature. The hard carbon coating layer 6, DLC doped with metal, C x N y even the same effect can be obtained, even film formation method ionized evaporation method, a plasma CVD method, the same effect in ion plating to obtain a gas The same effect can be obtained with C 2 H 2 and C 6 H 6 .
[0011]
The thickness of the film structure produced this time is as follows: the bond layer 3 has a Cr layer of 0.5 μm, the intermediate layer 4 has a CrN layer of 3.0 μm, the hard bond layer 5 has a CrC layer of 0.4 μm, and the hard carbon coating layer 6 has a DLC of 1.5 μm. It is. The thickness of the bond layer 3 is 0.01 μm or less, the thickness of the intermediate layer 4 is 0.5 μm or less, the thickness of the hard bond layer 5 is 0.1 μm or less, and the thickness of the hard carbon coating layer 6 is 0.1 μm or less. In the case of (1), it is difficult to use the film because the film thickness is too small to exert an effect on the improvement of the load resistance and the film thickness is difficult to control. Conversely, when the thickness of the bond layer 3 is 0.5 μm or more, the thickness of the intermediate layer 4 is 30 μm or more, the thickness of the hard bond layer is 5.0 μm or more, and the thickness of the hard carbon coating layer is 5 μm or more, Since the residual stress of each layer is increased and cracking or peeling is likely to occur, load resistance and adhesion are reduced.
[0012]
In order to examine the superiority of the film structure 1, as a comparative structure, a film structure 7, a film structure 8, a film structure 9, a film structure 10, a film structure 11, a film structure 12, and a film structure 13 were manufactured, and a comparative study was performed. went. 2 to 8 show the respective film structures.
[0013]
9 to 16 show hardness distributions of the film structure 1 of the present example and the comparative structures 7 to 13. Among these film structures, the film structures 1 and 7 have the most gradient hardness distribution, and it can be seen that the film structure has the most durable structure under high load sliding.
[0014]
FIG. 17 shows the load resistance evaluation results of the film structure 1 of this example and the comparative structures 7 to 13 by an indenter indentation test. Among these film structures, the film structures 1 and 7 have the largest indentation loads, indicating that they have excellent load resistance. This is because the higher the hardness of the layer immediately below the DLC and the more the hardness distribution in the depth direction is inclined, the better the load resistance.
[0015]
FIG. 18 shows the adhesion evaluation results of the film structure 1 of this example and the comparative structures 7 to 13 by a scratch test. Among these film structures, the film structures 1 and 7 have the largest critical load (the load at which the film has peeled), and it can be seen that the film structures 1 and 7 have the most excellent adhesion. This is because by providing Cr, which is an active metal, between the base material and CrN, or by providing CrC between CrN and DLC, a strong bond is formed at the interface between the layers and the adhesion is excellent. Another factor is that an oxide film cannot be formed between the layers by performing a continuous process in which only the gas is changed.
[0016]
FIG. 19 shows the results of evaluating the corrosion resistance of the film structures 1 and 7 to 13 by a polarization test. Among these film structures, the film structures 1 and 7 have the highest pitting corrosion potential, and it can be seen that the film structures have the highest corrosion resistance. This is because by providing CrN and CrC having high corrosion resistance on the substrate having the lowest corrosion resistance, the barrier effect of the corrosive liquid is increased.
[0017]
From the above, it can be seen that the film structure 1 is a film structure excellent in load resistance, adhesion and corrosion resistance.
[0018]
[Example 2]
Investigation was performed in the same manner as in Example 1 using the film structure 1 and using Ti for the bond layer 3.
[0019]
As a film forming method, the substrate 2 was set in a film forming apparatus, and after evacuation, an oxide film on the substrate surface was removed by Ar ion bombardment. Thereafter, a film structure was formed by a sputtering method in the order of a Ti layer as the bond layer 3, a CrN layer as the intermediate layer 4, a CrC layer as the hard bond layer 5, and a DLC as the hard carbon coating layer 6. As a sputtering gas and a reactive gas at the time of forming the film structure, an Ar gas was used for the Ti layer, an N 2 gas was used for the CrN layer, and a CH 4 gas was used for the CrC layer and the DLC layer.
