JPH1053823A - Manufacture of tungsten carbide-base cemented carbide with high strength - Google Patents

Manufacture of tungsten carbide-base cemented carbide with high strength

Info

Publication number
JPH1053823A
JPH1053823A JP8209922A JP20992296A JPH1053823A JP H1053823 A JPH1053823 A JP H1053823A JP 8209922 A JP8209922 A JP 8209922A JP 20992296 A JP20992296 A JP 20992296A JP H1053823 A JPH1053823 A JP H1053823A
Authority
JP
Japan
Prior art keywords
powder
tungsten carbide
carbide
cemented carbide
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8209922A
Other languages
Japanese (ja)
Inventor
Hiroshi Ichikawa
洋 市川
Motoya Hamazaki
元弥 浜崎
Shinichi Sekiya
慎一 関谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP8209922A priority Critical patent/JPH1053823A/en
Publication of JPH1053823A publication Critical patent/JPH1053823A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacture of tungsten carbide-base cemented carbide provided with high strength by the distribution of Co as a binding phase forming component over the whole structure with superior dispersibility. SOLUTION: As raw material powders, WC powder of 1-5μm average grain size, cobalt oxide powder of 0.1-1μm average grain size, carbon powder of 0.1-1μm average grain size and further Cr3 C2 powder and Cr2 O3 powder of 0.1-1μm average grain size are used. These raw material powders are blended so that a composition consisting of, by weight, 3-30% cobalt oxide powder, 0.2-4% carbon powder, and the balance WC powder and containing, if necessary, 0.2-3% of Cr3 C2 powder and/or Cr2 O3 powder is formed, and these powders are mixed. Then, the resultant powder mixture is subjected to reducing treatment in a reducing or inert-gas atmosphere, by which a WC-Co composite powder or a WC/(Co-Cr alloy) composite powder, which has a composition consisting of 2-20% Co and the balance WC with inevitable impurities and containing, if necessary, 0.1-2% Cr and in which Co or Co-Cr alloy is welded in a dispersedly distributed state to the surface of WC powder, is formed. The WC-base cemented carbide can be manufactured from these composite powders by the ordinary powder metallurgy method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、結合相形成成分
としてのCoが組織全体に亘って分散性よく分布し、こ
れによって高強度を具備するようになる炭化タングステ
ン基超硬合金(以下、超硬合金と云う)の製造方法に関
するものである。
BACKGROUND OF THE INVENTION The present invention relates to a tungsten carbide-based cemented carbide (hereinafter referred to as "ultra-hard"), in which Co as a binder phase forming component is distributed with good dispersibility over the entire structure, thereby providing high strength. Hard alloy).

【0002】[0002]

【従来の技術】従来、一般に、超硬合金が、基本的に原
料粉末として、所定の粒度を有する炭化タングステン
(以下、WCで示す)粉末およびCo粉末を用い、これ
ら原料粉末を所定の配合組成に配合し、混合した後、通
常の粉末冶金法にて焼結することにより製造され、この
結果の超硬合金が、重量%で(以下、%は重量%を示
す)、Co:2〜20%、を含有し、残りがWCと不可
避不純物からなる組成を有することも広く知られてお
り、また、これらの超硬合金が切削工具や耐摩耗工具な
どとして実用に供されていることも良く知られることで
ある。
2. Description of the Related Art Conventionally, in general, cemented carbides basically use tungsten carbide (hereinafter, referred to as WC) powder and Co powder having a predetermined particle size as raw material powders, and mix these raw material powders with a predetermined composition. , And mixed, and then sintered by a usual powder metallurgy method. The resulting cemented carbide is obtained by weight% (hereinafter,% indicates weight%), Co: 2 to 20% %, With the balance being composed of WC and unavoidable impurities. It is also well-known that these cemented carbides are practically used as cutting tools or wear-resistant tools. It is known.

【0003】[0003]

【発明が解決しようとする課題】一方、近年の切削加工
や塑性加工などの高速化および高精密化はめざましく、
これに伴い、これらに用いられる超硬合金製の切削工具
や耐摩耗工具などには、一段の強度向上が求められてい
るのが現状である。
On the other hand, in recent years, high-speed and high-precision cutting and plastic working have been remarkable.
Along with this, it is presently required that the cutting tools and wear-resistant tools made of cemented carbide used for them have further improved strength.

