JP3111709B2 - Production method of fine composite carbide powder for production of tungsten carbide based cemented carbide - Google Patents

Production method of fine composite carbide powder for production of tungsten carbide based cemented carbide

Info

Publication number
JP3111709B2
JP3111709B2 JP04319308A JP31930892A JP3111709B2 JP 3111709 B2 JP3111709 B2 JP 3111709B2 JP 04319308 A JP04319308 A JP 04319308A JP 31930892 A JP31930892 A JP 31930892A JP 3111709 B2 JP3111709 B2 JP 3111709B2
Authority
JP
Japan
Prior art keywords
powder
carbide
powders
based cemented
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04319308A
Other languages
Japanese (ja)
Other versions
JPH0754001A (en
Inventor
博司 土井
道広 若松
耕治 篠原
文洋 植田
照義 棚瀬
洋 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Japan New Metals Co Ltd
Original Assignee
Mitsubishi Materials Corp
Japan New Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Japan New Metals Co Ltd filed Critical Mitsubishi Materials Corp
Priority to JP04319308A priority Critical patent/JP3111709B2/en
Publication of JPH0754001A publication Critical patent/JPH0754001A/en
Application granted granted Critical
Publication of JP3111709B2 publication Critical patent/JP3111709B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、炭化タングステン
(以下、WCで示す)基超硬合金を粉末冶金法にて製造
するに際して、これの原料粉末として使用するのに適し
た微細複合炭化物粉末の製造法に関するものである。
BACKGROUND OF THE INVENTION This invention relates to a fine composite carbide powder suitable for use as a raw material powder when a tungsten carbide (hereinafter, referred to as WC) -based cemented carbide is produced by powder metallurgy. It concerns the manufacturing method.

【0002】[0002]

【従来の技術】従来、一般に、WC基超硬合金製の切削
工具や塑性加工用耐摩工具などが知られており、これら
の製造に、原料粉末として、WCとCo−W炭化物固溶
体(以下、(Co,W)Cで示す)を主体とする複合炭
化物粉末が用いられ、さらにこれらの複合炭化物粉末
が、例えば1978年発行の「日本金属学会誌」、第4
2号(第871頁〜)や1979年発行の「日本金属学
会誌」、第43号(第890頁〜)などに発表されてい
るように、原料粉末として、酸化タングステン(以下、
WOxで示す)粉末、酸化コバルト(以下、CoxOy
で示す)粉末、およびカーボンブラック(炭素粉末)を
用い、これら原料粉末を所定の割合に配合し、例えばボ
ールミル中で48時間湿式混合した後、この混合粉末
に、水素気流中、700〜800℃の温度に加熱保持、
の条件で還元処理を施し、引続いて、水素気流中、90
0℃以上の温度に加熱保持、の条件で炭化処理を施すこ
とにより製造されることも知られている。
2. Description of the Related Art Conventionally, a cutting tool made of WC-base cemented carbide, a wear-resistant tool for plastic working, and the like are generally known. (Indicated by (Co, W) C) are used. Further, these composite carbide powders are described in, for example, "Journal of the Japan Institute of Metals"
No. 2 (pages 871 to), and published in 1979, The Journal of the Japan Institute of Metals and No. 43 (pages 890 to 890).
WOx) powder, cobalt oxide (hereinafter referred to as CoxOy)
) And carbon black (carbon powder), these raw material powders are blended in a predetermined ratio, and wet-mixed in, for example, a ball mill for 48 hours, and then mixed with the mixed powder in a hydrogen stream at 700 to 800 ° C. Heating to the temperature of
, And subsequently in a stream of hydrogen, 90
It is also known that it is manufactured by performing carbonization under the condition of heating and holding at a temperature of 0 ° C. or higher.