[0020]
The thickness of the film structure manufactured this time is as follows: Ti layer 0.5 μm as the bond layer 3, CrN layer 3.0 μm as the intermediate layer 4, CrC layer 0.4 μm as the hard bond layer 5, and DLC 1.5 μm as the hard carbon coating layer 6. It is.
[0021]
Even when Ti was used for the bond layer 3, the hardness distribution was graded almost in the same manner as in Example 1, and almost the same indentation load, critical load, and pitting potential were exhibited.
[0022]
From the above, it can be seen that even when Ti is used for the bond layer 3, the film structure is excellent in load resistance, adhesion and corrosion resistance as in Example 1.
[0023]
The same comparative study was performed using W, Al, Zn, Fe, and Si for the bond layer 3. As a result, the result was almost the same as when Cr and Ti were used.
[0024]
[Example 3]
Using the film structure 1 and using the TiN for the intermediate layer 4, the same study as in Example 1 was conducted.
[0025]
As a film forming method, the substrate 2 was set in a film forming apparatus, and after evacuation, an oxide film on the substrate surface was removed by Ar ion bombardment. Thereafter, a film structure was formed by a sputtering method in the order of a Cr layer as the bond layer 3, a TiN layer as the intermediate layer 4, a CrC layer as the hard bond layer 5, and a DLC as the hard carbon coating layer 6. As a sputtering gas and a reactive gas at the time of forming the film structure, an Ar gas was used for the Ti layer, an N 2 gas was used for the CrN layer, and a CH 4 gas was used for the CrC layer and the DLC layer.
[0026]
The thickness of the film structure manufactured this time is as follows: a 0.5 μm Cr layer as the bond layer 3, a 3.0 μm TiN layer as the intermediate layer 4, a 0.4 μm CrC layer as the hard bond layer 5, and a 1.5 μm DLC as the hard carbon coating layer 6. It is.
[0027]
Even when TiN was used for the intermediate layer 4, the hardness distribution was graded almost similarly to Example 1, and almost the same indentation load, critical load, and pitting potential were exhibited.
[0028]
From the above, it can be seen that, even when TiN is used for the intermediate layer 4, the film structure is excellent in load resistance, adhesion and corrosion resistance as in Example 1.
[0029]
The same comparative study was performed using TiAlN, TiCN, and TiC for the intermediate layer 4. As a result, the result was almost the same as when CrN and TiN were used.
[0030]
From the above, CrN, TiN, TiAlN, TiCN, and TiC can be used for the intermediate layer 4. When TiCN or TiC is used for the intermediate layer 4, Ti is used for the bond layer 3, and when CrN is used for the intermediate layer 4, Cr can be used for the bond layer 3. Cost reduction is possible.
[0031]
[Example 4]
Investigation was performed in the same manner as in Example 1, using the film structure 1 and using TiC for the hard bond layer 5.
[0032]
As a film forming method, the substrate 2 was set in a film forming apparatus, and after evacuation, an oxide film on the substrate surface was removed by Ar ion bombardment. Thereafter, a film structure was formed by a sputtering method in the order of a Cr layer as the bond layer 3, a CrN layer as the intermediate layer 4, a TiC layer as the hard bond layer 5, and a DLC as the hard carbon coating layer 6. As a sputtering gas and a reactive gas during the formation of the film structure, an Ar gas was used for the Cr layer, an N 2 gas was used for the CrN layer, and a CH 4 gas was used for the TiC layer and the DLC layer.
[0033]
The thickness of the film structure produced this time is as follows: the bond layer 3 has a Cr layer of 0.5 μm, the intermediate layer 4 has a CrN layer of 3.0 μm, the hard bond layer 5 has a TiC layer of 0.3 μm, and the hard carbon coating layer 6 has a DLC of 1.5 μm. It is.
[0034]
Even when the CrC layer was used for the hard bond layer 5, the hardness distribution was inclined almost in the same manner as in Example 1, and almost the same indentation load, critical load, and pitting potential were exhibited.
