JP3303187B2 - Method for producing tungsten carbide based cemented carbide having high strength - Google Patents

Method for producing tungsten carbide based cemented carbide having high strength

Info

Publication number
JP3303187B2
JP3303187B2 JP34744596A JP34744596A JP3303187B2 JP 3303187 B2 JP3303187 B2 JP 3303187B2 JP 34744596 A JP34744596 A JP 34744596A JP 34744596 A JP34744596 A JP 34744596A JP 3303187 B2 JP3303187 B2 JP 3303187B2
Authority
JP
Japan
Prior art keywords
powder
carbide
tungsten
tungsten carbide
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34744596A
Other languages
Japanese (ja)
Other versions
JPH10273701A (en
Inventor
洋 市川
元弥 浜崎
真一 関谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP34744596A priority Critical patent/JP3303187B2/en
Publication of JPH10273701A publication Critical patent/JPH10273701A/en
Application granted granted Critical
Publication of JP3303187B2 publication Critical patent/JP3303187B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、結合相形成成分
としてのCoが組織全体に亘って分散性よく分布し、こ
れによって高強度を具備するようになる炭化タングステ
ン基超硬合金(以下、超硬合金と云う)の製造方法に関
するものである。
BACKGROUND OF THE INVENTION The present invention relates to a tungsten carbide-based cemented carbide (hereinafter referred to as "ultra-hard"), in which Co as a binder phase forming component is distributed with good dispersibility over the entire structure, thereby providing high strength. Hard alloy).

【0002】[0002]

【従来の技術】従来、一般に、超硬合金が、基本的に原
料粉末として、所定の粒度を有する炭化タングステン
(以下、WCで示す)粉末およびCo粉末を用い、さら
に必要に応じてCrおよびVの炭化物(以下、それぞれ
Cr3 2 およびVCで示す)粉末および酸化物(以
下、それぞれCr2 3 およびV2 5 で示す)粉末、
並びに耐熱性炭化物粉末としてのTi、Ta、Zrおよ
びNbの炭化物(以下、それぞれTiC、TaC、Zr
C、およびNbCで示す)粉末を用い、これら原料粉末
を所定の配合組成に配合し、混合した後、通常の粉末冶
金法にて焼結することにより製造され、この結果の超硬
合金が、重量%で(以下、%は重量%を示す)、 Co:2〜20%、 を含有し、さらに必要に応じて、 (a) Crおよび/またはV:0.1〜2%、 (b) TiC、TaC、ZrC、およびNbCのうち
の1種または2種以上からなる耐熱性炭化物:0.1〜
2%、以上(a)および(b)のいずれか、または両方
を含有し、残りが分散相形成成分としてのWCと不可避
不純物からなる組成を有し、かつこれの結合相が、C
o、あるいはCrおよび/またはVを固溶含有したCo
基合金、Coの素地に上記耐熱性炭化物が分散分布した
した組織を有するCo基合金、またはCrおよび/また
はVを固溶含有したCo基合金の素地に上記耐熱性炭化
物が分散分布したした組織を有するCo基合金からなる
ことも広く知られており、また、これらの超硬合金が切
削工具や耐摩耗工具などとして実用に供されていること
も良く知られるところである。
2. Description of the Related Art Conventionally, cemented carbide generally uses tungsten carbide (hereinafter referred to as WC) powder and Co powder having a predetermined particle size as a raw material powder, and further contains Cr and V if necessary. (Hereinafter referred to as Cr 3 C 2 and VC, respectively) powder and oxide (hereinafter referred to as Cr 2 O 3 and V 2 O 5 ) powder,
And carbides of Ti, Ta, Zr, and Nb as heat-resistant carbide powders (hereinafter, TiC, TaC, Zr, respectively)
C, and NbC), and these raw powders are blended in a predetermined composition, mixed, and then sintered by ordinary powder metallurgy to produce a cemented carbide. % By weight (hereinafter,% indicates% by weight), Co: 2 to 20%, and if necessary, (a) Cr and / or V: 0.1 to 2%, (b) Heat-resistant carbide composed of one or more of TiC, TaC, ZrC, and NbC: 0.1 to
2% or more of one or both of (a) and (b), the remainder having a composition consisting of WC as an indispensable phase-forming component and unavoidable impurities, and having a binder phase of C
o or Co containing Cr and / or V as a solid solution
A base alloy, a Co base alloy having a structure in which the heat resistant carbide is dispersed and distributed in a base of Co, or a structure in which the heat resistant carbide is dispersed and distributed in a base of a Co base alloy containing solid solution of Cr and / or V It is also well known that the cemented carbide is made of a Co-based alloy having the following formulas. Also, it is well known that these cemented carbides are practically used as cutting tools and wear-resistant tools.

【0003】[0003]

【発明が解決しようとする課題】一方、近年の切削加工
や塑性加工などの高速化および高精密化はめざましく、
これに伴い、これらに用いられる超硬合金製の切削工具
や耐摩耗工具などには、一段の強度向上が求められてい
るのが現状である。
On the other hand, in recent years, high-speed and high-precision cutting and plastic working have been remarkable.
Along with this, it is presently required that the cutting tools and wear-resistant tools made of cemented carbide used for them have further improved strength.