【0003】[0003]

【発明が解決しようとする課題】一方、近年の切削加工
および塑性加工の省力化および高速化に対する要求は厳
しく、これに伴ない、これに用いられる各種工具を構成
するWC基超硬合金にはより一段の高強度を具備するこ
とが要求されるが、上記の従来方法はじめ、その他多く
の方法の場合、原料粉末として、例えば平均粒径で1μ
m以下の微細なWOx粉末やCoxOy粉末を用いて
も、還元および炭化処理工程での粒成長を避けることが
できないことから、生成された複合炭化物粉末は粗粒と
なり、通常2μm以上の平均粒径をもつようになるた
め、これを原料粉末として用いて製造したWC基超硬合
金に、これらの要求に十分対応することができる高強度
を具備せしめることができないのが現状である。
On the other hand, recent demands for labor saving and speeding up of cutting and plastic working are severe, and accordingly, WC-based cemented carbide constituting various tools used in the cutting and plastic working is required. Although it is required to have a further higher strength, in the case of the above-mentioned conventional method and many other methods, the raw material powder is, for example, 1 μm in average particle size.
Even if a fine WOx powder or CoxOy powder having a particle size of m or less is used, the grain growth in the reduction and carbonization process cannot be avoided. At present, it is not possible to provide a WC-based cemented carbide manufactured using this as a raw material powder with a high strength that can sufficiently meet these requirements.

【0004】[0004]

【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、より一段と高強度を有するWC
基超硬合金の製造には、これの製造に原料粉末として用
いられている複合炭化物粉末の微細化が不可欠であると
の認識にもとづき研究を行なった結果、原料粉末とし
て、従来方法と同じいずれも1μm以下の平均粒径を有
するWOx粉末、CoxOy粉末、および炭素粉末を用
いるが、これに加えて同じく1μm以下の平均粒径を有
するV,Cr,Ti,Ta、およびNbの炭化物(以
下、これらを総称してMCで示す)粉末、並びにこれら
の2種以上の複数炭化物固溶体(以下、これらを総称し
て(M,M′)Cで示す)粉末を用い、これらの原料粉
末を、所定の割合に配合し、混合した状態で、これに、
窒素またはアルゴン気流中、700〜1200℃の温度
に加熱保持、の条件での還元処理と、水素気流中、70
0〜1200℃の温度に加熱保持、の条件での炭化処理
を施すと、上記MC粉末および(M,M′)C粉末の作
用で、上記還元処理工程およびこれに引続いての炭化処
理工程での粉末の成長が抑制され、実質的に上記原料粉
末と同じ状態の粒径が保持されることから、得られた複
合炭化物粉末は平均粒径で1μm以下の微粉末になると
いう研究結果を得たのである。
Means for Solving the Problems Accordingly, the present inventors have
In view of the above, WC with higher strength
Based on the recognition that the production of a base cemented carbide requires the refinement of the composite carbide powder used as the raw material powder for its production, the research was conducted. Also uses WOx powder, CoxOy powder, and carbon powder having an average particle size of 1 μm or less, in addition to carbides of V, Cr, Ti, Ta, and Nb also having an average particle size of 1 μm or less. These materials are collectively referred to as MC) and powders of two or more of these solid carbide solid solutions (hereinafter collectively referred to as (M, M ') C) powders are used. In the state of mixing and mixing,
In a nitrogen or argon stream, a reduction treatment under the condition of heating and holding at a temperature of 700 to 1200 ° C. is performed.
When the carbonization treatment under the condition of heating and holding at a temperature of 0 to 1200 ° C. is performed, the above-described reduction treatment step and the subsequent carbonization treatment step are performed by the action of the MC powder and the (M, M ′) C powder. Research has shown that the growth of the powder in the powder is suppressed and that the particle diameter in the same state as the raw material powder is maintained, so that the obtained composite carbide powder becomes a fine powder having an average particle diameter of 1 μm or less. I got it.