[0035]
From the above, it can be seen that, even when the TiC layer is used for the hard bond layer 5, the film structure is excellent in load resistance, adhesion and corrosion resistance as in Example 1.
[0036]
Similar comparison was made using WC, AlC, FeC, and SiC for the hard bond layer 5. As a result, the result was almost the same as when CrC and TiC were used.
[0037]
Further, the same comparative study was performed using an inclined layer composed of a carbide layer and a metal layer, which can be produced by adjusting the gas amount. As a result, the result was almost the same as when CrC and TiC were used.
[0038]
From the above, as the hard bond layer 5, a gradient layer including CrC, TiC, WC, AlC, FeC, SiC, a carbide layer, and a metal layer can be used. Also, by combining with the main metal of the intermediate layer 4, the film can be formed only by changing the gas, so that the cost can be reduced.
[0039]
[Example 5]
Investigation was performed in the same manner as in Example 1 using the film structure 1 and using hard Cr for the hard bond layer 5.
[0040]
As a film forming method, the substrate 2 was set in a film forming apparatus, and after evacuation, an oxide film on the substrate surface was removed by Ar ion bombardment. Thereafter, a film structure was formed by a sputtering method in the order of a Cr layer as the bond layer 3, a CrN layer as the intermediate layer 4, a hard Cr layer as the hard bond layer 5, and a DLC as the hard carbon coating layer 6. As a sputtering gas and a reactive gas during the formation of the film structure, an Ar gas was used for the Cr layer and the hard Cr layer, an N 2 gas was used for the CrN layer, and a CH 4 gas was used for the DLC layer. The degree of vacuum at the time of forming the hard Cr layer was 1 Pa.
[0041]
The thickness of the film structure manufactured this time is 0.5 μm for the Cr layer as the bond layer 3, 3.0 μm for the CrN layer as the intermediate layer 4, 0.3 μm for the hard bond layer 5, and 0.3 μm for the hard bond coat layer 6. 5 μm.
[0042]
In order to examine the effect of the hard bond layer 5, a comparative study was performed with the CrC layer used in Example 1. As a result, the hardness distribution was inclined almost in the same manner as in Example 1, and almost the same indentation load, critical load, and pitting potential were exhibited.
[0043]
From the above, it can be seen that, even when the hard Cr layer is used for the hard bond layer 5, the film structure is excellent in load resistance, adhesion and corrosion resistance as in Example 1.
[0044]
The same comparative study was performed using hard Ti, W, Al, Zn, Fe, and Si for the hard bond layer 5. As a result, the result was almost the same as when CrC or hard Cr was used.
[0045]
From the above, for the hard bond layer 5, hard Cr, Ti, W, Al, Zn, Fe, and Si can be used. Also, by combining with the main metal of the intermediate layer 4, the film can be formed only by changing the gas, so that the cost can be reduced.
[0046]
[Example 6]
FIG. 20 shows a film structure 14 manufactured according to this example. The effect of the diffusion hardened layer 15 was examined using the film structure 14.
[0047]
As a film forming method, the substrate 2 was set in a film forming apparatus, and after vacuum evacuation, ion nitriding was performed at 410 ° C. × 00 h to form a diffusion hardened layer 15. Thereafter, a film structure was formed by a sputtering method in the order of a Cr layer as the bond layer 3, a CrN layer as the intermediate layer 4, a CrC layer as the hard bond layer 5, and a DLC as the hard carbon coating layer 6. As a sputtering gas and a reactive gas at the time of forming the film structure, an Ar gas was used for the Cr layer, an N 2 gas was used for the CrN layer, and a CH 4 gas was used for the CrC and DLC layers.
[0048]
The thickness of the film structure manufactured this time is 0.5 μm of the Cr layer as the bond layer 3, 3.0 μm of the CrN layer as the intermediate layer 4, 0.3 μm of CrC as the hard bond layer 5, and 1.5 μm of DLC as the hard carbon coating layer 6. .