【0004】[0004]

【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、高強度を有する超硬合金を製造
すべく、特に上記の従来超硬合金の製造に着目し研究を
行った結果、上記の従来超硬合金の製造における基本的
にWC粉末とCo粉末からなる混合粉末に代わって、予
め所定の割合に配合した、1〜5μmの平均粒径を有す
る金属タングステン(以下、Wで示す)粉末と、いずれ
も0.1〜1μmの平均粒径を有するが、前記W粉末の
平均粒径に比して相対的に細粒の、酸化コバルト(以
下、Coxy で示す)粉末と炭素(C)粉末、さらに
必要に応じて(a)上記の耐熱性炭化物粉末のうちの1
種または2種以上、並びに(b)Cr3 2 粉末、VC
粉末、Cr2 3 粉末、およびV2 5 粉末のうちの1
種または2種以上、これら(a)および(b)のうちの
いずれか、あるいは両方からなる混合粉末に還元性また
は不活性ガス雰囲気中で還元処理を施すことにより得ら
れたWC/Co複合粉末およびWC/Co基合金複合粉
末、すなわちWC粉末の表面に、Co層、あるいはCo
の素地に上記耐熱性炭化物が分散分布したした組織を有
するCo基合金層、Crおよび/またはVを固溶含有し
たCo基合金層、またはCrおよび/またはVを固溶含
有したCo基合金の素地に上記耐熱性炭化物が分散分布
した組織を有するCo基合金層が全面的または部分的に
融着してなるWC/Co複合粉末およびWC/Co基合
金複合粉末を原料粉末として用い、これら原料粉末から
通常の粉末冶金法にて焼結して超硬合金を製造すると、
製造された超硬合金は、特に結合相形成成分としてのC
oが組織全体に亘って分散性よく分布するようになるこ
とから、上記の従来方法によって製造された超硬合金に
比して一段と高強度を具備するようになるという研究結
果を得たのである。
Means for Solving the Problems Accordingly, the present inventors have
In view of the above, in order to produce a cemented carbide having high strength, as a result of conducting research with particular attention to the production of the above-mentioned conventional cemented carbide, the WC in the production of the above-mentioned conventional cemented carbide was basically WC. A metal tungsten (hereinafter, referred to as W) powder having an average particle size of 1 to 5 μm, which has been previously blended in a predetermined ratio instead of a mixed powder composed of a powder and a Co powder; Although it has a particle size, cobalt oxide (hereinafter referred to as Co x O y ) powder and carbon (C) powder, which are relatively fine compared to the average particle size of the W powder, a) One of the above heat-resistant carbide powders
Seed or two or more, and (b) Cr 3 C 2 powder, VC
Powder, Cr 2 O 3 powder, and V 2 O 5 powder
WC / Co composite powder obtained by subjecting a mixed powder consisting of one or more of one or more of these (a) and (b), or both, to a reduction treatment in a reducing or inert gas atmosphere And a WC / Co-based alloy composite powder, ie, a WC powder, a Co layer or Co
Of a Co-based alloy layer having a structure in which the heat-resistant carbide is dispersed and distributed in the base material, a Co-based alloy layer containing Cr and / or V in a solid solution, or a Co-based alloy containing Cr and / or V in a solid solution. A WC / Co composite powder and a WC / Co-based alloy composite powder obtained by completely or partially fusing a Co-based alloy layer having a structure in which the heat-resistant carbide is dispersed and distributed on a base material are used as raw material powders. When sintering from powder by ordinary powder metallurgy to produce cemented carbide,
The cemented carbide produced has, in particular, C as a binder phase forming component.
Since o was distributed with good dispersibility over the entire structure, a research result was obtained that the steel had higher strength as compared with the cemented carbide manufactured by the above-mentioned conventional method. .