【0004】[0004]

【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、高強度を有する超硬合金を製造
すべく、特に上記の従来超硬合金の製造に着目し研究を
行った結果、上記の従来超硬合金の製造における基本的
にWC粉末とCo粉末からなる混合粉末に代わって、予
め所定の割合に配合したWC粉末と酸化コバルト(以
下、Cox y で示す)粉末と炭素粉末、さらに必要に
応じてCrの炭化物(以下、Cr3 2 で示す)粉末お
よび/または酸化物(以下、Cr2 3 で示す)粉末か
らなる混合粉末に還元性または不活性ガス雰囲気中で還
元処理を施すことにより得られたWC/Co複合粉末、
またはWC/Co−Cr合金複合粉末、すなわちWC粉
末の表面上にCoまたはCo−Cr合金が分散分布した
状態で融着してなるWC/Co複合粉末、またはWC/
Co−Cr合金複合粉末を原料粉末として用い、これら
原料粉末から通常の粉末冶金法にて焼結して超硬合金を
製造すると、製造された超硬合金は、特に結合相形成成
分としてのCoが組織全体に亘って分散性よく分布する
ようになることから、上記の従来方法によって製造され
た超硬合金に比して一段と高強度を具備するようになる
という研究結果を獲たのである。
Means for Solving the Problems Accordingly, the present inventors have
In view of the above, in order to produce a cemented carbide having high strength, as a result of conducting research with particular attention to the production of the above-mentioned conventional cemented carbide, the WC in the production of the above-mentioned conventional cemented carbide was basically WC. Instead of a mixed powder consisting of a powder and a Co powder, a WC powder, a cobalt oxide (hereinafter, referred to as Co x O y ) powder, a carbon powder, and a Cr carbide (hereinafter, referred to as WC / Co obtained by subjecting a mixed powder comprising a powder of Cr 3 C 2 ) and / or an oxide (hereinafter referred to as Cr 2 O 3 ) powder to a reduction treatment in a reducing or inert gas atmosphere. Composite powder,
Or a WC / Co-Cr alloy composite powder, that is, a WC / Co composite powder obtained by fusing Co or a Co-Cr alloy in a state of being dispersedly distributed on the surface of the WC powder, or
When a Co-Cr alloy composite powder is used as a raw material powder, and the raw material powder is sintered by a normal powder metallurgy method to produce a cemented carbide, the produced cemented carbide has, in particular, Co as a bonding phase forming component. Has been obtained with the research result that the alloy has a higher dispersibility over the entire structure and thus has a higher strength than the cemented carbide manufactured by the above-mentioned conventional method.