[0049]
In order to examine the effect of the diffusion hardened layer 15, a comparative study was performed with the film structure 1 used in Example 1.
[0050]
FIG. 21 shows the hardness distribution. It can be seen that the hardness distribution is inclined more than the film structure 1.
[0051]
FIG. 22 shows the results of the load resistance evaluation by the indenter indentation test. Since the critical indentation load almost similar to that of the film structure 1 is shown, it is understood that the load resistance is excellent.
[0052]
FIG. 23 shows the results of the evaluation of adhesion by the scratch test. Since the critical load is almost the same as that of the film structure 1, it is understood that the adhesiveness is excellent.
[0053]
FIG. 24 shows the results of the corrosion resistance evaluation by the polarization test. Since the pitting potential is almost the same as that of the film structure 1, it is understood that the film has excellent corrosion resistance.
[0054]
From the above, it is understood that the film structure 14 on which the diffusion hardened layer 15 is formed is a film structure excellent in load resistance, adhesion, and corrosion resistance, similarly to the film structure 1.
[0055]
According to the above, a bond layer, an intermediate layer, and a hard bond layer are formed on a base material, and a hard carbon coating layer is further formed thereon, and the hardness distribution in the depth direction is graded, so that the resistance is improved. It is possible to provide a hard carbon coating layer which is excellent in loadability and adhesion and can be applied under high load sliding.
[0056]
【The invention's effect】
As described above, it is possible to provide a sliding member excellent in load resistance and adhesion.
[Brief description of the drawings]
FIG. 1 is a diagram showing a film structure 1.
FIG. 2 is a view showing a film structure 7;
FIG. 3 is a view showing a film structure 8;
FIG. 4 is a view showing a film structure 9;
FIG. 5 is a view showing a film structure 10;
FIG. 6 is a view showing a film structure 11;
FIG. 7 is a view showing a film structure 12;
FIG. 8 is a view showing a film structure 13;
FIG. 9 is a diagram showing a hardness distribution of a film structure 1;
FIG. 10 is a diagram showing a hardness distribution of a film structure 7;
FIG. 11 is a diagram showing a hardness distribution of a film structure 8;
FIG. 12 is a diagram showing a hardness distribution of a film structure 9;
FIG. 13 is a diagram showing a hardness distribution of the film structure 10;
FIG. 14 is a diagram showing a hardness distribution of a film structure 11;
FIG. 15 is a diagram showing a hardness distribution of a film structure 12;
FIG. 16 is a diagram showing a hardness distribution of a film structure 13;
FIG. 17 is a diagram showing load resistance of the film structures 1 and 7 to 13.
FIG. 18 is a diagram showing the adhesion between film structures 1 and 7 to 13.
FIG. 19 is a diagram showing the corrosion resistance of film structures 1, 7 to 13.
FIG. 20 is a view showing a film structure 14;
FIG. 21 is a diagram showing a hardness distribution of a film structure 14;
FIG. 22 is a diagram showing the load resistance of the film structures 1, 13, and 14.
FIG. 23 is a diagram showing the adhesiveness of film structures 1, 13, and 14.
FIG. 24 is a view showing the corrosion resistance of the film structures 1, 13, and 14.
[Explanation of symbols]
1, 7, 8, 9, 10, 11, 12, 13, 14 ... film structure, 2 ... base material, 3 ... bond layer, 4 ... intermediate layer, 5 ... hard bond layer, 6 ... hard carbon coating, 15 ... Diffusion hardened layer.

Claims (9)

基材上に被膜を有する摺動部材であって、
基板側からボンド層と、中間層と、硬質ボンド層と、最表面の硬質炭素被膜層と、を有し、
前記中間層のビッカース硬さがHv1500〜3000であり、
前記硬質ボンド層のビッカース硬さがHv1000〜3000であり、
前記硬質炭素被膜層のビッカース硬さがHv1000〜5000であることを特徴とする摺動部材。
A sliding member having a coating on a substrate,
From the substrate side, having a bond layer, an intermediate layer, a hard bond layer, and a hard carbon coating layer on the outermost surface,
The Vickers hardness of the intermediate layer is Hv 1500 to 3000,
The Vickers hardness of the hard bond layer is Hv1000-3000,
A sliding member, wherein the Vickers hardness of the hard carbon coating layer is Hv1000-5000.