【0005】この発明は、上記の研究結果に基づいてな
されたものであって、原料粉末として、1〜5μmの平
均粒径を有するW粉末、いずれも0.1〜1μmの平均
粒径を有するが、前記W粉末の平均粒径に比して相対的
に細粒の、Cox y 粉末および炭素粉末、さらに必要
に応じてTiC粉末、TaC粉末、ZrC粉末、および
NbC粉末のうちの1種または2種以上からなる耐熱性
炭化物粉末、並びにCr3 2 粉末、Cr2 3 粉末、
VC粉末、およびV2 5 のうちの1種または2種以上
を用い、これら原料粉末を、(a) Cox y 粉末:
6〜25%、炭素粉末:0.5〜4%、W粉末:残り、
からなる配合組成、(b) Cox y 粉末:6〜25
%、炭素粉末:0.5〜4%、TiC粉末、TaC粉
末、ZrC粉末、およびNbC粉末のうちの1種または
2種以上からなる耐熱性炭化物粉末:0.1〜2%、W
粉末:残り、からなる配合組成、(c) Cox y
末:6〜25%、炭素粉末:0.5〜4%、Cr3 2
粉末、Cr2 3 粉末、VC粉末、およびV2 5 粉末
のうちの1種または2種以上:0.1〜2.5%、W粉
末:残り、からなる配合組成、(d) Cox y
末:6〜25%、炭素粉末:0.5〜4%、TiC粉
末、TaC粉末、ZrC粉末、およびNbC粉末のうち
の1種または2種以上からなる耐熱性炭化物粉末:0.
1〜2%、Cr3 2 粉末、Cr2 3 粉末、VC粉
末、およびV2 5 粉末のうちの1種または2種以上:
0.1〜2.5%、W粉末:残り、からなる配合組成、
以上(a)〜(d)のいずれかの配合組成に配合し、混
合した後、還元性または不活性ガス雰囲気中で還元処理
して、Co:5〜20%、を含有し、さらに必要に応じ
て、(A) TiC、TaC、ZrC、およびNbCの
うちの1種または2種以上からなる耐熱性炭化物:0.
1〜2%、(B) Crおよび/またはV:0.1〜2
%、以上(A)および/または(B)を含有し、残りが
WCと不可避不純物からなる組成を有し、かつWC粉末
の表面上に、Co層、あるいはCoの素地に上記耐熱性
炭化物が分散分布したした組織を有するCo基合金層、
Crおよび/またはVを固溶含有したCo基合金層、ま
たはCrおよび/またはVを固溶含有したCo基合金の
素地に上記耐熱性炭化物が分散分布したした組織を有す
るCo基合金層が全面的または部分的に融着してなる、
WC/Co複合粉末およびWC/Co基合金複合粉末を
原料粉末を形成し、これらのWC/Co複合粉末および
WC/Co基合金複合粉末から通常の粉末冶金法にて、
結合相形成成分としてのCoの組織上分散性にすぐれ、
これによって高強度をもつようになる超硬合金を製造す
る方法に特徴を有するものである。
The present invention has been made on the basis of the above research results, and as a raw material powder, W powder having an average particle diameter of 1 to 5 μm, and all of them have an average particle diameter of 0.1 to 1 μm. Is one of Co x O y powder and carbon powder and, if necessary, one of TiC powder, TaC powder, ZrC powder, and NbC powder which are relatively fine compared to the average particle diameter of the W powder. A heat-resistant carbide powder composed of one or more kinds, a Cr 3 C 2 powder, a Cr 2 O 3 powder,
Using one or more of VC powder and V 2 O 5 , these raw material powders are (a) Co x O y powder:
6-25%, carbon powder: 0.5-4%, W powder: remaining,
(B) Co x O y powder: 6 to 25
%, Carbon powder: 0.5 to 4%, heat-resistant carbide powder composed of one or more of TiC powder, TaC powder, ZrC powder, and NbC powder: 0.1 to 2%, W
Powder: the remaining composition, (c) Co x O y powder: 6 to 25%, carbon powder: 0.5 to 4%, Cr 3 C 2
Powder, Cr 2 O 3 powder, VC powder, and V 2 O 5 powder one or more of: 0.1 to 2.5%, W powder: rest, consisting of blending composition, (d) Co x O y powder: 6-25%, carbon powder: 0.5 to 4% TiC powder, TaC powder, ZrC powder, and NbC refractory carbide powder consisting of one or more of the powder: 0.
1 to 2%, Cr 3 C 2 powder, Cr 2 O 3 powder, VC powder, and V 2 O 5 powder one or more of:
0.1 to 2.5%, W powder: the remaining composition, consisting of
After blending into any one of the above compositions (a) to (d) and mixing, the mixture is reduced in a reducing or inert gas atmosphere to contain Co: 5 to 20%. Accordingly, (A) a heat-resistant carbide composed of one or more of TiC, TaC, ZrC, and NbC: 0.
1-2%, (B) Cr and / or V: 0.1-2
% Or more of (A) and / or (B), the remainder having a composition of WC and unavoidable impurities, and the heat-resistant carbide on a surface of WC powder on a Co layer or a base material of Co. A Co-based alloy layer having a structure distributed and distributed,
A Co-based alloy layer containing Cr and / or V in a solid solution or a Co-based alloy layer having a structure in which the heat-resistant carbide is dispersed and distributed on a Co-based alloy containing Cr and / or V in a solid solution Or partially or fused
A raw powder is formed from the WC / Co composite powder and the WC / Co-based alloy composite powder, and the WC / Co composite powder and the WC / Co-based alloy composite powder are formed by a usual powder metallurgy method.
Excellent Co dispersibility on the structure as a binder phase forming component,
The method is characterized by the method for producing a cemented carbide having high strength.

【0006】つぎに、この発明の方法において、製造条
件を上記の通りに限定した理由を説明する。 (a)原料粉末の平均粒径 W粉末の平均粒径を1〜5μmとしてのは、その平均粒
径が1μm未満では、製造された超硬合金の耐クリープ
変形性が低下するようになり、一方その平均粒径が5μ
mを越えると、製造された超硬合金の強度が急激に低下
するようになるという理由によるものである。また、C
x y 粉末の平均粒径を0.1〜1μmとしたのは、
その平均粒径を0.1μm未満にしても還元反応上効果
は現れず、むしろ細粉化の面で経済的でなく、一方その
平均粒径が1μmを越えると、未還元Cox y が存在
するようになり、この結果超硬合金中に巣が発生し、所
望の高強度を確保することができなくなるという理由か
らである。さらに、炭素粉末の平均粒径は還元性の面か
ら定めたものであり、0.1〜1μmの平均粒径をを有
するCox y 粉末の還元には同様の粒度の炭素粉末を
用いるのがよく、なぜならその平均粒径が0.1μm未
満では還元反応が強力で、残留炭素の存在は避けられ
ず、一方その平均粒径が1μmを越えると、逆に還元反
応が緩慢となり、Cox y が残留するようになるから
である。同じく、耐熱性炭化物粉末の平均粒径を0.1
〜1μmとしたのは、その平均粒径が0.1μm未満に
なると細粉化の面で経済的でなく、一方その平均粒径が
1μmを越えると、超硬合金の強度が低下するようにな
るという理由によるものである。さらに、またCr3
2 粉末、Cr2 3 粉末、VC粉末、およびV2 5
末は、還元処理で結合相形成成分であるCo中に固溶さ
せ、Co基合金の素地を形成して前記結合相の強度およ
び耐熱性を向上させる目的で必要に応じて配合されるも
のであるが、これのもつ平均粒径を0.1〜1μmとし
たのは、その平均粒径を0.1μm未満にすることは細
粒化の面で経済的でなく、一方その平均粒径が1μmを
越えると、Co中への固溶が完全に行われない場合が生
じ、この場合には超硬合金の強度低下の原因となるとい
う理由によるものである。
Next, the reason why the manufacturing conditions are limited as described above in the method of the present invention will be described. (A) Average particle diameter of raw material powder The average particle diameter of the W powder is set to 1 to 5 μm. If the average particle diameter is less than 1 μm, the creep deformation resistance of the manufactured cemented carbide decreases. On the other hand, the average particle size is 5μ.
When the value exceeds m, the strength of the manufactured cemented carbide rapidly decreases. Also, C
o x O y powder having an average particle diameter was a 0.1~1μm a is
Even if the average particle diameter is less than 0.1 μm, no effect on the reduction reaction is exhibited, and it is not economical in terms of pulverization. On the other hand, if the average particle diameter exceeds 1 μm, unreduced Co x O y becomes For this reason, cavities are generated in the cemented carbide, and the desired high strength cannot be secured. Further, the average particle size of the carbon powder is determined from the viewpoint of reducibility, and a carbon powder having a similar particle size is used for the reduction of Co x O y powder having an average particle size of 0.1 to 1 μm. If the average particle size is less than 0.1 μm, the reduction reaction is strong and the presence of residual carbon is unavoidable, while if the average particle size exceeds 1 μm, the reduction reaction becomes slow and Co x O y is because so remains. Similarly, the average particle size of the heat-resistant carbide powder is 0.1
When the average particle size is less than 0.1 μm, it is not economical in terms of pulverization. On the other hand, when the average particle size exceeds 1 μm, the strength of the cemented carbide decreases. It is because it becomes. In addition, Cr 3 C
2 powder, Cr 2 O 3 powder, VC powder, and V 2 O 5 powder are solid-dissolved in Co, which is a binder phase forming component, by reduction treatment to form a base material of a Co-based alloy, and the strength of the binder phase is obtained. And for the purpose of improving the heat resistance, it is blended as necessary, but the average particle size of this is 0.1 to 1 μm is that the average particle size is less than 0.1 μm It is not economical in terms of grain refinement. On the other hand, if the average grain size exceeds 1 μm, solid solution in Co may not be completely performed, in which case the strength of cemented carbide decreases. This is for the reason.