【0005】この発明は、上記の研究結果にもとづいて
なされたものであって、原料粉末として、いずれも1μ
m以下の平均粒径を有するWOx粉末、CoxOy粉
末、および炭素粉末に加えて、MC粉末および(M,
M′)C粉末を用い、これら原料粉末を、重量%で(以
下、%は重量%を示す)、 CoxOy粉末:3〜24%、 炭素粉末:9〜18%、 MC粉末および(M,M′)C粉末のうちの1種または
2種以上:0.1〜5%、 WOx粉末:残り、 からなる配合組成に配合し、混合した後、この混合粉末
に、まず、窒素またはアルゴン気流中、700〜120
0℃の温度に加熱保持、の条件での還元処理と、引続い
て、水素気流中、700〜1200℃の温度に加熱保
持、の条件での炭化処理を施すことによりWCと、(C
o,W)Cに上記MC粉末および1または(M,M′)
C粉末の少なくとも1部が固溶するCo−W系炭化物固
溶体(以下、(Co,W,M)Cで示す)を主体とする
平均粒径:1μm以下の微細なWC基超硬合金製造用複
合炭化物粉末を製造する方法に特徴を有するものであ
る。
[0005] The present invention has been made based on the above research results, and each of the raw material powders is 1 μm.
In addition to WOx powder, CoxOy powder, and carbon powder having an average particle size of ≤ m, MC powder and (M,
M ′) Using C powder, these raw material powders were expressed in terms of% by weight (hereinafter, “%” represents% by weight), CoxOy powder: 3 to 24%, carbon powder: 9 to 18%, MC powder and (M, M ') One or more of the C powders: 0.1 to 5%, WOx powder: the remainder, blended into a blending composition consisting of and then mixed with this mixed powder first in a stream of nitrogen or argon. , 700-120
WC and (C) by performing a reduction treatment under the condition of heating and holding at a temperature of 0 ° C., and subsequently performing a carbonizing treatment under the condition of heating and holding at a temperature of 700 to 1200 ° C. in a hydrogen stream.
o, W) The above MC powder and 1 or (M, M ') are added to C.
For producing a fine WC-based cemented carbide having a mean particle diameter of 1 μm or less mainly composed of a Co—W-based carbide solid solution in which at least a part of the C powder forms a solid solution (hereinafter referred to as (Co, W, M) C). The present invention is characterized by a method for producing a composite carbide powder.

【0006】つぎに、この発明の方法において、製造条
件を上記の通りに限定した理由を説明する。 (1) 原料粉末の平均粒径 その平均粒径が1μmを越えると、製造される複合炭化
物粉末の平均粒径も1μmを越えて粗くなってしまい、
1μm以下の平均粒径とすることは困難になることか
ら、その平均粒径を1μm以下と定めた。
Next, the reason why the manufacturing conditions are limited as described above in the method of the present invention will be described. (1) Average particle size of raw material powder When the average particle size exceeds 1 μm, the average particle size of the produced composite carbide powder also exceeds 1 μm and becomes coarse.
Since it is difficult to reduce the average particle size to 1 μm or less, the average particle size is set to 1 μm or less.

【0007】(2) 配合組成 (a) CoxOy CoxOyは、還元処理工程および炭化処理工程で還元
および炭化されて主として(Co,W,M)Cとなり、
これを構成するCoがWC基超硬合金製造時に焼結性を
向上させ、強度を向上させる作用があるが、その配合割
合が3%未満では、前記(Co,W,M)C中のCo含
有割合が少なすぎて前記作用を十分に発揮させることが
できず、一方その配合割合が24%を越えると粗粒化を
抑制した状態での完全な還元および炭化が困難になるこ
とから、その配合割合を3〜24%と定めた。
(2) Blending composition (a) CoxOy CoxOy is reduced and carbonized mainly in a reduction process and a carbonization process to become (Co, W, M) C,
Co constituting this has the effect of improving the sinterability and improving the strength during the production of a WC-based cemented carbide, but if the compounding ratio is less than 3%, the Co in the (Co, W, M) C If the content is too small, the above effect cannot be sufficiently exerted. On the other hand, if the content is more than 24%, it is difficult to completely reduce and carbonize in a state in which coarsening is suppressed. The mixing ratio was determined to be 3 to 24%.

【0008】(b) MCおよび(M,M′)C これらの炭化物には、上記の通り還元処理工程および炭
化処理工程での粉末の成長を抑制し、もって原料粉末の
もつ粒径をそのまま、あるいはこれ以下の粒径に保持せ
しめる作用があるが、その配合が0.1%未満では、前
記作用に所望の効果が得られず、一方その配合割合が5
%を越えると、(Co,W,M)C中のMの割合が多く
なってWC基超硬合金製造時のCoの作用、すなわち焼
結性が低下するようになることから、その配合割合を
0.1〜5%と定めた。
(B) MC and (M, M ') C These carbides suppress the growth of powder in the reduction step and the carbonization step as described above, so that the particle size of the raw material powder remains unchanged. Alternatively, there is an effect of keeping the particle size smaller than this, but if the content is less than 0.1%, the desired effect cannot be obtained in the above-mentioned effect, while the content is 5%.
%, The proportion of M in (Co, W, M) C increases, and the effect of Co during the production of a WC-based cemented carbide, that is, the sinterability decreases. Was determined to be 0.1 to 5%.