拡散硬化処理を施した基材上に被膜を有する摺動部材であって、
基板側から中間層と、硬質ボンド層と、最表面の硬質炭素被膜層と、を有し、
前記基材のビッカース硬さがHv500〜1500であり、
前記中間層のビッカース硬さがHv1500〜3000であり、
前記硬質炭素被膜層のビッカース硬さがHv1000〜5000であることを特徴とする摺動部材。
A sliding member having a coating on a substrate subjected to a diffusion hardening treatment,
From the substrate side, an intermediate layer, a hard bond layer, and an outermost hard carbon coating layer,
The Vickers hardness of the substrate is Hv500 to 1500,
The Vickers hardness of the intermediate layer is Hv 1500 to 3000,
A sliding member, wherein the Vickers hardness of the hard carbon coating layer is Hv1000-5000.
基材上に被膜を有する摺動部材であって、
基板側から中間層と、硬質ボンド層と、最表面の硬質炭素被膜層と、を有し、
前記中間層のビッカース硬さがHv1500〜3000であり、
前記硬質ボンド層のビッカース硬さがHv1000〜3000であり、
前記硬質炭素被膜層のビッカース硬さがHv1000〜5000であることを特徴とする摺動部材。
A sliding member having a coating on a substrate,
From the substrate side, an intermediate layer, a hard bond layer, and an outermost hard carbon coating layer,
The Vickers hardness of the intermediate layer is Hv 1500 to 3000,
The Vickers hardness of the hard bond layer is Hv1000-3000,
A sliding member, wherein the Vickers hardness of the hard carbon coating layer is Hv1000-5000.
前記ボンド層の厚さが0.01μm〜0.5μm、
前記中間層の厚さが0.5μm〜30μm、
前記硬質ボンド層の厚さが0.1μm〜5.0μm、
前記硬質炭素被膜層の厚さが0.1 μm〜5μmであることを特徴とする請求項1記載の摺動部材。
The thickness of the bond layer is 0.01 μm to 0.5 μm,
The thickness of the intermediate layer is 0.5 μm to 30 μm,
The thickness of the hard bond layer is 0.1 μm to 5.0 μm,
The sliding member according to claim 1, wherein the thickness of the hard carbon coating layer is 0.1 m to 5 m.
前記ボンド層がCr,Ti,W,Al,Zn,Fe,Siの一種からなる金属層、これら元素を含む炭化物層もしくは金属層からなる傾斜層であることを特徴とする請求項1記載の摺動部材。2. The slide according to claim 1, wherein the bond layer is a metal layer made of one of Cr, Ti, W, Al, Zn, Fe, and Si, a carbide layer containing these elements, or an inclined layer made of a metal layer. Moving member. 前記中間層がCrN,TiN,TiAlN,TiCN,TiCならなる層であることを特徴とする請求項1〜3の何れかに記載の摺動部材。The sliding member according to any one of claims 1 to 3, wherein the intermediate layer is a layer made of CrN, TiN, TiAlN, TiCN, and TiC. 前記硬質ボンド層がCr,Ti,W,Al,Zn,Fe,Siの一種からなる金属層であり、1Pa以下の真空度中にて成膜されたことを特徴とする請求項1〜3のいずれかに摺動部材。4. The hard bond layer according to claim 1, wherein the hard bond layer is a metal layer made of one of Cr, Ti, W, Al, Zn, Fe, and Si, and is formed in a vacuum of 1 Pa or less. Either sliding member. 前記硬質ボンド層がCr,Ti,W,Al,Zn,Fe,Si,TiAlの炭化物層、この炭化物層若しくは金属層からなる傾斜層であることを特徴とする請求項1〜3のいずれかに記載の摺動部材。4. The hard bond layer according to claim 1, wherein the hard bond layer is a carbide layer of Cr, Ti, W, Al, Zn, Fe, Si, and TiAl, or an inclined layer formed of the carbide layer or the metal layer. The sliding member as described in the above. 前記硬質炭素被膜層がダイヤモンドライクカーボン,メタル入りダイヤモンドライクカーボン,窒化炭素からなる層であることを特徴とする請求項1〜3に記載の硬質炭素被膜層の摺動部材。The sliding member according to any one of claims 1 to 3, wherein the hard carbon coating layer is a layer made of diamond-like carbon, diamond-like carbon containing metal, and carbon nitride.