【0007】(b)配合組成および成分組成 Cox y 粉末の配合割合が6%未満では、還元処理で
生成されたWC/Co複合粉末およびWC/Co合金複
合粉末におけるCo含有割合が5%未満となってしま
い、これを用いて超硬合金を製造した場合、所望の強度
を確保することができず、一方その配合割合が25%を
越えると、同様に製造された超硬合金のCo含有量が2
0%を越えて多くなってしまい、耐摩耗性が低下するよ
うになるばかりでなく、超硬合金でのCoの分散性も低
下し、強度低下が避けられないことから、Cox y
末の配合割合を6〜25%、WC/Co複合粉末および
WC/Co合金複合粉末におけるCo含有割合を5〜2
0%と定めたのである。また、炭素粉末の配合割合:
0.5〜4%は、Cox y 粉末の配合割合:6〜25
%、さらに必要に応じて配合されたCr2 3 粉末およ
び/またはV2 5 粉末の配合割合に対応して定めたも
のであり、したがって、所望の配合割合のCox y
末、あるいはCox y 粉末とCr2 3 粉末および/
またはV25 粉末を残留炭素の発生なく、Coあるい
はCo基合金に還元するのに必要な炭素粉末の配合割合
として0.5〜4%を定めたのである。さらに、耐熱性
炭化物粉末の配合割合、および耐熱性炭化物のWC/C
o合金複合粉末における含有割合を0.1〜2%とした
のは、その割合が0.1%未満では所望の耐熱性を確保
することができず、一方その割合が2%を越えると超硬
合金の強度が低下するようになるという理由によるもの
である。また、Cr3 2 粉末、Cr2 3 粉末、VC
粉末、およびV2 5 粉末の配合割合については、その
配合割合が0.1%未満では、Co基合金素地中のCr
および/またはVの含有量が全体に占める割合で0.1
未満になってしまい、上記の通り結合相の強度および耐
熱性に向上効果が得られず、一方その配合割合が2.5
%を越えると、Co基合金素地中のCrおよび/または
Vの含有量が同じく全体に占める割合で2%を越えて高
くなりすぎ、超硬合金の強度が低下するようになること
から、その配合割合を0.1〜2.5%、Co基合金素
地中のCrおよび/またはVの含含有量を0.1〜2%
と定めたのである。なお、この発明の方法における還元
処理は、通常の金属酸化物粉末の還元に採用されている
条件、すなわち水素気流などの還元性雰囲気中、あるい
は窒素気流またはAr気流などの不活性ガス雰囲気中、
800〜1100℃に1〜5時間保持の条件で行なわれ
る。
(B) Blending composition and component compositionxOyIf the mixing ratio of the powder is less than 6%,
Generated WC / Co composite powder and WC / Co alloy composite
The Co content in the composite powder is less than 5%
When using this to produce cemented carbide, the desired strength
Can not be secured, while the compounding ratio is 25%
If it exceeds, the Co content of the similarly manufactured cemented carbide is 2
It will increase more than 0%, and the wear resistance will decrease
In addition to humming, the dispersibility of Co in cemented carbide is low.
Lowering the strength is inevitable,xOypowder
The mixing ratio of the powder is 6-25%, the WC / Co composite powder and
The Co content ratio in the WC / Co alloy composite powder is 5 to 2
It was set at 0%. Also, the mixing ratio of the carbon powder:
0.5-4% is CoxOyMixing ratio of powder: 6 to 25
%, And Cr added if necessaryTwoOThreePowder and
And / or VTwoO FiveDetermined according to the mixing ratio of powder
Therefore, the desired blending ratio of CoxOypowder
End or CoxOyPowder and CrTwoOThreePowder and / or
Or VTwoOFivePowders with no residual carbon, Co or
Is the compounding ratio of carbon powder required for reduction to Co-based alloy
Is set to 0.5 to 4%. Furthermore, heat resistance
Mixing ratio of carbide powder and WC / C of heat-resistant carbide
o The content ratio in the alloy composite powder was set to 0.1 to 2%.
If the ratio is less than 0.1%, the desired heat resistance is secured
Can not be performed, while if the ratio exceeds 2%, carbide
Due to the fact that the strength of the alloy will decrease
It is. In addition, CrThreeCTwoPowder, CrTwoOThreePowder, VC
Powder, and VTwoOFiveRegarding the mixing ratio of powder,
If the mixing ratio is less than 0.1%, the Cr in the Co-based alloy
And / or the content of V is 0.1% of the whole.
And the strength and resistance of the binder phase
No improvement effect is obtained in the heat property, while the compounding ratio is 2.5
%, The Cr and / or Co in the Co-based alloy base material
The content of V is also higher than 2% in the whole.
Become too hard and reduce the strength of cemented carbide
From 0.1 to 2.5% of the Co-based alloy
0.1 to 2% Cr and / or V content in the ground
It was decided. The reduction in the method of the present invention
Processing is employed in the reduction of normal metal oxide powder
Conditions, that is, in a reducing atmosphere such as a hydrogen stream, or
Is in an inert gas atmosphere such as a nitrogen stream or an Ar stream,
Performed at 800-1100 ° C for 1-5 hours
You.