【0005】この発明は、上記の研究結果に基づいてな
されたものであって、原料粉末として、平均粒径:1〜
5μmのWC粉末、同0.1〜1μmのCox y
末、および同0.1〜1μmの炭素粉末、さらに同0.
1〜1μmのCr3 2 粉末およびCr2 3 粉末を用
い、これら原料粉末を、Cox y 粉末:3〜30%、
炭素粉末:0.2〜4%、WC粉末:残り、からなる配
合組成、あるいは、Cox y 粉末:3〜30%、炭素
粉末:0.2〜4%、Cr3 2 粉末および/またはC
2 3 粉末:0.2〜3%、WC粉末:残り、からな
る配合組成に配合し、混合した後、還元性または不活性
ガス雰囲気中で還元処理して、Co:2〜20%、WC
および不可避不純物:残り、からなる組成を有し、かつ
WC粉末の表面上にCoが分散分布した状態で融着して
なるWC/Co複合粉末、あるいは、Co:2〜20
%、Cr:0.1〜2%、WCおよび不可避不純物:残
り、からなる組成を有し、かつWC粉末の表面上にCo
−Cr合金が分散分布した状態で融着してなるWC/C
o−Cr合金複合粉末、を形成し、このWC/Co複合
粉末、またはWC/Co−Cr合金複合粉末から通常の
粉末冶金法にて、結合相形成成分としてのCoの組織上
の分散性にすぐれ、これによって高強度をもつようにな
る超硬合金を製造する方法に特徴を有するものである。
The present invention has been made on the basis of the above research results, and has an average particle diameter of 1 to 1 as a raw material powder.
5 μm WC powder, 0.1 to 1 μm Co x O y powder, 0.1 to 1 μm carbon powder, and 0.1 to 1 μm carbon powder.
1 to 1 μm of Cr 3 C 2 powder and Cr 2 O 3 powder, and these raw material powders were used as Co x O y powder: 3 to 30%;
A composition of carbon powder: 0.2-4%, WC powder: remainder, or Co x O y powder: 3-30%, carbon powder: 0.2-4%, Cr 3 C 2 powder and / or Or C
r 2 O 3 powder: 0.2 to 3%, WC powder: remaining, blended into a composition consisting of, mixed, reduced in a reducing or inert gas atmosphere, and Co: 2 to 20% , WC
And unavoidable impurities: a WC / Co composite powder having a composition consisting of the remainder and being fused in a state where Co is dispersed and distributed on the surface of the WC powder, or Co: 2 to 20
%, Cr: 0.1 to 2%, WC and unavoidable impurities: remaining, and having Co on the surface of the WC powder.
WC / C obtained by fusing in a state where a Cr alloy is dispersed and distributed
An o-Cr alloy composite powder is formed, and the WC / Co composite powder or WC / Co-Cr alloy composite powder is subjected to ordinary powder metallurgy to disperse Co on the structure as a binder phase forming component. The present invention is distinguished by a method for producing a cemented carbide having excellent strength.

【0006】つぎに、この発明の方法において、製造条
件を上記の通りに限定した理由を説明する。 (a)原料粉末の平均粒径 WC粉末の平均粒径を1〜5μmとしてのは、その平均
粒径が1μm未満では、製造された超硬合金の耐クリー
プ変形性が低下するようになり、一方その平均粒径が5
μmを越えると、製造された超硬合金の強度が急激に低
下するようになるという理由によるものである。また、
Cox y 粉末の平均粒径を0.1〜1μmとしての
は、その平均粒径を0.1μm未満にしても還元反応上
効果は現れず、むしろ細粉化の面で経済的でなく、一方
その平均粒径が1μmを越えると、未還元Cox y
存在するようになり、この結果超硬合金中に巣が発生
し、所望の高強度を確保することができなくなるという
理由からである。さらに、炭素粉末の平均粒径は還元性
の面から定めたものであり、0.1〜1μmの平均粒径
をを有するCox y 粉末の還元には同様の粒度の炭素
粉末を用いるのがよく、なぜならその平均粒径が0.1
μm未満では還元反応が強力で、残留炭素の存在は避け
られず、一方その平均粒径が1μmを越えると、逆に還
元反応が緩慢となり、Cox y が残留するようになる
からである。さらに、またCr3 2 粉末およびCr2
3 粉末は、還元処理で結合相形成成分であるCo中に
固溶させ、Co−Cr合金を形成して前記結合相の強度
および耐熱性を向上させる目的で必要に応じて配合され
るものであるが、これのもつ平均粒径を0.1〜1μm
としたのは、その平均粒径を0.1μm未満にすること
は細粒化の面で経済的でなく、一方その平均粒径が1μ
mを越えると、Co中への固溶が完全に行われない場合
が生じ、この場合には超硬合金の強度低下の原因となる
という理由によるものである。
Next, the reason why the manufacturing conditions are limited as described above in the method of the present invention will be described. (A) Average particle diameter of raw material powder The average particle diameter of the WC powder is set to 1 to 5 μm. If the average particle diameter is less than 1 μm, the creep deformation resistance of the manufactured cemented carbide decreases. On the other hand, the average particle size is 5
If the thickness exceeds μm, the strength of the manufactured cemented carbide will rapidly decrease. Also,
The reason why the average particle size of the Co x O y powder is 0.1 to 1 μm is that even if the average particle size is less than 0.1 μm, no effect is exhibited on the reduction reaction, and it is rather uneconomical in terms of pulverization. On the other hand, if the average particle size exceeds 1 μm, unreduced Co x O y will be present, and as a result, cavities will occur in the cemented carbide and the desired high strength cannot be ensured. Because. Furthermore, the average particle size of the carbon powder is determined from the aspect of reducing properties, and a carbon powder having a similar particle size is used for reduction of Co x O y powder having an average particle size of 0.1 to 1 μm. Is good because the average particle size is 0.1
If the average particle diameter exceeds 1 μm, on the other hand, if the average particle diameter exceeds 1 μm, the reduction reaction becomes slow and Co x Oy remains. . In addition, Cr 3 C 2 powder and Cr 2
O 3 powder is dissolved as necessary in Co, which is a binder phase forming component, by a reduction treatment to form a Co—Cr alloy, and is blended as necessary for the purpose of improving the strength and heat resistance of the binder phase. The average particle size of the material is 0.1 to 1 μm.
The reason is that making the average particle size less than 0.1 μm is not economical in terms of grain refinement, while the average particle size is 1 μm.
If it exceeds m, the solid solution in Co may not be completely dissolved, and in this case, the strength of the cemented carbide may be reduced.