JP2002337357A 2002-11-21 2002-11-21 Sliding member Pending JP2004169137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002337357A JP2004169137A (en) 2002-11-21 2002-11-21 Sliding member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002337357A JP2004169137A (en) 2002-11-21 2002-11-21 Sliding member

Publications (1)

Publication Number Publication Date
JP2004169137A true JP2004169137A (en) 2004-06-17

Family

ID=32700890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002337357A Pending JP2004169137A (en) 2002-11-21 2002-11-21 Sliding member

Country Status (1)

Country Link
JP (1) JP2004169137A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100133A (en) * 2005-09-30 2007-04-19 Dowa Holdings Co Ltd Member coated with hard film and production method therefor
JP2007100138A (en) * 2005-09-30 2007-04-19 Dowa Holdings Co Ltd Member coated with hard film and production method therefor
JP2007534957A (en) * 2004-10-01 2007-11-29 ビ−エイイ− システムズ パブリック リミテッド カンパニ− High emissivity radiator
JP2009161813A (en) * 2008-01-07 2009-07-23 Matsuyama Giken Kk Member coated with hard film and production method therefor
US20100210488A1 (en) * 2009-02-17 2010-08-19 Jtekt Corporation Sliding member
JP2010222655A (en) * 2009-03-24 2010-10-07 Kobe Steel Ltd Laminated film and laminated film-coated member
JP2010240746A (en) * 2009-04-01 2010-10-28 Hitachi Metals Ltd Machining device for rare earth sintered magnet
JP2012082477A (en) * 2010-10-12 2012-04-26 Jtekt Corp Dlc-coated member
KR20120091212A (en) * 2009-11-02 2012-08-17 페데랄-모굴 부르샤이트 게엠베하 Sliding element, in particular piston ring, and combination of a sliding element with mating running element
WO2013042765A1 (en) * 2011-09-22 2013-03-28 Ntn株式会社 Hard film, hard film formed body, and rolling bearing
JP2013079445A (en) * 2011-09-22 2013-05-02 Ntn Corp Hard film and hard film formed body
WO2014099211A1 (en) * 2012-12-21 2014-06-26 Exxonmobil Research And Engineering Company Low friction coatings with improved abrasion and wear properties and methods of making
US20140323368A1 (en) * 2011-12-07 2014-10-30 Mahle - Metal Leve S/A Sliding component for use in an internal combustion engine
JP2015218347A (en) * 2014-05-15 2015-12-07 株式会社デンソー Slide member, method for manufacturing the same and injector including slide member
US20160238133A1 (en) * 2013-10-31 2016-08-18 Kabushiki Kaisha Riken Piston ring and its production method
JP2017197804A (en) * 2016-04-27 2017-11-02 Dowaサーモテック株式会社 Forming method for intermediate layer formed between base material and dlc layer and manufacturing method for dlc film coated member
JP2018072469A (en) * 2016-10-26 2018-05-10 富士ゼロックス株式会社 Transfer device and image forming apparatus
JP2018158356A (en) * 2017-03-22 2018-10-11 新日鐵住金株式会社 Metal tube molding roll, metal tube molding device, and metal tube molding method
US10458361B2 (en) * 2014-08-27 2019-10-29 Bayerische Motoren Werke Aktiengesellschaft Coating for metal components, method for coating a metal component, piston for internal combustion engines and motor vehicle
CN114107899A (en) * 2021-11-12 2022-03-01 中国科学院宁波材料技术与工程研究所 Carbon-based composite coating on surface of aluminum alloy and preparation method thereof
US11364705B2 (en) 2017-10-17 2022-06-21 Exxonmobil Upstream Research Company Diamond-like-carbon based friction reducing tapes
US11643733B2 (en) * 2018-11-08 2023-05-09 Nanofilm Technologies International Limited ta-C based coatings with improved hardness

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011064679A (en) * 2004-10-01 2011-03-31 Bae Systems Plc High-emissivity radiator
JP2007534957A (en) * 2004-10-01 2007-11-29 ビ−エイイ− システムズ パブリック リミテッド カンパニ− High emissivity radiator
JP2007100138A (en) * 2005-09-30 2007-04-19 Dowa Holdings Co Ltd Member coated with hard film and production method therefor
JP2007100133A (en) * 2005-09-30 2007-04-19 Dowa Holdings Co Ltd Member coated with hard film and production method therefor
JP2009161813A (en) * 2008-01-07 2009-07-23 Matsuyama Giken Kk Member coated with hard film and production method therefor
US20100210488A1 (en) * 2009-02-17 2010-08-19 Jtekt Corporation Sliding member
JP2010190309A (en) * 2009-02-17 2010-09-02 Jtekt Corp Sliding member
US8518863B2 (en) 2009-02-17 2013-08-27 Jtekt Corporation Sliding member
US8574715B2 (en) 2009-03-24 2013-11-05 Kobe Steel, Ltd. Laminated film and laminated film-coated member
JP2010222655A (en) * 2009-03-24 2010-10-07 Kobe Steel Ltd Laminated film and laminated film-coated member
JP2010240746A (en) * 2009-04-01 2010-10-28 Hitachi Metals Ltd Machining device for rare earth sintered magnet
KR20120091212A (en) * 2009-11-02 2012-08-17 페데랄-모굴 부르샤이트 게엠베하 Sliding element, in particular piston ring, and combination of a sliding element with mating running element
JP2013509497A (en) * 2009-11-02 2013-03-14 フェデラル−モグル・ブルシャイト・ゲーエムベーハー Slide elements, in particular piston rings, and combinations of slide elements and meshing actuating elements
US10131988B2 (en) 2009-11-02 2018-11-20 Federal-Mogul Burscheid Gmbh Sliding element, in particular piston ring, and combination of a sliding element with a mating running element
KR101703962B1 (en) * 2009-11-02 2017-02-07 페데랄-모굴 부르샤이트 게엠베하 Sliding element, in particular piston ring, and combination of a sliding element with mating running element
JP2012082477A (en) * 2010-10-12 2012-04-26 Jtekt Corp Dlc-coated member
WO2013042765A1 (en) * 2011-09-22 2013-03-28 Ntn株式会社 Hard film, hard film formed body, and rolling bearing
JP2013079445A (en) * 2011-09-22 2013-05-02 Ntn Corp Hard film and hard film formed body
US9347491B2 (en) 2011-09-22 2016-05-24 Ntn Corporation Hard film, hard film formed body, and rolling bearing
CN103814150A (en) * 2011-09-22 2014-05-21 Ntn株式会社 Hard film, hard film formed body, and rolling bearing
CN103814150B (en) * 2011-09-22 2015-11-25 Ntn株式会社 Hard films, hard films organizer and rolling bearing
US20140323368A1 (en) * 2011-12-07 2014-10-30 Mahle - Metal Leve S/A Sliding component for use in an internal combustion engine
US9550953B2 (en) * 2011-12-07 2017-01-24 Mahle Metal Leve S/A Sliding component for use in an internal combustion engine
US9617654B2 (en) 2012-12-21 2017-04-11 Exxonmobil Research And Engineering Company Low friction coatings with improved abrasion and wear properties and methods of making
WO2014099211A1 (en) * 2012-12-21 2014-06-26 Exxonmobil Research And Engineering Company Low friction coatings with improved abrasion and wear properties and methods of making
EP3064810B2 (en) 2013-10-31 2021-03-31 Kabushiki Kaisha Riken Piston ring and its production method
EP3064810B1 (en) 2013-10-31 2018-04-11 Kabushiki Kaisha Riken Piston ring and its production method
US10006547B2 (en) * 2013-10-31 2018-06-26 Kabushiki Kaisha Riken Piston ring and its production method
US20160238133A1 (en) * 2013-10-31 2016-08-18 Kabushiki Kaisha Riken Piston ring and its production method
JP2015218347A (en) * 2014-05-15 2015-12-07 株式会社デンソー Slide member, method for manufacturing the same and injector including slide member