【0008】[0008]

【発明の実施の形態】この発明の方法を実施例により具
体的に説明する。原料粉末として、それぞれ表1〜4に
示される平均粒径を有するW粉末、Co x y 粉末、炭
素(C)粉末、TiC粉末、TaC粉末、ZrC粉末、
NbC粉末、Cr3 2 粉末、Cr2 3 粉末、VC粉
末、およびV2 5 粉末を用意し、これら原料粉末を同
じく表1〜4に示される配合組成に配合し、ボールミル
で72時間湿式混合し、乾燥した後、表4〜6に示され
る条件で還元処理して、同じく表5〜7に示される成分
組成をもったWC/Co複合粉末およびWC/Co基合
金複合粉末を形成し、引続いてこれらWC/Co複合粉
末およびWC/Co基合金複合粉末を、それぞれ1to
n/cm2 の圧力で圧粉体にプレス成形し、これら圧粉
体を、真空雰囲気中、1350〜1450℃の範囲内の
所定の温度に1時間保持の条件で焼結し、さらに温度:
1320℃、圧力:900kgf/cm2 、保持時間:
1時間の条件でHIP処理を施すことにより本発明方法
1〜42を実施し、強度を評価する目的で、8mm×4
mm×25mmの抗折力試験片形状をもった超硬合金を
それぞれ製造した。
BRIEF DESCRIPTION OF THE DRAWINGS FIG.
Explain physically. As raw material powders,
W powder with the average particle size shown, Co xOyPowder, charcoal
Element (C) powder, TiC powder, TaC powder, ZrC powder,
NbC powder, CrThreeCTwoPowder, CrTwoOThreePowder, VC powder
End, and VTwoOFivePrepare powders and mix them
Finally, a ball mill was added to the composition shown in Tables 1-4.
After wet-mixing for 72 hours and drying, shown in Tables 4-6
Components under the same conditions as shown in Tables 5 to 7
WC / Co composite powder with composition and WC / Co matrix
Forming a gold composite powder, followed by these WC / Co composite powders
Powder and WC / Co-based alloy composite powder,
n / cmTwo Pressing into a green compact with the pressure of
The body is placed in a vacuum atmosphere at a temperature in the range of 1350-1450 ° C.
Sintering is carried out at a predetermined temperature for 1 hour, and then the temperature is:
1320 ° C, pressure: 900 kgf / cmTwo , Retention time:
The method of the present invention by performing the HIP treatment under the condition of 1 hour
1 to 42, 8 mm x 4
Cemented carbide with a bending strength test specimen shape of mm × 25mm
Each was manufactured.

【0009】また、比較の目的で、原料粉末として、表
8〜10に示される平均粒径をもったWC粉末、Co粉
末、TiC粉末、TaC粉末、ZrC粉末、NbC粉
末、Cr3 2 粉末、およびVC粉末を用意し、これら
原料粉末を同じく表8〜10に示される配合組成(本発
明方法1〜42によって製造された超硬合金の組成にそ
れぞれ対応)に配合し、ボールミルで72時間湿式混合
し、乾燥した後、この混合粉末を、以下いずれも本発明
方法1〜42におけると同一の条件で、圧粉体にプレス
成形し、焼結し、さらにHIP処理を施すことにより従
来方法1〜42を行い、実質的に配合組成と同一な成分
組成をもった超硬合金をそれぞれ製造した。この結果得
られた各種の超硬合金について、抗折力を測定し、この
測定結果をそれぞれ表4〜9に示した。
For the purpose of comparison, WC powder, Co powder, TiC powder, TaC powder, ZrC powder, NbC powder, and Cr 3 C 2 powder having the average particle diameters shown in Tables 8 to 10 are used as raw material powders. , And VC powder, and these raw material powders are blended in the same composition as shown in Tables 8 to 10 (corresponding to the compositions of the cemented carbides manufactured by the present invention methods 1 to 42, respectively), and then subjected to a ball mill for 72 hours. After wet-mixing and drying, the mixed powder is pressed into a green compact under the same conditions as in the methods 1 to 42 of the present invention, sintered, and further subjected to a HIP treatment to obtain a conventional method. 1 to 42 were performed to produce cemented carbides having the same component composition as the compounding composition. With respect to various types of cemented carbides obtained as a result, bending strength was measured, and the measurement results are shown in Tables 4 to 9, respectively.

【0010】[0010]

【表1】 [Table 1]

【0011】[0011]

【表2】 [Table 2]

【0012】[0012]

【表3】 [Table 3]

【0013】[0013]

【表4】 [Table 4]

【0014】[0014]

【表5】 [Table 5]

【0015】[0015]

【表6】 [Table 6]

【0016】[0016]

【表7】 [Table 7]

【0017】[0017]

【表8】 [Table 8]

【0018】[0018]

【表9】 [Table 9]

【0019】[0019]

【表10】 [Table 10]

【0020】[0020]