【0007】(b)配合組成および成分組成 Cox y 粉末の配合割合が3%未満では、還元処理で
生成されたWC/Co複合粉末におけるCo含有割合が
2%未満となってしまい、これを用いて超硬合金を製造
した場合、所望の強度を確保することができず、一方そ
の配合割合が30%を越えると、同様に製造された超硬
合金のCo含有量が20%を越えて多くなってしまい、
耐摩耗性が低下するようになるばかりでなく、超硬合金
でのCoの分散性も低下し、強度低下が避けられないこ
とから、Cox y 粉末の配合割合を3〜30%、WC
/Co複合粉末またはWC/Co−Cr合金複合粉末に
おけるCo含有割合を2〜20%と定めたのである。ま
た、炭素粉末の配合割合:0.2〜4%は、Cox y
粉末の配合割合:3〜30%、さらに必要に応じて配合
されたCr2 3 粉末の配合割合:0.2〜3%に対応
して定めたものであり、したがって、所望の配合割合の
Cox y 粉末を残留炭素の発生なく、CoまたはCo
−Cr合金に還元するのに必要な炭素粉末の配合割合と
して0.2〜4%を定めたのである。さらに、Cr3
2 粉末およびCr2 3 粉末の配合割合が0.2%未満
では、Co−Cr合金中のCr含有量が全体に占める割
合で0.1未満になってしまい、上記の通り結合相の強
度および耐熱性に摩耗性向上効果が得られず、一方その
配合割合が3%を越えると、Co−Cr合金中のCr含
有量が同じく全体に占める割合で2%を越えて高くなり
すぎ、超硬合金の強度が低下するようになることから、
その配合割合を0.2〜3%、Co−Cr合金中のCr
含有量を0.1〜2%と定めたのである。なお、この発
明の方法における還元処理は、通常の金属酸化物粉末の
還元に採用されている条件、すなわち水素気流などの還
元性雰囲気中、あるいは窒素気流またはAr気流などの
不活性ガス雰囲気中、800〜1100℃に1〜5時間
保持の条件で行なわれる。
(B) Blending composition and component composition If the blending ratio of Co x Oy powder is less than 3%, the Co content ratio in the WC / Co composite powder produced by the reduction treatment is less than 2%. When a cemented carbide is manufactured by using steel, the desired strength cannot be ensured. On the other hand, when the mixing ratio exceeds 30%, the Co content of the cemented carbide similarly manufactured exceeds 20%. So many
Not only the wear resistance will be lowered, dispersibility of Co in the cemented carbide is also reduced, since the strength reduction is unavoidable, a proportion of Co x O y powder 3 to 30%, WC
The content ratio of Co in the WC / Co composite powder or the WC / Co-Cr alloy composite powder is determined to be 2 to 20%. In addition, the mixing ratio of carbon powder: 0.2 to 4% is Co x O y
The compounding ratio of the powder: 3 to 30%, and the compounding ratio of the Cr 2 O 3 powder compounded as necessary: 0.2 to 3% are determined corresponding to the desired compounding ratio. The Co x O y powder can be converted to Co or Co without generating residual carbon.
-0.2 to 4% is set as the compounding ratio of the carbon powder necessary for reducing to the Cr alloy. Furthermore, Cr 3 C
If the mixing ratio of the 2 powder and the Cr 2 O 3 powder is less than 0.2%, the Cr content in the Co—Cr alloy is less than 0.1 in the total content, and the strength of the binder phase is as described above. In addition, when the effect of improving the wear resistance is not obtained in the heat resistance, when the compounding ratio is more than 3%, the Cr content in the Co—Cr alloy becomes too high, exceeding 2% in the same proportion of the whole. Since the strength of the hard alloy will decrease,
The compounding ratio is 0.2 to 3%, Cr in the Co-Cr alloy
The content was determined to be 0.1 to 2%. Note that the reduction treatment in the method of the present invention is performed under the conditions employed in the reduction of ordinary metal oxide powders, that is, in a reducing atmosphere such as a hydrogen stream, or in an inert gas atmosphere such as a nitrogen stream or an Ar stream. It is carried out at 800 to 1100 ° C. for 1 to 5 hours.