US10458361B2 (en) * 2014-08-27 2019-10-29 Bayerische Motoren Werke Aktiengesellschaft Coating for metal components, method for coating a metal component, piston for internal combustion engines and motor vehicle
JP2017197804A (en) * 2016-04-27 2017-11-02 Dowaサーモテック株式会社 Forming method for intermediate layer formed between base material and dlc layer and manufacturing method for dlc film coated member
JP2018072469A (en) * 2016-10-26 2018-05-10 富士ゼロックス株式会社 Transfer device and image forming apparatus
JP2018158356A (en) * 2017-03-22 2018-10-11 新日鐵住金株式会社 Metal tube molding roll, metal tube molding device, and metal tube molding method
US11364705B2 (en) 2017-10-17 2022-06-21 Exxonmobil Upstream Research Company Diamond-like-carbon based friction reducing tapes
US11643733B2 (en) * 2018-11-08 2023-05-09 Nanofilm Technologies International Limited ta-C based coatings with improved hardness
CN114107899A (en) * 2021-11-12 2022-03-01 中国科学院宁波材料技术与工程研究所 Carbon-based composite coating on surface of aluminum alloy and preparation method thereof
CN114107899B (en) * 2021-11-12 2023-11-24 中国科学院宁波材料技术与工程研究所 Carbon-based composite coating on surface of aluminum alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2004169137A (en) Sliding member
US7195817B2 (en) Diamond coated article and method of its production
EP2316983B1 (en) Nitrogen-containing amorphous carbon and amorphous carbon layered film, and sliding member
JP3737291B2 (en) Diamond-like carbon hard multilayer film molded body
JP4022048B2 (en) Diamond-like carbon hard multilayer film molded body and method for producing the same
KR100845372B1 (en) Diamondlike carbon hard multilayer film formed body and method for producing the same
JP4139102B2 (en) Diamond-like carbon hard multilayer film molded body and method for producing the same
US8017226B2 (en) Hard film-coated member and jig for molding
JP4696823B2 (en) Metal composite diamond-like carbon (DLC) film, method for forming the same, and sliding member
JP2010106311A (en) Formed article with hard multilayer film and method for producing the same
JP2002322555A (en) Diamond-like carbon multilayered film
JP2007169698A (en) Amorphous hard carbon coating film
CN111074224B (en) Corrosion-resistant high-entropy alloy nitride coating, and preparation method and application thereof
JP2011089172A (en) Diamond-like carbon film formed member and method for producing the same
EP1885908A1 (en) Coating comprising layered structures of diamond like nanocomposite layers and diamond like carbon layers
JP4360082B2 (en) Method for producing amorphous carbon coating and sliding part with amorphous carbon coating
JP5295102B2 (en) Conductive protective film and manufacturing method thereof
JP5077293B2 (en) Method for producing amorphous carbon coating and sliding part with amorphous carbon coating
EP1226030B1 (en) Forming members for shaping a reactive metal and methods for their fabrication
JP2009035584A (en) Sliding member
JP2006037212A (en) Solid grain erosion resistant surface treatment film and rotary machine
KR20230082022A (en) Hard carbon coating with improved adhesion by HiPIMS and manufacturing method thereof
JP5226826B2 (en) Method for producing diamond-like carbon hard multilayer film molded body
JP2004269991A (en) Diamond like carbon multilayer film having excellent wear resistance in different environment
JPH10237627A (en) Hard carbon coating-coated member

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050520

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060420

A977 Report on retrieval

Effective date: 20070424

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081021