【発明の効果】表5〜10に示される結果から、本発明
方法1〜42においては、原料粉末としてWC粉末の表
面に、Co層、あるいはCoの素地に耐熱性炭化物が分
散分布したした組織を有するCo基合金層、Crおよび
/またはVを固溶含有したCo基合金層、またはCrお
よび/またはVを固溶含有したCo基合金の素地に耐熱
性炭化物が分散分布したした組織を有するCo基合金層
が全面的または部分的に融着した構造のWC/Co複合
粉末およびWC/Co基合金複合粉末を使用することに
よって、要素粉末の混合粉末を用いる従来方法1〜42
によって製造された超硬合金に比して、いずれも結合相
形成成分としてのCoの分散性が一段と向上した超硬合
金を製造することができ、このCo分散性の向上によっ
てそれぞれの抗折力の相対比較で強度が著しく向上して
いることが明らかである。上述のように、この発明の方
法によれば、高強度を有する超硬合金を製造することが
でき、したがって超硬合金が適用される切削工具や各種
対摩耗工具などに対する要求に十分満足に対応すること
がでるのである。
According to the results shown in Tables 5 to 10, in the methods 1 to 42 of the present invention, the structure in which the heat-resistant carbide is dispersed and distributed on the surface of the WC powder as the raw material powder or on the Co layer or on the base material of Co. Having a structure in which heat-resistant carbides are dispersed and distributed in a Co-based alloy layer having a solid solution containing Cr and / or V or a Co-based alloy layer having a solid solution containing Cr and / or V. By using a WC / Co composite powder and a WC / Co-based alloy composite powder having a structure in which a Co-based alloy layer is entirely or partially fused, conventional methods 1-42 using a mixed powder of element powders are used.
In this case, a cemented carbide in which the dispersibility of Co as a binder phase forming component is further improved as compared with the cemented carbide produced by the method described above, and the improvement in the dispersibility of Co makes each bending strength It is clear from the relative comparison that the strength is remarkably improved. As described above, according to the method of the present invention, a cemented carbide having high strength can be manufactured, and therefore, the requirements for cutting tools and various types of wear tools to which the cemented carbide is applied can be sufficiently satisfied. You can do it.

フロントページの続き (72)発明者 関谷 真一 茨城県結城郡石下町大字古間木1511番地 三菱マテリアル株式会社 筑波製作所 内 (58)調査した分野(Int.Cl.7,DB名) B22F 1/00 B22F 1/02 C22C 1/05 Continued on the front page (72) Inventor Shinichi Sekiya 1511 Furamagi, Ishishita-cho, Yuki-gun, Ibaraki Pref. Mitsubishi Materials Corporation Tsukuba Works (58) Field surveyed (Int. Cl. 7 , DB name) B22F 1/00 B22F 1/02 C22C 1/05