【0008】[0008]

【発明の実施の形態】この発明の方法を実施例により具
体的に説明する。原料粉末として、それぞれ表1、2に
示される平均粒径を有するWC粉末、Cox y 粉末、
炭素(C)粉末、Cr3 2 粉末、およびCr2 3
末を用意し、これら原料粉末を同じく表1、2に示され
る配合組成に配合してなる配合粉末a〜rを調整し、こ
れら配合粉末a〜rをそれぞれボールミルで72時間湿
式混合し、乾燥した後、表3に示される条件で還元処理
して、同じく表3に示されるCo含有量のWC−Co複
合粉末、並びにCoおよびCr含有量のWC/Co−C
r合金複合粉末を形成し、これら複合粉末のCoおよび
Cr含有量を測定し(この測定結果を表3に示した)、
引き続いてこれら還元粉末を、それぞれ1ton/cm
2 の圧力で圧粉体にプレス成形し、これら圧粉体を、真
空雰囲気中、1350〜1450℃の範囲内の所定の温
度に1時間保持の条件で焼結し、さらに温度:1320
℃、圧力:900kgf/cm2 、保持時間:1時間の
条件でHIP処理を施すことにより本発明方法1〜18
を実施し、強度を評価する目的で、8mm×4mm×2
5mmの抗折力試験片形状をもった超硬合金をそれぞれ
製造した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The method of the present invention will be specifically described with reference to examples. As raw material powders, WC powder, Co x O y powder, each having an average particle diameter shown in Tables 1 and 2,
A carbon (C) powder, a Cr 3 C 2 powder, and a Cr 2 O 3 powder are prepared, and blended powders a to r obtained by blending these raw powders in the blend compositions shown in Tables 1 and 2 are prepared. Each of these blended powders a to r was wet-mixed for 72 hours in a ball mill, dried, and then subjected to a reduction treatment under the conditions shown in Table 3 to obtain a WC-Co composite powder having the same Co content shown in Table 3, and Co. / Cr-content WC / Co-C
An r alloy composite powder was formed, and the Co and Cr contents of these composite powders were measured (the measurement results are shown in Table 3).
Subsequently, each of these reduced powders was added at 1 ton / cm
The green compacts are press-molded at a pressure of 2 and sintered in a vacuum atmosphere at a predetermined temperature within a range of 1350 to 1450 ° C. for 1 hour, and further, at a temperature of 1320
° C., a pressure: 900 kgf / cm 2, retention time: the present method 18 by performing the HIP treatment under the conditions of 1 hour
8 mm x 4 mm x 2 for the purpose of evaluating the strength
Cemented carbides each having a 5 mm bending strength test piece shape were manufactured.

【0009】また、比較の目的で、原料粉末として、表
4に示される平均粒径をもったWC粉末、Co粉末、お
よびCr3 2 粉末を用意し、これら原料粉末を同じく
表4に示される配合組成(本発明方法1〜18によって
製造された超硬合金の組成にそれぞれ対応)に配合し、
ボールミルで72時間湿式混合し、乾燥した後、この混
合粉末を、以下いずれも本発明方法1〜18におけると
同一の条件で、圧粉体にプレス成形し、焼結し、さらに
HIP処理を施すことにより従来方法1〜12を行い、
実質的に配合組成と同一な成分組成をもった超硬合金を
それぞれ製造した。この結果得られた各種の超硬合金に
ついて、抗折力を測定し、この測定結果をそれぞれ表3
および表4に示した。
For comparison purposes, WC powder, Co powder, and Cr 3 C 2 powder having the average particle diameters shown in Table 4 were prepared as raw material powders. Compounding compositions (corresponding to the compositions of the cemented carbides produced by the methods 1 to 18 of the present invention, respectively)
After being wet-mixed in a ball mill for 72 hours and dried, the mixed powder is pressed into a green compact under the same conditions as in the methods 1 to 18 of the present invention, sintered, and further subjected to HIP treatment. By doing the conventional methods 1 to 12,
Cemented carbides having substantially the same component composition as the composition were produced. The transverse rupture strength of each of the resulting cemented carbides was measured.
And Table 4.

【0010】[0010]

【表1】 [Table 1]

【0011】[0011]

【表2】 [Table 2]

【0012】[0012]

【表3】 [Table 3]

【0013】[0013]

【表4】 [Table 4]

【0014】[0014]

【発明の効果】表3、4に示される結果から、本発明方
法1〜18においては、原料粉末としてWC粉末の表面
にCoまたはCo−Cr合金が分散分布した状態で融着
したWC/Co複合粉末またはWC/Co−Cr合金複
合粉末を使用することによって、要素粉末の混合粉末を
用いる従来方法1〜12によって製造された超硬合金に
比して、いずれも結合相形成成分としてのCoの分散性
が一段と向上した超硬合金を製造することができ、この
Co分散性の向上によってそれぞれの抗折力の相対比較
で強度が著しく向上していることが明らかである。上述
のように、この発明の方法によれば、高強度を有する超
硬合金を製造することができ、したがって超硬合金が適
用される切削工具や各種対摩耗工具などに対する要求に
十分満足に対応することがでるのである。
According to the results shown in Tables 3 and 4, in methods 1 to 18 of the present invention, WC / Co obtained by fusing Co or Co-Cr alloy in a state of being dispersed and distributed on the surface of WC powder as a raw material powder was used. By using the composite powder or the WC / Co-Cr alloy composite powder, Co as a binder phase forming component can be obtained as compared with the cemented carbide produced by the conventional methods 1 to 12 using the mixed powder of the element powders. It is evident that a cemented carbide having a further improved dispersibility can be produced, and the strength is significantly improved by a relative comparison of the transverse rupture strength due to the improved Co dispersibility. As described above, according to the method of the present invention, a cemented carbide having high strength can be manufactured, and therefore, the requirements for cutting tools and various types of wear tools to which the cemented carbide is applied can be sufficiently satisfied. You can do it.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 原料粉末として、平均粒径:1〜5μm
の炭化タングステン粉末、同0.1〜1μmの酸化コバ
ルト粉末、および同0.1〜1μmの炭素粉末を用い、
これら原料粉末を、以下いずれも重量%で、 酸化コバルト粉末:3〜30%、 炭素粉末:0.2〜4%、 炭化タングステン粉末:残り、からなる配合組成に配合
し、混合した後、還元性または不活性ガス雰囲気中で還
元処理して、 Co:2〜20%、 炭化タングステンおよび不可避不純物:残り、からなる
組成を有し、かつ炭化タングステン粉末の表面上にCo
が分散分布した状態で融着してなる炭化タングステン/
Co複合粉末を形成し、この炭化タングステン/Co複
合粉末から通常の粉末冶金法にて炭化タングステン基超
硬合金を製造することを特徴とする高強度を有する炭化
タングステン基超硬合金の製造方法。
1. The raw material powder has an average particle size of 1 to 5 μm.
Using tungsten carbide powder, 0.1 to 1 μm of cobalt oxide powder, and 0.1 to 1 μm of carbon powder,
These raw material powders are mixed in the following composition by weight: 3-30% by weight of cobalt oxide powder; 0.2-4% by weight of carbon powder; 0.2-4% by weight of tungsten carbide powder; Reduction treatment in a neutral or inert gas atmosphere, Co: 2 to 20%, tungsten carbide and unavoidable impurities: remaining, having a composition of:
Tungsten carbide obtained by fusing in a state where
A method for producing a tungsten carbide-based cemented carbide having high strength, comprising forming a Co composite powder and producing a tungsten carbide-based cemented carbide from the tungsten carbide / Co composite powder by ordinary powder metallurgy.
【請求項2】 原料粉末として、平均粒径:1〜5μm
の炭化タングステン粉末、同0.1〜1μmの酸化コバ
ルト粉末、および同0.1〜1μmの炭素粉末、さらに
同0.1〜1μmのCrの炭化物粉末および酸化物粉末
を用い、これら原料粉末を、以下いずれも重量%で、 酸化コバルト粉末:3〜30%、 炭素粉末:0.2〜4%、 Crの炭化物粉末および酸化物粉末のうちの1種または
2種:0.2〜3%、 炭化タングステン粉末:残り、からなる配合組成に配合
し、混合した後、還元性または不活性ガス雰囲気中で還
元処理して、 Co:2〜20%、 Cr:0.1〜2%、 炭化タングステンおよび不可避不純物:残り、からなる
組成を有し、かつ炭化タングステン粉末の表面上にCo
−Cr合金が分散分布した状態で融着してなる炭化タン
グステン/Co−Cr合金複合粉末を形成し、この炭化
タングステン/Co−Cr合金複合粉末から通常の粉末
冶金法にて炭化タングステン基超硬合金を製造すること
を特徴とする高強度を有する炭化タングステン基超硬合
金の製造方法。
2. The raw material powder has an average particle size of 1 to 5 μm.
Using tungsten carbide powder, cobalt oxide powder of 0.1 to 1 μm, carbon powder of 0.1 to 1 μm, and carbide and oxide powder of Cr of 0.1 to 1 μm. In the following, all by weight, cobalt oxide powder: 3 to 30%, carbon powder: 0.2 to 4%, one or two of Cr carbide powder and oxide powder: 0.2 to 3% Tungsten carbide powder: remaining, blended into a blended composition consisting of: after mixing, reduction treatment in a reducing or inert gas atmosphere; Co: 2 to 20%; Cr: 0.1 to 2%; Tungsten and unavoidable impurities: having a composition consisting of the remainder and Co on the surface of the tungsten carbide powder
A tungsten carbide / Co-Cr alloy composite powder is formed by fusing in a state where the -Cr alloy is dispersed and distributed, and the tungsten carbide-based cemented carbide is formed from the tungsten carbide / Co-Cr alloy composite powder by a normal powder metallurgy method. A method for producing a tungsten carbide-based cemented carbide having high strength, characterized by producing an alloy.
JP8209922A 1996-08-08 1996-08-08 Manufacture of tungsten carbide-base cemented carbide with high strength Pending JPH1053823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8209922A JPH1053823A (en) 1996-08-08 1996-08-08 Manufacture of tungsten carbide-base cemented carbide with high strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8209922A JPH1053823A (en) 1996-08-08 1996-08-08 Manufacture of tungsten carbide-base cemented carbide with high strength

Publications (1)

Publication Number Publication Date
JPH1053823A true JPH1053823A (en) 1998-02-24

Family

ID=16580896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8209922A Pending JPH1053823A (en) 1996-08-08 1996-08-08 Manufacture of tungsten carbide-base cemented carbide with high strength

Country Status (1)

Country Link
JP (1) JPH1053823A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2171127A1 (en) * 2007-07-13 2010-04-07 Seco Tools Ab Fine grained cemented carbide for turning in heat resistant super alloys (hrsa)
JP2012024850A (en) * 2010-07-20 2012-02-09 Mitsubishi Heavy Ind Ltd Carbide tool manufacturing method
CN102808085A (en) * 2012-05-14 2012-12-05 北京工业大学 Industrial method for recycling waste wolfram carbide-cobalt (WC-Co) hard alloy
US9611412B2 (en) 2009-02-11 2017-04-04 Element Six (Production) (Pty) Ltd Process for coating diamond with refractory metal carbide and metal
CN106825599A (en) * 2017-01-19 2017-06-13 北京科技大学 A kind of preparation method of the WC Co nanometer powders for adding grain growth inhibitor
CN106944628A (en) * 2016-10-06 2017-07-14 江西理工大学 A kind of scrap hard alloy, which is reclaimed, prepares ultrafine WC Co composite powder methods

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2171127A1 (en) * 2007-07-13 2010-04-07 Seco Tools Ab Fine grained cemented carbide for turning in heat resistant super alloys (hrsa)
EP2171127A4 (en) * 2007-07-13 2010-07-28 Seco Tools Ab Fine grained cemented carbide for turning in heat resistant super alloys (hrsa)
US9611412B2 (en) 2009-02-11 2017-04-04 Element Six (Production) (Pty) Ltd Process for coating diamond with refractory metal carbide and metal
JP2012024850A (en) * 2010-07-20 2012-02-09 Mitsubishi Heavy Ind Ltd Carbide tool manufacturing method
CN102808085A (en) * 2012-05-14 2012-12-05 北京工业大学 Industrial method for recycling waste wolfram carbide-cobalt (WC-Co) hard alloy
CN106944628A (en) * 2016-10-06 2017-07-14 江西理工大学 A kind of scrap hard alloy, which is reclaimed, prepares ultrafine WC Co composite powder methods
CN106944628B (en) * 2016-10-06 2019-04-26 江西理工大学 A kind of scrap hard alloy recycling prepares superfine WC-Co composite powder method
CN106825599A (en) * 2017-01-19 2017-06-13 北京科技大学 A kind of preparation method of the WC Co nanometer powders for adding grain growth inhibitor

Similar Documents

Publication Publication Date Title
CN100439524C (en) Gradient composition sintered alloy and mfg. method
JPH05209247A (en) Cermet alloy and its production
WO2010008004A1 (en) Hard powder, method for producing hard powder and sintered hard alloy
US4270952A (en) Process for preparing titanium carbide-tungsten carbide base powder for cemented carbide alloys
JPH055152A (en) Hard heat resisting sintered alloy
JPH05271842A (en) Cermet alloy and its production
JP3303187B2 (en) Method for producing tungsten carbide based cemented carbide having high strength
JPH1053823A (en) Manufacture of tungsten carbide-base cemented carbide with high strength
EP3808864B1 (en) Premix alloy powders for diamond tools
JP3303186B2 (en) Method for producing heat-resistant tungsten carbide-based cemented carbide having high strength
JP3063340B2 (en) Production method of fine tungsten carbide powder
JPH10259433A (en) Production of hyperfine-grained tungsten carbide base sintered hard alloy having high strength
JP3102167B2 (en) Production method of fine composite carbide powder for production of tungsten carbide based cemented carbide
JPS6059195B2 (en) Manufacturing method of hard sintered material with excellent wear resistance and toughness
JP3111709B2 (en) Production method of fine composite carbide powder for production of tungsten carbide based cemented carbide
JP3018795B2 (en) Method for producing fine Co-WC compound powder for powder metallurgy
JPH0118137B2 (en)
JPH05147917A (en) Production of fine tungsten-based carbide powder
JPH0564695B2 (en)
JPS59185702A (en) Composite raw material powder for producing sintered hard alloy and its production
JPH0517298B2 (en)
US2048239A (en) Alloy
JPS59229430A (en) Production of cermet having high hardness and high toughness
JPH06172913A (en) Titanium carbide-based cermet alloy
KR820001538B1 (en) Process for preparing titanium carbide-tungsten carbide base powder for cemented carbide alloys

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020827