【0009】(c) 炭素 その配合割合が9%未満では、還元および炭化反応が不
十分となり、この結果製造された複合炭化物粉末中に酸
化物が残留するようになり、一方その配合割合が18%
を越えると、製造された複合炭化物粉末中に多量の遊離
炭素が残留するようになることから、その配合割合を9
〜18%と定めた。
(C) Carbon If the compounding ratio is less than 9%, the reduction and carbonization reactions become insufficient, and as a result, oxides remain in the produced composite carbide powder, while the compounding ratio is 18%. %
Is exceeded, a large amount of free carbon will remain in the produced composite carbide powder.
1818%.

【0010】(3) 還元温度 窒素またはアルゴン気流中での還元処理では、主に酸化
物の還元反応が行なわれるが、その温度が700℃未満
では還元反応が遅く、実操業上望ましくなく、一方その
温度が1200℃を越えると粗粒化が急激に進行するよ
うになることから、その温度を700〜1200℃と定
めた。
(3) Reduction temperature In the reduction treatment in a stream of nitrogen or argon, the reduction reaction of oxides is mainly performed. If the temperature is lower than 700 ° C., the reduction reaction is slow, which is not desirable in actual operation. If the temperature exceeds 1200 ° C., coarsening proceeds rapidly, so the temperature is set to 700 to 1200 ° C.

【0011】(4) 炭化温度 水素気流中での炭化処理では炭化反応が行なわれるが、
その温度が700℃未満では炭化反応の進行が遅く、実
操業上望ましくなく、一方その温度が1200℃を越え
ると、同様に粗粒化が急激に起るようになることから、
その温度を700〜1200℃と定めた。
(4) Carbonization temperature In the carbonization treatment in a hydrogen stream, a carbonization reaction occurs.
If the temperature is lower than 700 ° C., the progress of the carbonization reaction is slow, which is not desirable in actual operation. On the other hand, if the temperature exceeds 1200 ° C., coarsening similarly occurs rapidly,
The temperature was determined to be 700-1200 ° C.

【0012】[0012]

【実施例】つぎに、この発明の方法を実施例により具体
的に説明する。原料粉末として、それぞれ表1〜4に示
される組成および平均粒径をもったCoxOy粉末、M
C粉末、(M,M′)C粉末、およびWOx粉末、さら
に同じく表1〜4に示される平均粒径の炭素粉末(カー
ボンブラック)を用意し、これら原料粉末を同じく表1
〜4に示される配合組成に配合し、ボールミルで72時
間湿式混合し、乾燥した後、表5〜7に示される条件で
還元処理と炭化処理を行なうことにより本発明法1〜2
1および従来法1〜7を実施し、それぞれ表5〜7に示
される平均粒径を有し、かつWCおよび(Co,W,
M)Cまたは(Co,W)Cの含有割合が同じく表5〜
7に示される複合炭化物粉末(以下、本発明法1〜21
で製造された複合炭化物粉末を、本発明複合炭化物粉末
1〜21といい、従来法1〜7で製造されたものを、従
来複合炭化物粉末1〜7という)を製造した。
Next, the method of the present invention will be specifically described with reference to examples. As raw material powder, CoxOy powder having the composition and average particle size shown in Tables 1 to 4, respectively, M
C powder, (M, M ') C powder, WOx powder, and also carbon powder (carbon black) having the average particle diameter shown in Tables 1 to 4 were prepared.
4 to 4 and wet-mixed for 72 hours in a ball mill, dried, and then subjected to reduction treatment and carbonization treatment under the conditions shown in Tables 5 to 7, whereby the methods 1-2 of the present invention were carried out.
1 and conventional methods 1 to 7 were carried out, each having an average particle size shown in Tables 5 to 7, and having WC and (Co, W,
The content ratio of M) C or (Co, W) C is also shown in Table 5
7 (hereinafter referred to as methods 1 to 21 of the present invention).
The composite carbide powders manufactured by the above methods are referred to as composite carbide powders 1 to 21 of the present invention, and those manufactured by conventional methods 1 to 7 are manufactured as conventional composite carbide powders 1 to 7).

【0013】[0013]

【表1】 [Table 1]

【0014】[0014]

【表2】 [Table 2]

【0015】[0015]

【表3】 [Table 3]

【0016】[0016]

【表4】 [Table 4]

【0017】[0017]

【表5】 [Table 5]

【0018】[0018]

【表6】 [Table 6]

【0019】[0019]

【表7】 [Table 7]

【0020】[0020]

【表8】 [Table 8]

【0021】[0021]

【表9】 [Table 9]

【0022】[0022]

【表10】 [Table 10]

【0023】[0023]

【表11】 [Table 11]

【0024】つぎに、この結果得られた各種の複合炭化
物粉末を、表8〜11に示される平均粒径のWC粉末お
よび炭素粉末(カーボンブラック)、さらにMC粉末お
よび(M,M′)C粉末とともに原料粉末として用い、
これらの原料粉末を表8〜11に示される配合組成に配
合し、ボールミルで72時間湿式混合し、乾燥した後、
1ton /cm2 の圧力で圧粉体にプレス成形し、この圧粉
体を真空中、1280〜1390℃の範囲内の所定温度
に2時間保持の条件で焼結することによりWC基超硬合
金(以下、本発明複合炭化物粉末1〜21を用いて製造
されたWC基超硬合金を、本発明WC基超硬合金1〜2
1といい、従来複合炭化物粉末1〜7を用いて製造され
たものを、従来WC基超硬合金1〜7という)をそれぞ
れ製造した。この結果得られた各種WC基超硬合金の抗
折力を測定し、強度を評価した。この測定結果を表8〜
11に示した。
Next, the various composite carbide powders obtained as a result were mixed with WC powder and carbon powder (carbon black) having the average particle diameters shown in Tables 8 to 11, and further with MC powder and (M, M ') C Used as raw material powder together with powder,
These raw material powders were blended into the blending compositions shown in Tables 8 to 11, wet-mixed in a ball mill for 72 hours, and dried,
A WC-base cemented carbide is formed by pressing into a green compact at a pressure of 1 ton / cm 2 and sintering the green compact in vacuum at a predetermined temperature in the range of 1280 to 1390 ° C. for 2 hours. (Hereinafter, the WC-based cemented carbide produced using the composite carbide powders 1 to 21 of the present invention is replaced with the WC-based cemented carbide of the present invention 1 to 2
No. 1 and conventional WC-based cemented carbides 1 to 7 manufactured using composite carbide powders 1 to 7) were manufactured. The bending strength of the various WC-based cemented carbides obtained as a result was measured and the strength was evaluated. Table 8-
11 is shown.

【0025】[0025]

【発明の効果】表8〜11に示される結果から、本発明
法1〜21によって製造された本発明複合炭化物粉末は
いずれも従来法1〜7によって製造された従来複合炭化
物粉末に比して微細で、前者の平均粒径がいずれも1μ
m以下であるのに対して、後者のそれはいずれも2μm
以上を示し、これを原料粉末として用いてWC基超硬合
金を製造した場合、本発明複合炭化物粉末1〜21を用
いて製造した本発明WC基超硬合金1〜21の方が、従
来複合炭化物粉末1〜7を用いて製造した従来WC基超
硬合金1〜7に比して一段と高強度をもつことが明らか
である。
From the results shown in Tables 8 to 11, the composite carbide powders of the present invention produced by the methods 1 to 21 of the present invention are all smaller than those of the conventional composite carbide powders produced by the conventional methods 1 to 7. Fine, the average particle size of both is 1μ
m, whereas the latter one is 2 μm
As described above, when a WC-based cemented carbide is manufactured by using this as a raw material powder, the WC-based cemented carbides 1 to 21 of the present invention manufactured using the composite carbide powders 1 to 21 of the present invention are more conventional It is evident that it has a much higher strength than conventional WC-based cemented carbides 1 to 7 manufactured using carbide powders 1 to 7.

【0026】上述のように、この発明の方法によれば、
平均粒径で1μm以下のきわめて微細な複合炭化物粉末
を製造することができ、かつこれを原料粉末として用い
てWC基超硬合金を製造した場合、高強度を具備するよ
うになるので、これを各種の切削加工や塑性加工などの
分野に適用した場合、苛酷な使用環境下でもすぐれた性
能を発揮するなど工業上有用な効果がもたらされるので
ある。
As described above, according to the method of the present invention,
An extremely fine composite carbide powder having an average particle diameter of 1 μm or less can be produced, and when a WC-based cemented carbide is produced using the powder as a raw material powder, the WC-based cemented carbide has high strength. When applied to various fields such as cutting and plastic working, industrially useful effects such as excellent performance are exhibited even under severe use environments.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 篠原 耕治 埼玉県大宮市北袋町1−297 三菱マテ リアル株式会社 中央研究所内 (72)発明者 植田 文洋 埼玉県大宮市北袋町1−297 三菱マテ リアル株式会社 中央研究所内 (72)発明者 棚瀬 照義 岐阜県安八郡神戸町大字横井字中新田 1528 三菱マテリアル株式会社 岐阜製 作所内 (72)発明者 市川 洋 埼玉県大宮市北袋町1−297 三菱マテ リアル株式会社 中央研究所内 (58)調査した分野(Int.Cl.7,DB名) B22F 1/00 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Koji Shinohara, Inventor 1-297 Kitabukurocho, Omiya City, Saitama Prefecture Mitsubishi Materials Real Co., Ltd. (72) Inventor Fumihiro Ueda 1-297 Kitabukurocho, Omiya City, Saitama Mitsubishi Materials Real Central Research Laboratory Co., Ltd. (72) Inventor Teruyoshi Tanase 1528 Nakaiden, Yokoi, Kobe-cho, Yahachi-gun, Gifu Prefecture Mitsubishi Materials Corporation Gifu Works (72) Inventor Hiroshi Ichikawa 1-297 Kitabukurocho, Omiya City, Saitama Central Research Institute, Material Co., Ltd. (58) Field surveyed (Int. Cl. 7 , DB name) B22F 1/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 原料粉末として、いずれも1μm以下の
平均粒径を有する酸化タングステン粉末、酸化コバルト
粉末、炭素粉末、さらにV,Cr,Ti,Ta、および
Nbの炭化物粉末、並びにこれらの2種以上の複数炭化
物固溶体粉末を用い、これら原料粉末を、重量%で、 酸化コバルト粉末:3〜24%、 炭素粉末:9〜18%、 上記炭化物粉末および複数炭化物固溶体粉末のうちの1
種または2種以上:0.1〜5%、 酸化タングステン粉末:残り、からなる配合組成に配合
し、混合した後、この混合粉末に、まず、 窒素またはアルゴン気流中、700〜1200℃の温度
に加熱保持、の条件で還元処理を施し、引続いて、 水素気流中、700〜1200℃の温度に加熱保持、の
条件で炭化処理を施すことにより、炭化タングステンと
Co−W系炭化物固溶体を主体とする平均粒径:1μm
以下の微細複合炭化物粉末を生成せしめることを特徴と
する炭化タングステン基超硬合金製造用微細複合炭化物
粉末の製造法。
1. As raw material powders, tungsten oxide powder, cobalt oxide powder, carbon powder, and carbide powders of V, Cr, Ti, Ta, and Nb each having an average particle diameter of 1 μm or less, and two kinds thereof. Using the above-mentioned plural carbide solid solution powders, these raw material powders are expressed in terms of% by weight, cobalt oxide powder: 3 to 24%, carbon powder: 9 to 18%, one of the above carbide powder and plural carbide solid solution powder.
Species or two or more: 0.1 to 5%, tungsten oxide powder: remaining, blended into a blend composition consisting of, after mixing, the mixed powder is first heated to a temperature of 700 to 1200 ° C. in a stream of nitrogen or argon. Is subjected to a reduction treatment under the condition of heating and holding, and then subjected to a carbonization treatment under the condition of heating and holding at a temperature of 700 to 1200 ° C. in a hydrogen stream, whereby tungsten carbide and a Co-W-based carbide solid solution are formed. Average particle size: 1 μm
A method for producing a fine composite carbide powder for producing a tungsten carbide-based cemented carbide characterized by producing the following fine composite carbide powder.
JP04319308A 1992-05-27 1992-11-04 Production method of fine composite carbide powder for production of tungsten carbide based cemented carbide Expired - Lifetime JP3111709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04319308A JP3111709B2 (en) 1992-05-27 1992-11-04 Production method of fine composite carbide powder for production of tungsten carbide based cemented carbide

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP16023292 1992-05-27
JP4-160232 1992-05-27
JP04319308A JP3111709B2 (en) 1992-05-27 1992-11-04 Production method of fine composite carbide powder for production of tungsten carbide based cemented carbide

Publications (2)

Publication Number Publication Date
JPH0754001A JPH0754001A (en) 1995-02-28
JP3111709B2 true JP3111709B2 (en) 2000-11-27

Family

ID=26486792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04319308A Expired - Lifetime JP3111709B2 (en) 1992-05-27 1992-11-04 Production method of fine composite carbide powder for production of tungsten carbide based cemented carbide

Country Status (1)

Country Link
JP (1) JP3111709B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1293215C (en) * 2004-03-26 2007-01-03 武汉理工大学 Method for preparing composite powder of nano tungsten carbide-coblt through direct reducition and carbonization
JP6845715B2 (en) * 2017-03-13 2021-03-24 三菱マテリアル株式会社 Hard sintered body
WO2019123764A1 (en) * 2017-12-18 2019-06-27 住友電気工業株式会社 Tungsten carbide powder, tungsten carbide-cobalt metal composite powder, and cemented carbide
CN109365829B (en) * 2018-12-21 2022-02-11 合肥工业大学 Method for preparing nano WC-Co composite powder by high-temperature spray drying and short process

Also Published As

Publication number Publication date
JPH0754001A (en) 1995-02-28

Similar Documents

Publication Publication Date Title
CN109576545B (en) Ti (C, N) -based metal ceramic with mixed crystal structure and preparation method thereof
CN109487141B (en) Preparation method of platy carbide solid solution toughened mixed crystal Ti (C, N) -based metal ceramic
US2814566A (en) Boron and carbon containing hard cemented materials and their production
CN110102752B (en) Solid solution alloy powder for metal ceramic and preparation method thereof
WO2010008004A1 (en) Hard powder, method for producing hard powder and sintered hard alloy
JP3111709B2 (en) Production method of fine composite carbide powder for production of tungsten carbide based cemented carbide
JP3102167B2 (en) Production method of fine composite carbide powder for production of tungsten carbide based cemented carbide
JP3063340B2 (en) Production method of fine tungsten carbide powder
JP3303187B2 (en) Method for producing tungsten carbide based cemented carbide having high strength
JP4405694B2 (en) Titanium carbonitride powder and method for producing the same
JP2004142993A (en) Hexagonal composite carbide, and production method therefor
CN110512132B (en) Gradient hard alloy with long rod-shaped crystal grains as surface layer WC and no cubic phase and preparation method thereof
JPH05147917A (en) Production of fine tungsten-based carbide powder
JPH0598384A (en) Tungsten carbide base sintered hard alloy having high strength and high hardness
JPH10140204A (en) Production of heat resistant tungsten-carbide-base cemented carbide with high strength
JPH1053823A (en) Manufacture of tungsten carbide-base cemented carbide with high strength
JP2502322B2 (en) High toughness cermet
JP2927400B2 (en) Method for regenerating cemented carbide composition and method for producing cemented carbide
JP2000237903A (en) Cutting tool made of ti base carbon nitride cermet excellent in abration resistance
JPH10259433A (en) Production of hyperfine-grained tungsten carbide base sintered hard alloy having high strength
JP2002060802A (en) Titanium carbonitride powder for hard material and its production method
CN115233023B (en) Method for preparing hard alloy and hard alloy
JP3063310B2 (en) Manufacturing method of tungsten carbide based cemented carbide with high strength and high hardness
JP3610956B2 (en) Tungsten carbide based alloy raw material powder for the manufacture of cemented carbide products
JP3018795B2 (en) Method for producing fine Co-WC compound powder for powder metallurgy

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000822

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 12