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 原料粉末として、1〜5μmの平均粒径
を有する金属タングステン粉末、いずれも0.1〜1μ
mの平均粒径を有するが、前記金属タングステン粉末に
比して相対的に細粒の、酸化コバルト粉末、および炭素
粉末を用い、これら原料粉末を、以下いずれも重量%
で、 酸化コバルト粉末:6〜25%、 炭素粉末:0.5〜4%、 金属タングステン粉末:残り、からなる配合組成に配合
し、混合した後、還元性または不活性ガス雰囲気中で還
元処理して、 Co:5〜20%、 炭化タングステンおよび不可避不純物:残り、からなる
組成を有し、かつ炭化タングステン粉末の表面に、Co
層が全面的または部分的に融着してなる炭化タングステ
ン/Co複合粉末を形成し、この炭化タングステン/C
o複合粉末から通常の粉末冶金法にて炭化タングステン
基超硬合金を製造することを特徴とする高強度を有する
炭化タングステン基超硬合金の製造方法。
1. As a raw material powder, a metal tungsten powder having an average particle size of 1 to 5 μm, each of which is 0.1 to 1 μm.
m, but using a cobalt oxide powder and a carbon powder which are relatively finer than the metal tungsten powder.
In this case, cobalt oxide powder: 6 to 25%, carbon powder: 0.5 to 4%, metal tungsten powder: remaining, are blended into a blended composition, mixed, and then reduced in a reducing or inert gas atmosphere. Co: 5 to 20%, tungsten carbide and unavoidable impurities: remaining, having a composition consisting of:
The tungsten carbide / Co composite powder is formed by completely or partially fusing the layers to form a tungsten carbide / Co composite powder.
o A method for producing a tungsten carbide-based cemented carbide having high strength, comprising producing a tungsten carbide-based cemented carbide from a composite powder by an ordinary powder metallurgy method.
【請求項2】 原料粉末として、1〜5μmの平均粒径
を有する金属タングステン粉末、いずれも0.1〜1μ
mの平均粒径を有するが、前記金属タングステン粉末に
比して相対的に細粒の、酸化コバルト粉末、Crおよび
Vの炭化物粉末および酸化物粉末のうちの1種または2
種以上、および炭素粉末を用い、これら原料粉末を、以
下いずれも重量%で、 酸化コバルト粉末:6〜25%、 CrおよびVの炭化物粉末および酸化物粉末のうちの1
種または2種以上:0.1〜2.5%、 炭素粉末:0.5〜4%、 金属タングステン粉末:残り、からなる配合組成に配合
し、混合した後、還元性または不活性ガス雰囲気中で還
元処理して、 Co:5〜20%、 Crおよび/またはV:0.1〜2%、 炭化タングステンおよび不可避不純物:残り、からなる
組成を有し、かつ炭化タングステン粉末の表面に、Cr
および/またはVを固溶含有したCo基合金層が全面的
または部分的に融着してなる炭化タングステン/Co基
合金複合粉末を形成し、この炭化タングステン/Co合
金基複合粉末から通常の粉末冶金法にて炭化タングステ
ン基超硬合金を製造することを特徴とする高強度を有す
る炭化タングステン基超硬合金の製造方法。
2. As a raw material powder, a metal tungsten powder having an average particle size of 1 to 5 μm,
one or more of cobalt oxide powder, Cr and V carbide powder and oxide powder having an average particle size of m, but relatively finer than the metal tungsten powder.
Or more, and using carbon powder, these raw material powders are each represented by weight%, cobalt oxide powder: 6 to 25%, one of Cr and V carbide powder and oxide powder.
Species or two or more: 0.1 to 2.5%, Carbon powder: 0.5 to 4%, Metal tungsten powder: Remaining, blended into a blended composition, mixed, and then reduced or inert gas atmosphere In a reduction treatment, Co: 5 to 20%, Cr and / or V: 0.1 to 2%, tungsten carbide and unavoidable impurities: remaining, having a composition consisting of: Cr
And / or a Co-based alloy layer containing V as a solid solution is entirely or partially fused to form a tungsten carbide / Co-based alloy composite powder. A method for producing a tungsten carbide-based cemented carbide having high strength, characterized by producing a tungsten carbide-based cemented carbide by metallurgy.
【請求項3】 原料粉末として、1〜5μmの平均粒径
を有する金属タングステン粉末、いずれも0.1〜1μ
mの平均粒径を有するが、前記金属タングステン粉末に
比して相対的に細粒の、酸化コバルト粉末、Ti、T
a、ZrおよびNbの炭化物粉末のうちの1種または2
種以上からなる耐熱性炭化物粉末、および炭素粉末を用
い、これら原料粉末を、以下いずれも重量%で、 酸化コバルト粉末:6〜25%、 Ti、Ta、ZrおよびNbの炭化物粉末のうちの1種
または2種以上からなる耐熱性炭化物粉末:0.1〜2
%、 炭素粉末:0.5〜4%、 金属タングステン粉末:残り、からなる配合組成に配合
し、混合した後、還元性または不活性ガス雰囲気中で還
元処理して、 Co:5〜20%、 Ti、Ta、ZrおよびNbの炭化物のうちの1種また
は2種以上からなる耐熱性炭化物:0.1〜2%、 炭化タングステンおよび不可避不純物:残り、からなる
組成を有し、かつ炭化タングステン粉末の表面に、Co
の素地に上記耐熱性炭化物が分散分布したした組織を有
するCo基合金層が全面的または部分的に融着してなる
炭化タングステン/Co基合金複合粉末を形成し、この
炭化タングステン/Co基合金複合粉末から通常の粉末
冶金法にて炭化タングステン基超硬合金を製造すること
を特徴とする高強度を有する炭化タングステン基超硬合
金の製造方法。
3. As a raw material powder, a metal tungsten powder having an average particle diameter of 1 to 5 μm, each of which is 0.1 to 1 μm.
m, but relatively fine particles of cobalt oxide powder, Ti, T
one or two of carbide powders of a, Zr and Nb
Using a heat-resistant carbide powder composed of at least one or more kinds of carbon powders, and using these raw material powders in the following weight%, cobalt oxide powder: 6 to 25%, one of carbide powders of Ti, Ta, Zr and Nb. Heat-resistant carbide powder consisting of one or more species: 0.1 to 2
%, Carbon powder: 0.5 to 4%, metal tungsten powder: remaining, blended into a composition consisting of, mixed and then reduced in a reducing or inert gas atmosphere, Co: 5 to 20% , Ti, Ta, Zr and Nb, having a composition consisting of one or more of heat-resistant carbides of 0.1 to 2%, tungsten carbide and unavoidable impurities: remaining, and tungsten carbide Co on the surface of the powder
Forming a tungsten carbide / Co-based alloy composite powder obtained by completely or partially fusing a Co-based alloy layer having a structure in which the heat-resistant carbide is dispersed and distributed on the base material; A method for producing a tungsten carbide-based cemented carbide having high strength, comprising producing a tungsten carbide-based cemented carbide from a composite powder by an ordinary powder metallurgy method.
【請求項4】 原料粉末として、1〜5μmの平均粒径
を有する金属タングステン粉末、いずれも0.1〜1μ
mの平均粒径を有するが、前記炭化タングステン粉末に
比して相対的に細粒の、酸化コバルト粉末、Ti、T
a、ZrおよびNbの炭化物粉末のうちの1種または2
種以上からなる耐熱性炭化物粉末、CrおよびVの炭化
物粉末および酸化物粉末のうちの1種または2種以上、
および炭素粉末を用い、これら原料粉末を、以下いずれ
も重量%で、 酸化コバルト粉末:6〜25%、 Ti、Ta、ZrおよびNbの炭化物粉末のうちの1種
または2種以上からなる耐熱性炭化物粉末:0.1〜2
%、 CrおよびVの炭化物粉末および酸化物粉末のうちの1
種または2種以上:0.1〜2.5%、 炭素粉末:0.5〜4%、 金属タングステン粉末:残り、からなる配合組成に配合
し、混合した後、還元性または不活性ガス雰囲気中で還
元処理して、 Co:5〜20%、 Ti、Ta、ZrおよびNbの炭化物のうちの1種また
は2種以上からなる耐熱性炭化物:0.1〜2%、 Crおよび/またはV:0.1〜2%、 炭化タングステンおよび不可避不純物:残り、からなる
組成を有し、かつ炭化タングステン粉末の表面に、Cr
および/またはVを固溶含有したCo基合金の素地に上
記耐熱性炭化物が分散分布したした組織を有するCo基
合金層が全面的または部分的に融着してなる炭化タング
ステン/Co基合金複合粉末を形成し、この炭化タング
ステン/Co基合金複合粉末から通常の粉末冶金法にて
炭化タングステン基超硬合金を製造することを特徴とす
る高強度を有する炭化タングステン基超硬合金の製造方
法。
4. As a raw material powder, a metal tungsten powder having an average particle size of 1 to 5 μm,
m, but relatively finer than the tungsten carbide powder, such as cobalt oxide powder, Ti, T
one or two of carbide powders of a, Zr and Nb
One or more of heat-resistant carbide powder, carbide powder and oxide powder of Cr and V,
And carbon powder. These raw material powders are each expressed by weight%. Cobalt oxide powder: 6 to 25%, heat resistance comprising one or more of carbide powders of Ti, Ta, Zr and Nb Carbide powder: 0.1-2
%, One of Cr and V carbide powder and oxide powder
Species or two or more: 0.1 to 2.5%, Carbon powder: 0.5 to 4%, Metal tungsten powder: Remaining, blended into a blended composition, mixed, and then reduced or inert gas atmosphere Co: 5 to 20%, heat-resistant carbide composed of one or more of Ti, Ta, Zr and Nb carbides: 0.1 to 2%, Cr and / or V : 0.1 to 2%, tungsten carbide and inevitable impurities: remaining, and having a composition of:
And / or a tungsten carbide / Co-based alloy composite in which a Co-based alloy layer having a structure in which the heat-resistant carbide is dispersed and distributed is completely or partially fused to a Co-based alloy base containing V as a solid solution. A method for producing a tungsten carbide-based cemented carbide having high strength, comprising forming a powder and producing a tungsten carbide-based cemented carbide from the tungsten carbide / Co-based alloy composite powder by ordinary powder metallurgy.
JP34744596A 1996-12-26 1996-12-26 Method for producing tungsten carbide based cemented carbide having high strength Expired - Fee Related JP3303187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34744596A JP3303187B2 (en) 1996-12-26 1996-12-26 Method for producing tungsten carbide based cemented carbide having high strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34744596A JP3303187B2 (en) 1996-12-26 1996-12-26 Method for producing tungsten carbide based cemented carbide having high strength

Publications (2)

Publication Number Publication Date
JPH10273701A JPH10273701A (en) 1998-10-13
JP3303187B2 true JP3303187B2 (en) 2002-07-15

Family

ID=18390291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34744596A Expired - Fee Related JP3303187B2 (en) 1996-12-26 1996-12-26 Method for producing tungsten carbide based cemented carbide having high strength

Country Status (1)

Country Link
JP (1) JP3303187B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2571648A4 (en) * 2010-05-20 2016-10-05 Baker Hughes Inc Methods of forming at least a portion of earth-boring tools, and articles formed by such methods
US10603765B2 (en) 2010-05-20 2020-03-31 Baker Hughes, a GE company, LLC. Articles comprising metal, hard material, and an inoculant, and related methods

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003073766A (en) * 2001-08-28 2003-03-12 Kyocera Corp High-hardness sintered alloy and aluminum wrought member using it
US9428822B2 (en) 2004-04-28 2016-08-30 Baker Hughes Incorporated Earth-boring tools and components thereof including material having hard phase in a metallic binder, and metallic binder compositions for use in forming such tools and components
CA2679553C (en) 2007-03-26 2012-01-10 Jfe Mineral Company, Ltd. Method for producing carbide of transition metal and/or composite carbide of transition metal
CN103602907B (en) * 2013-10-10 2016-01-13 铜陵新创流体科技有限公司 A kind of powder metallurgy rotating bearing and preparation method thereof
CN103909274B (en) * 2014-04-25 2016-06-15 湖南顶立科技有限公司 A kind of method preparing cobalt cladding nanometer WC crystal composite powder and ultra-fine cemented carbide
CN106077621A (en) * 2016-06-09 2016-11-09 武汉理工大学 The trace surface modification of tungsten powder is coated with the preparation method of tungsten composite powder with tungsten carbide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2571648A4 (en) * 2010-05-20 2016-10-05 Baker Hughes Inc Methods of forming at least a portion of earth-boring tools, and articles formed by such methods
US10603765B2 (en) 2010-05-20 2020-03-31 Baker Hughes, a GE company, LLC. Articles comprising metal, hard material, and an inoculant, and related methods

Also Published As

Publication number Publication date
JPH10273701A (en) 1998-10-13

Similar Documents

Publication Publication Date Title
EP0534191B1 (en) Cermets and their production and use
JP4403286B2 (en) Cemented carbide tool material and manufacturing method thereof
CN100439524C (en) Gradient composition sintered alloy and mfg. method
JP5302965B2 (en) Hard powder, method for producing hard powder, and sintered hard alloy
JP2013508546A (en) Cemented carbide and method for producing the same
JP3303187B2 (en) Method for producing tungsten carbide based cemented carbide having high strength
JPH05271842A (en) Cermet alloy and its production
JP3303186B2 (en) Method for producing heat-resistant tungsten carbide-based cemented carbide having high strength
JP2001089823A (en) Double boride sintered hard alloy, and screw for resin processing machine using the alloy
JPH1053823A (en) Manufacture of tungsten carbide-base cemented carbide with high strength
JP3063340B2 (en) Production method of fine tungsten carbide powder
CN100390314C (en) Superfine carbide alloy and mfg method thereof
JP3102167B2 (en) Production method of fine composite carbide powder for production of tungsten carbide based cemented carbide
JPH06212341A (en) Sintered hard alloy and its production
JPH10259433A (en) Production of hyperfine-grained tungsten carbide base sintered hard alloy having high strength
JPS6059195B2 (en) Manufacturing method of hard sintered material with excellent wear resistance and toughness
JP3341776B2 (en) Super hard alloy
JP3111709B2 (en) Production method of fine composite carbide powder for production of tungsten carbide based cemented carbide
JP2002060802A (en) Titanium carbonitride powder for hard material and its production method
JP2657602B2 (en) Cemented carbide and its manufacturing method
JP3018795B2 (en) Method for producing fine Co-WC compound powder for powder metallurgy
CN100383272C (en) Superfine carbide alloy and mfg method thereof
JP3045199B2 (en) Manufacturing method of high hardness cemented carbide
JPS634618B2 (en)
JPH0768600B2 (en) Compound boride sintered body

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020326

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080510

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080510

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090510

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100510

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100510

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100510

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100510

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110510

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110510

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120510

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120510

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130510

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130510

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees