JP2007169789A - Method for producing semi-manufactured product or component having high density - Google Patents

Method for producing semi-manufactured product or component having high density Download PDF

Info

Publication number
JP2007169789A
JP2007169789A JP2006344389A JP2006344389A JP2007169789A JP 2007169789 A JP2007169789 A JP 2007169789A JP 2006344389 A JP2006344389 A JP 2006344389A JP 2006344389 A JP2006344389 A JP 2006344389A JP 2007169789 A JP2007169789 A JP 2007169789A
Authority
JP
Japan
Prior art keywords
component
semi
tungsten
molybdenum
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006344389A
Other languages
Japanese (ja)
Other versions
JP5265867B2 (en
Inventor
Wolfgang Spielmann
シュピールマン ヴォルフガング
Gerhard Leichtfried
ライヒトフリート ゲルハルト
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metallwerk Plansee GmbH
Original Assignee
Metallwerk Plansee GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metallwerk Plansee GmbH filed Critical Metallwerk Plansee GmbH
Publication of JP2007169789A publication Critical patent/JP2007169789A/en
Application granted granted Critical
Publication of JP5265867B2 publication Critical patent/JP5265867B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/04Manufacture of electrodes or electrode systems of thermionic cathodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • H01J61/073Main electrodes for high-pressure discharge lamps
    • H01J61/0735Main electrodes for high-pressure discharge lamps characterised by the material of the electrode

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semi-manufactured product or a component having high density particularly in the central part while having a fine structure where crystal grains are fined. <P>SOLUTION: This invention refers to a method for producing a component or a semi-manufactured product having an average relative density of >98.5% and a relative core density of >98.3%, and composed of a substance selected from a group comprising molybdenum, molybdenum alloys, tungsten and tungsten alloys. The method includes: a sintering stage where relative density D is allowed to satisfy 90%<D<98.5% and the ratio of closed pores to the whole porosity is made higher than 0.8; and a stage where hot isostatic pressing is performed at a temperature satisfying (0.40 to 0.65)×a solidus temperature under 50 to 300 MPa. The component manufactured in this way enables the remarkable increase of pot life upon use, e.g., as an electrode. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、98.5%より大の平均相対密度と、98.3%より大の相対コア密度とを有し、モリブデン、モリブデン合金、タングステンおよびタングステン合金を含む群の物質からなる半製品又は構成要素の製造方法に関する。   The present invention provides a semi-finished product comprising a group of materials having an average relative density greater than 98.5% and a relative core density greater than 98.3% and comprising molybdenum, molybdenum alloys, tungsten and tungsten alloys, or The present invention relates to a method for manufacturing a component.

耐熱金属のモリブデン、タングステンおよびそれらの合金は、通常粉末冶金法により製造される。出発物質として精鉱(ore concentrate)を使用し、化学的に加工して中間体を形成し、次いで還元して金属粉末を得る。この場合、還元剤は水素である。合金要素は、還元前、還元中、又は還元後に混合することができる。   The refractory metals molybdenum, tungsten and their alloys are usually produced by powder metallurgy. Using ore concentrate as a starting material, chemically processed to form an intermediate and then reduced to obtain a metal powder. In this case, the reducing agent is hydrogen. The alloy elements can be mixed before, during or after the reduction.

典型的なモリブデン合金はTZM(Ti−Zr−C合金化Mo)、Mo−La23、Mo−Y23およびMo−Si−Bである。タングステン系では、AKS−W(カリウム(K)をドープしたW)、W−ThO2、W−La23、W−Ce23、W−Y23およびAKS−W−ThO2が挙げられる。AKS−WおよびAKS−W−ThO2は特に照明技術で使用される、即ち、特にフィラメントと電極に使用される。AKS−WはKを添加してなり、それが小さな気泡の形をとり、結晶粒の成長を安定化させ、その結果高い操作温度で長時間にわたり、安定な微細構造を保持できる。このことは、特に強力なランプ、例えば金属ハライドランプやショートアークランプ等の、表面温度が2600℃にも達するランプの電極の可使時間特性に極めて重要である。 Typical molybdenum alloys are TZM (Ti—Zr—C alloyed Mo), Mo—La 2 O 3 , Mo—Y 2 O 3 and Mo—Si—B. The tungsten-based, AKS-W (potassium (K) W-doped), W-ThO 2, W -La 2 O 3, W-Ce 2 O 3, W-Y 2 O 3 and AKS-W-ThO 2 Is mentioned. AKS-W and AKS-W-ThO 2 are used in particular in the lighting technology, ie in particular for filaments and electrodes. AKS-W is made by adding K, which takes the form of small bubbles, stabilizes the growth of crystal grains, and as a result can maintain a stable microstructure for a long time at high operating temperatures. This is extremely important for the working life characteristics of the electrodes of particularly powerful lamps such as metal halide lamps and short arc lamps whose surface temperature reaches 2600 ° C.

粉末を、ダイ加工プレス法又は冷間等方加工プレス法によって圧縮し緊密化することができる。寸法の大きな半製品は、冷間等方加工プレス法で製造すると好ましい。線材や小型のロールシートバーの場合、ダイ加工プレス法と冷間等方加工プレス法のいずも使用できる。フィッシャ法による典型的な粒径が2〜5μmのモリブデン粉末と、フィッシャ法による典型的な粒径が1.5〜4.5μmのタングステン粉末とを使用する場合、0.11〜0.17(モリブデン)および0.13〜0.22(タングステン)の範囲の分別かさ密度(fractional bulk density)が得られる。加圧圧力が200〜500MPaである場合、モリブデンおよびタングステンの何れにおいても、0.6〜0.68の分別未焼結密度(fractional green density)が達成される。   The powder can be compressed and densified by a die processing press method or a cold isotropic processing press method. A semi-finished product having a large size is preferably produced by a cold isostatic pressing method. In the case of a wire rod or a small roll sheet bar, either a die processing press method or a cold isostatic pressing method can be used. When using molybdenum powder having a typical particle size of 2 to 5 μm by the Fisher method and tungsten powder having a typical particle size of 1.5 to 4.5 μm by the Fisher method, 0.11 to 0.17 ( Molybdenum) and fractional bulk densities in the range of 0.13 to 0.22 (tungsten) are obtained. When the pressing pressure is 200 to 500 MPa, a fractional green density of 0.6 to 0.68 is achieved in both molybdenum and tungsten.

次のプロセス工程で、その未焼結品を焼結する。この場合該焼結プロセスは、可能な限り焼結体の気孔率が低く、かつ微細結晶粒化された微細構造を有するように実施する。モリブデンおよびタングステンは、通常露点が0℃未満の水素中で焼結される。通常の焼結温度は、モリブデンの場合で1800〜2200℃、タングステンの場合で2100〜2700℃である。通常の焼結時間は、1〜24時間である。かかる焼結プロセスは結晶粒の境界拡散によって定まるので、粒径が小さい場合にはより低温での焼結が可能である。しかし粒径に応じ、焼結される半製品内の細孔サイズも決まってくる。例えば使用するモリブデン粉末の粒径をフィッシャ法による測定で10μmから2.6μm迄小さくすると、細孔のサイズは1/3に減少する。   The green product is sintered in the next process step. In this case, the sintering process is carried out so that the sintered body has as low a porosity as possible and has a finely crystallized microstructure. Molybdenum and tungsten are usually sintered in hydrogen with a dew point of less than 0 ° C. The normal sintering temperature is 1800-2200 ° C. for molybdenum and 2100-2700 ° C. for tungsten. Normal sintering time is 1 to 24 hours. Since this sintering process is determined by boundary diffusion of crystal grains, sintering at a lower temperature is possible when the grain size is small. However, depending on the particle size, the pore size in the semi-finished product to be sintered is also determined. For example, when the particle size of the molybdenum powder used is reduced from 10 μm to 2.6 μm as measured by the Fisher method, the pore size is reduced to 1/3.

しかし微細結晶粒化粉末の欠点は、吸着ガス、特に酸素の割合が高くなることである。それは、焼結プロセス時、酸素が焼結ガス中の水素と反応して水蒸気を生成するからである。未焼結圧密品のガス透過性が低く、しかもそれが焼結プロセス中に一段と低下するため、水蒸気が、特に焼結体の中心部から充分に抜けきれない。このことは、特にフィッシャ法による測定で粒径が4.5μm未満の微細結晶粒化粉末を使用した際に必ず起きる。   However, the disadvantage of finely crystallized powder is that the proportion of adsorbed gas, especially oxygen, is high. This is because during the sintering process, oxygen reacts with hydrogen in the sintering gas to produce water vapor. Since the gas permeability of the unsintered compact is low and it is further lowered during the sintering process, water vapor cannot be sufficiently removed particularly from the center of the sintered body. This occurs inevitably when a fine crystallized powder having a particle size of less than 4.5 μm as measured by the Fisher method is used.

焼結体内部の水蒸気含量が高いと、CVT(化学気相輸送、Chemical Vapor Transport)反応の引き金になる。気相を介した物質輸送によって、このCVT反応は比表面積を低下し、その結果、特に焼結体の内部で焼結のための推進力が低下してしまう。このプロセスは、モリブデンおよびタングステン合金の場合に強力であり、焼結時の添加物が酸素含有化学種を放出し、水蒸気の生成を促進する。かかる例は、AKS−W、Mo−La23又はW−La23で観察される。そのため、特にこれら合金の場合、気相反応により焼結体の寸法に限度が生じる。焼結体の寸法が大きい場合や、極めて微細な結晶粒化粉末を使用する際には、特に焼結体の中心部分で得られる焼結密度が、小さな焼結体やより粗い粉末を使用した場合に比べて低下してしまう。 When the water vapor content in the sintered body is high, it triggers the CVT (Chemical Vapor Transport) reaction. Due to mass transport through the gas phase, this CVT reaction reduces the specific surface area, and as a result, the driving force for sintering, particularly within the sintered body, decreases. This process is powerful in the case of molybdenum and tungsten alloys, and the additive during sintering releases oxygen-containing species and promotes the generation of water vapor. Such examples are observed with AKS-W, Mo-La 2 O 3 or W-La 2 O 3 . Therefore, particularly in the case of these alloys, the size of the sintered body is limited by the gas phase reaction. When the size of the sintered body is large or when using extremely fine crystallized powder, the sintered density obtained at the center of the sintered body is small, or coarser powder is used. It will be lower than the case.

焼結プロセス後、モリブデン、タングステンおよびそれらの合金に、通常加工熱処理を施す。この加工熱処理により、所望の成形、気孔率の低下/除去、所望の機械的性質および微細構造的性質の設定を行える。成形の程度を高くすることで密度を理論密度に迄上げたり、結晶粒のサイズを小さくしたりできる。従って結晶粒のサイズは、選択した成形温度および中間の焼鈍温度に大きく依存する。   After the sintering process, molybdenum, tungsten and their alloys are usually subjected to a processing heat treatment. By this heat treatment, desired molding, porosity reduction / removal, and desired mechanical and microstructural properties can be set. By increasing the degree of molding, the density can be increased to the theoretical density, and the size of the crystal grains can be reduced. Thus, the size of the crystal grains is highly dependent on the selected forming temperature and intermediate annealing temperature.

既述のように、微細結晶粒化粉末を使用したり、焼結プロセスの際に酸素又は水を放出するような化学種を含む合金を使用したりする場合、焼結体のサイズに限度が生ずる。この焼結体から、より寸法の大きな製品を製造しようとすると、そこで可能な成形度では、特に焼結体の中心部の気孔を閉じるには充分でないことがあり得る。   As already mentioned, when using fine grained powders or using alloys containing chemical species that release oxygen or water during the sintering process, the size of the sintered body is limited. Arise. If an attempt is made to produce a larger dimension product from this sintered body, the degree of formability possible there may not be sufficient to close the pores, especially in the center of the sintered body.

このことは、例えばランプの電極材料として使用されるAKSタングステンにあてはまる。特にショートアークランプでは、直径が最高55mmにも達するアノードが使用される。かかる電極の可使時間を決めるのは、その寸法安定性である。電極の変形は、熱により誘導される応力から始まる。この熱的に誘導された応力により、例えば電極の平坦部の領域が持ち上がる可能性がある。するとアークがこの持ち上がり部分に集中し、そのために局所過熱が起きる。このためその領域での電極の溶融が起こり得る。   This applies, for example, to AKS tungsten used as a lamp electrode material. In particular, for short arc lamps, an anode having a maximum diameter of 55 mm is used. It is the dimensional stability that determines the pot life of such electrodes. Electrode deformation begins with heat-induced stress. This thermally induced stress can lift, for example, the flat area of the electrode. Then, the arc concentrates on this raised part, and local overheating occurs. This can cause melting of the electrode in that region.

更に、局所的な過熱に伴い、電極材料の蒸発が盛んになる。蒸発した電極材料がランプの球体の上に堆積し、その結果、光束が著しく低下する。   Furthermore, evaporation of the electrode material becomes active with local overheating. The evaporated electrode material accumulates on the lamp sphere, resulting in a significant reduction in luminous flux.

これ迄の研究の結果、クリープ現象に伴い、前記の持ち上がりが起きることが明らかになった。材料が細孔を含んでいると、それらのクリープ現象が顕著となる。それは、細孔が空隙源および沈下源として働くからである。更に、細孔が熱の消散を抑制するため、局所的な温度上昇が顕著となる。   As a result of research so far, it has been clarified that the above-mentioned lifting occurs with the creep phenomenon. If the material contains pores, these creep phenomena become significant. This is because the pores act as void and sinking sources. Further, since the pores suppress heat dissipation, a local temperature rise becomes remarkable.

これに加えて、微細結晶粒化電極材料はより長い可使時間を示す。これは、粗結晶粒化した材料では、損傷が幾つかの結晶粒境界に集中し、その結果アークが集中するため、自己増強効果がそこで起きるという事実に原因があると考えられる。   In addition to this, the fine grained electrode material exhibits a longer pot life. This is thought to be due to the fact that in a coarse grained material, the damage is concentrated at several grain boundaries, and as a result the arc is concentrated, so that a self-enhancing effect occurs there.

従って、本発明の課題は、微細結晶粒化された微細構造を有しながら、特に中心部において高い密度を持つ半製品又は構成要素を提供することである。   It is therefore an object of the present invention to provide a semi-finished product or component having a high density, especially in the central part, while having a finely grained microstructure.

この課題は、請求項1に記載の特徴を有する方法により解決される。   This problem is solved by a method having the features of claim 1.

本発明の方法を用い、98.5%より大の平均相対密度と、98.3%より大の相対コア密度とを有し、モリブデン、タングステンおよびそれらの合金からなる半製品又は構成要素を製造できる。ここで平均相対密度とは単位容積の重量に関する平均密度を、コア密度とは、当業者の間では、半製品又は構成要素の中心部分の密度を意味する。全体の容積に対するコア容積を特定していないので、以下の記述では、コア密度を求めるためのコア容積を以下のように定義する。即ち、
変形に対して直角の方向と変形の方向の大きさとの積の、総合的な表面積の中心に最も近い10%の部分。
Using the method of the present invention to produce a semi-finished product or component of molybdenum, tungsten and their alloys having an average relative density greater than 98.5% and a relative core density greater than 98.3% it can. Here, the average relative density means the average density with respect to the weight of the unit volume, and the core density means the density of the central part of the semi-finished product or the component among those skilled in the art. Since the core volume with respect to the entire volume is not specified, in the following description, the core volume for obtaining the core density is defined as follows. That is,
10% of the product of the direction perpendicular to the deformation and the size of the deformation direction closest to the center of the total surface area.

変形状態において、半製品又は構成要素が、変形の方向と直角をなす方向に、100結晶粒/mm2より多くの数の結晶粒を有していると好ましい。 In the deformed state, the semi-finished product or component preferably has a number of crystal grains greater than 100 grains / mm 2 in a direction perpendicular to the direction of deformation.

本発明による方法では、フィッシャ法による測定で粒径範囲が0.5〜10μmに入る市販のモリブデンおよびタングステン粉末を使用する。   In the method according to the present invention, commercially available molybdenum and tungsten powders having a particle size range of 0.5 to 10 μm as measured by the Fisher method are used.

それらの粉末に対し、還元プロセスの前、途中又は後に合金化元素を添加してもよい。それらの粉末を、通常の圧縮高密度化プロセス、例えばプレス法又は冷間等方プレス法により、100〜500MPaの圧力下に圧縮し高密度化させる。   Alloying elements may be added to these powders before, during or after the reduction process. These powders are compressed and densified under a pressure of 100 to 500 MPa by a normal compression densification process, for example, a pressing method or a cold isotropic pressing method.

焼結は、(0.55〜0.92)×固相線温度の温度で起きる。この際、焼結温度を選択し、理論密度の90〜98.5%にあたる焼結密度を得て、閉じた細孔の全体の気孔に対する比率を0.8より大きくする。相対密度が98.5%より高いと、目的物、即ち結晶粒の数が100結晶粒/mm2より大きい構成要素又は半製品は製造不可能となる。 Sintering occurs at a temperature of (0.55-0.92) × solidus temperature. At this time, the sintering temperature is selected, a sintered density corresponding to 90 to 98.5% of the theoretical density is obtained, and the ratio of the closed pores to the total pores is made larger than 0.8. If the relative density is higher than 98.5%, it is not possible to produce a target product, ie a component or semi-finished product with a number of grains greater than 100 grains / mm 2 .

閉じた気孔の全体の気孔に対する比率が0.8より大きいと、次の工程である熱間等方加圧プレスで所望の性質が確実に得られる。その値が0.8より低いと、焼結プロセス後2%<ψ<60%である成形工程が必要となる。ψは以下のように定義する。
((初期横断表面積−成形プロセス後横断表面積)/初期横断表面積)×100。
これにより、周辺部の細孔を確実に閉じられる。
When the ratio of the closed pores to the whole pores is larger than 0.8, the desired property can be surely obtained by the hot isostatic press which is the next step. If the value is lower than 0.8, a molding step of 2% <ψ <60% is required after the sintering process. ψ is defined as follows.
((Initial cross-sectional surface area−cross-sectional surface area after molding process) / initial cross-sectional surface area) × 100.
Thereby, the pore of a peripheral part is closed reliably.

熱間等方加圧プレス法は、金型は用いず、50〜300MPaの圧力下、(0.40〜0.65)×固相線温度の温度で実施する。温度が0.4×固相線温度よりも低いと、構成要素又は半製品における98.5%より大の平均相対密度と98.3%より大の相対コア密度という目的を達成できない。温度が0.65×固相線温度より高いと、通常又は異常な結晶粒の成長のため、結晶粒の粗大化が起きるので望ましくない。圧力が50MPaより低いと、同様にして目的とする密度が得られない。圧力が300MPaを超えると、本発明による方法の採算がもはやとれなくなる。   The hot isostatic pressing method is carried out at a temperature of (0.40 to 0.65) × solidus temperature under a pressure of 50 to 300 MPa without using a mold. If the temperature is below 0.4 × solidus temperature, the goal of an average relative density greater than 98.5% and a relative core density greater than 98.3% in the component or semi-finished product cannot be achieved. If the temperature is higher than 0.65 × solidus temperature, it is not desirable because the crystal grains become coarse due to normal or abnormal crystal grain growth. If the pressure is lower than 50 MPa, the desired density cannot be obtained in the same manner. If the pressure exceeds 300 MPa, the method according to the invention is no longer profitable.

それに続く工程で、熱間等方加圧法により圧縮し高密度化した部品の成形を行う。この際の成形度ψは15〜90%である。成形度ψが15%未満であると、98.3%より大の相対コア密度が得られない。成形度が90%を超えると、この方法では採算がとれなくなる。それは、本発明による熱間等方加圧プレス法を使用せずとも、高密度製品の生産が可能だからである。   In the subsequent process, a compacted part is molded by hot isostatic pressing. The forming degree ψ at this time is 15 to 90%. If the forming degree ψ is less than 15%, a relative core density greater than 98.3% cannot be obtained. If the forming degree exceeds 90%, this method cannot be profitable. This is because high-density products can be produced without using the hot isostatic pressing method according to the present invention.

本発明による方法は、放電ランプに使用する直径15〜55mmの電極の製造に特に有用であることが判った。直径が15mm未満の場合には、この種の電極は従来からの製造方法により、経済的に製造することができる。上限の55mmは、この種のランプの限界電力から導いた数字である。   The method according to the invention has been found to be particularly useful for the production of electrodes having a diameter of 15 to 55 mm for use in discharge lamps. When the diameter is less than 15 mm, this type of electrode can be produced economically by conventional production methods. The upper limit of 55 mm is a number derived from the limit power of this type of lamp.

電極のための原料物質は、ラジアル鍛造加工法又は圧延加工法による成形にかけると好ましい。試験の結果、本発明の方法により製造した電極は、従来の製造方法で製造した電極より、平均的に20%長い可使時間を有することが判った。   The raw material for the electrode is preferably subjected to forming by a radial forging method or a rolling method. As a result of the test, it was found that the electrode manufactured by the method of the present invention has a pot life which is 20% longer on average than the electrode manufactured by the conventional manufacturing method.

以下の実施例を用いて、本発明を更に詳しく説明する。   The present invention is described in more detail using the following examples.

実施例
AKS−W電極を製造すべく、フィッシャ法による測定で粒径が4.1μmのAKS−W粉末を使用した。該粉末を、200MPaのプレス圧で、冷間等方加工プレス加工法により圧縮して高密度化させ、未焼結圧密品を成形した。次いで、水素中2250℃で焼結を行った。完成した焼結ロッドは、浮力法を用いた測定で92.0%の平均相対密度を示した。閉じた気孔の比率は95%より大であった。測定は、水銀ポロシメータ法で行った。次工程で、焼結体を熱間等方加圧法により、温度1750℃、圧力195MPaで3時間かけて、圧縮し高密度化した。熱間等方加圧法操作後の相対平均密度は97.9%であった。次いでロッドを、ラジアル鍛造加工機で成形した。成形度ψは67%であった。成形プロセス後、ロッドは99.66%の平均相対密度、99.63%の相対コア密度を示した。未成形の状態および1800℃/4時間の焼鈍後に結晶粒サイズを測定した。未成形の状態ではロッドの中心部および周辺部の何れにおいても、約10000結晶粒/mm2であった。焼鈍状態では、極めて微細な、結晶粒化した微細構造ができており、平均結晶粒数は、ロッドの中心部で約800、周辺部で850結晶粒/mm2であった。
Example In order to produce an AKS-W electrode, an AKS-W powder having a particle size of 4.1 μm as measured by the Fisher method was used. The powder was compressed and densified by a cold isostatic pressing method at a press pressure of 200 MPa to form a green compact. Next, sintering was performed at 2250 ° C. in hydrogen. The finished sintered rod showed an average relative density of 92.0% as measured using the buoyancy method. The percentage of closed pores was greater than 95%. The measurement was performed by the mercury porosimeter method. In the next step, the sintered body was compressed and densified by hot isostatic pressing at a temperature of 1750 ° C. and a pressure of 195 MPa over 3 hours. The relative average density after hot isostatic pressing operation was 97.9%. The rod was then formed on a radial forging machine. The forming degree ψ was 67%. After the molding process, the rod exhibited an average relative density of 99.66% and a relative core density of 99.63%. The grain size was measured after the green state and after annealing at 1800 ° C. for 4 hours. In an unmolded state, it was about 10,000 crystal grains / mm 2 in both the central portion and the peripheral portion of the rod. In the annealed state, a very fine crystallized microstructure was formed, and the average number of crystal grains was about 800 at the center of the rod and 850 grains / mm 2 at the periphery.

この完成したロッドの化学分析を行ったところ、カリウム:15μg/g、ケイ素:6μg/g、炭素:5μg/g未満、酸素:7μg/gなる結果を得た。   Chemical analysis of the finished rod gave results of potassium: 15 μg / g, silicon: 6 μg / g, carbon: less than 5 μg / g, oxygen: 7 μg / g.

本発明により調製した材料を用い、映画投影用の2.5kWショートアークランプのアノードを製造し、平均可使時間が2060時間であることを確認した。比較のため、焼結プロセス後の熱間等方加圧プレス法操作による圧縮高密度化は行わない点を除いて同一の製造プロセスを用いた材料を使用したところ、平均可使時間は1710時間であった。   Using the material prepared according to the present invention, a 2.5 kW short arc lamp anode for movie projection was produced and confirmed to have an average pot life of 2060 hours. For comparison, a material using the same manufacturing process was used except that compression densification by hot isostatic pressing operation after the sintering process was not performed, and the average pot life was 1710 hours. Met.

Claims (9)

モリブデン、モリブデン合金、タングステンおよびタングステン合金を含む群の物質から、98.55%より大の平均相対密度および98.3%より大の相対コア密度を有する構成要素又は半製品を製造する方法であって、以下の工程を含むことを特徴とする方法。
フィッシャ法による測定で0.5〜10μmの粒径を有する粉末を準備する工程、
前記粉末をI00〜500MPaの圧力下で加圧する工程、
(0.55〜0.92)×固相線温度の温度で焼結し、相対密度Dを、90%<D<98.5%とする工程、
金型を使用することなく、(0.40〜0.65)×固相線温度の温度と、50〜300MPaの圧力下で、熱間等方加圧プレス加工をする工程、および
成形度ψが、15%<ψ<90%になるように成形する工程。
A method of producing a component or semi-finished product having a mean relative density greater than 98.55% and a relative core density greater than 98.3% from a group of materials including molybdenum, molybdenum alloys, tungsten and tungsten alloys. A method comprising the following steps:
A step of preparing a powder having a particle size of 0.5 to 10 μm as measured by the Fisher method;
Pressurizing the powder under a pressure of I00 to 500 MPa,
Sintering at a temperature of (0.55 to 0.92) × solidus temperature and setting the relative density D to 90% <D <98.5%,
A process of hot isostatic pressing at a temperature of (0.40 to 0.65) × solidus temperature and a pressure of 50 to 300 MPa without using a mold, and a forming degree ψ Is formed so that 15% <ψ <90%.
前記構成要素又は半製品が、変形した状態で、100結晶粒/mm2より大の平均結晶粒数を有することを特徴とする請求項1記載の方法。 The method of claim 1, wherein the component or semi-finished product has an average grain number greater than 100 grains / mm 2 in a deformed state. 前記熱間等方加圧プレス加工の前に、前記焼結体に2%<ψ<60%の更なる成形を行うことを特徴とする請求項1又は2記載の方法。   The method according to claim 1 or 2, characterized in that, before the hot isostatic pressing, the sintered body is further formed by 2% <ψ <60%. 前記焼結体において、全体の細孔に対する閉じた細孔の比率が、0.8よりも大であることを特徴とする請求項1から3の1つに記載の方法。   4. The method according to claim 1, wherein in the sintered body, a ratio of closed pores to whole pores is larger than 0.8. 5. 前記構成要素又は半製品が、カリウムをドープしたタングステン(AKS−W)からなり、カリウム含量が5〜70μg/gであることを特徴とする請求項1から4の1つに記載の方法。   The method according to one of claims 1 to 4, characterized in that the component or semi-finished product consists of potassium-doped tungsten (AKS-W) and has a potassium content of 5 to 70 μg / g. 前記成形をラジアル鍛造加工又は圧延加工により実施し、この方法によりロッドを製造することを特徴とする請求項1から5に1つ記載の方法。   The method according to claim 1, wherein the forming is performed by a radial forging process or a rolling process, and a rod is manufactured by this method. 前記ロッドが、15〜55mmの直径を有することを特徴とする請求項6記載の方法。   The method according to claim 6, wherein the rod has a diameter of 15 to 55 mm. 前記ロッドを、ランプ電極を製造するために使用することを特徴とする請求項6又は7記載の方法。   8. A method according to claim 6 or 7, characterized in that the rod is used to produce a lamp electrode. 前記ランプ電極を、ショートアークランプに使用することを特徴とする請求項8記載の方法。   9. The method of claim 8, wherein the lamp electrode is used for a short arc lamp.
JP2006344389A 2005-12-23 2006-12-21 Method for producing a high density semi-finished product or component Active JP5265867B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0088805U AT9340U1 (en) 2005-12-23 2005-12-23 METHOD FOR PRODUCING A HIGH-SEALED SEMI-FINISHED OR COMPONENT
ATGM888/2005 2005-12-23

Publications (2)

Publication Number Publication Date
JP2007169789A true JP2007169789A (en) 2007-07-05
JP5265867B2 JP5265867B2 (en) 2013-08-14

Family

ID=37821000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006344389A Active JP5265867B2 (en) 2005-12-23 2006-12-21 Method for producing a high density semi-finished product or component

Country Status (6)

Country Link
US (1) US20070148031A1 (en)
EP (1) EP1801247B1 (en)
JP (1) JP5265867B2 (en)
CN (1) CN101007350B (en)
AT (2) AT9340U1 (en)
DE (1) DE502006000455D1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006061375B4 (en) * 2006-12-22 2019-01-03 Osram Gmbh Mercury high-pressure discharge lamp with an anode containing tungsten and potassium, which has a grain count greater than 200 grains per mm 2 and a density greater than 19.05 g / cm 3
US20090011266A1 (en) * 2007-07-02 2009-01-08 Georgia Tech Research Corporation Intermetallic Composite Formation and Fabrication from Nitride-Metal Reactions
RU2461910C2 (en) * 2007-09-21 2012-09-20 Осрам Аг Gas-discharge direct current lamp
CN101802968B (en) * 2007-09-21 2012-01-11 奥斯兰姆有限公司 Direct-current discharge lamp
DE102008014096A1 (en) * 2008-03-05 2009-09-10 Osram Gesellschaft mit beschränkter Haftung Tungsten electrode for high-pressure discharge lamps and high-pressure discharge lamp with a tungsten electrode
US9992917B2 (en) 2014-03-10 2018-06-05 Vulcan GMS 3-D printing method for producing tungsten-based shielding parts
CN105478772B (en) * 2014-09-15 2018-12-04 安泰科技股份有限公司 A kind of manufacturing method of molybdenum planar targets

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59205404A (en) * 1983-05-06 1984-11-21 Daido Steel Co Ltd Powder solidifying method
JPH0445234A (en) * 1990-06-12 1992-02-14 Tokyo Tungsten Co Ltd Manufacture of tungsten bar stock
JP2001057177A (en) * 1999-08-20 2001-02-27 Yumex Inc Short arc lamp
JP2002371301A (en) * 2001-06-18 2002-12-26 Allied Material Corp Tungsten sintered compact and manufacturing method therefor
WO2005073418A1 (en) * 2004-01-30 2005-08-11 Nippon Tungsten Co., Ltd. Tungsten based sintered compact and method for production thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3649224A (en) * 1968-04-18 1972-03-14 Sylvania Electric Prod Method of making nonsag filaments for electric lamps
US4066449A (en) * 1974-09-26 1978-01-03 Havel Charles J Method for processing and densifying metal powder
US4244738A (en) * 1978-03-24 1981-01-13 Samuel Storchheim Method of and apparatus for hot pressing particulates
US5306569A (en) * 1990-06-15 1994-04-26 Hitachi Metals, Ltd. Titanium-tungsten target material and manufacturing method thereof
US6203753B1 (en) * 1996-05-13 2001-03-20 The Presmet Corporation Method for preparing high performance ferrous materials
DE19738574A1 (en) * 1997-09-04 1999-03-11 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Electrode and method and apparatus for making the same
JP3721014B2 (en) * 1999-09-28 2005-11-30 株式会社日鉱マテリアルズ Method for manufacturing tungsten target for sputtering
US7718117B2 (en) * 2000-09-07 2010-05-18 Kabushiki Kaisha Toshiba Tungsten sputtering target and method of manufacturing the target
US20040244879A1 (en) * 2001-10-09 2004-12-09 Takashi Tanaka Tunsten wire, cathode heater, and filament for vibration service lamp
US20030211001A1 (en) * 2002-05-13 2003-11-13 Advanced Materials Products, Inc. Manufacture of near-net shape titanium alloy articles from metal powders by sintering at variable pressure
AT6240U1 (en) * 2002-06-12 2003-06-25 Plansee Ag ELECTRODE FOR HIGH PRESSURE DISCHARGE LAMP

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59205404A (en) * 1983-05-06 1984-11-21 Daido Steel Co Ltd Powder solidifying method
JPH0445234A (en) * 1990-06-12 1992-02-14 Tokyo Tungsten Co Ltd Manufacture of tungsten bar stock
JP2001057177A (en) * 1999-08-20 2001-02-27 Yumex Inc Short arc lamp
JP2002371301A (en) * 2001-06-18 2002-12-26 Allied Material Corp Tungsten sintered compact and manufacturing method therefor
WO2005073418A1 (en) * 2004-01-30 2005-08-11 Nippon Tungsten Co., Ltd. Tungsten based sintered compact and method for production thereof

Also Published As

Publication number Publication date
US20070148031A1 (en) 2007-06-28
EP1801247A1 (en) 2007-06-27
JP5265867B2 (en) 2013-08-14
AT9340U1 (en) 2007-08-15
CN101007350A (en) 2007-08-01
DE502006000455D1 (en) 2008-04-24
CN101007350B (en) 2012-07-04
EP1801247B1 (en) 2008-03-12
ATE389040T1 (en) 2008-03-15

Similar Documents

Publication Publication Date Title
JP5265867B2 (en) Method for producing a high density semi-finished product or component
KR100457724B1 (en) Tungsten target for sputtering and method for preparing thereof
US7419926B2 (en) Sintered bodies based on niobium suboxide
JP4796041B2 (en) Manufacturing method of sintered nuclear fuel
JP4541969B2 (en) Aluminum powder alloy composite material for neutron absorption, method for manufacturing the same, and basket manufactured therewith
JP5234735B2 (en) Tantalum-ruthenium alloy sputtering target
JP2006249578A (en) Molybdenum alloy
KR102519021B1 (en) Tungsten silicide target and method of manufacturing same
JP4885065B2 (en) Method for manufacturing tungsten sintered compact target for sputtering
KR101288592B1 (en) Method of manufacturing an oxide dispersion strengthened platinum-rhodium alloy
JP2005171389A (en) Method for manufacturing tungsten target for sputtering
JP2003055758A (en) Tungsten sintered compact target for sputtering, and its manufacturing method
US20030211001A1 (en) Manufacture of near-net shape titanium alloy articles from metal powders by sintering at variable pressure
JP3764315B2 (en) Tungsten material and manufacturing method thereof
JP2014051712A (en) Cu-Ga-BASED ALLOY TARGET AND METHOD FOR PRODUCING THE SAME
CN113981387B (en) Preparation method of tungsten-silicon target
JP5496078B2 (en) Sb-Te alloy powder for sintering, method for producing the same, and sintered body target
TW201510244A (en) Method for preparing platinum-rhodium-oxide based alloy
WO2015064808A1 (en) Oxide dispersion strengthened platinum-rhodium alloy manufacturing method for manufacturing lcd glass by using spark plasma sintering
JP2015517030A (en) Manufacturing method of oxide dispersion strengthened platinum-gold alloy
JP2011084808A (en) Heat resistant alloy having oxidation resistance
JPH0635602B2 (en) Manufacturing method of aluminum alloy sintered forgings
MXPA04007104A (en) Stabilized grain size refractory metal powder metallurgy mill products.
JP7363059B2 (en) Manufacturing method of thermoelectric conversion material
JP2007162064A (en) Method of manufacturing magnetostriction material powder, and method of manufacturing magnetostrictor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091016

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130502

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5265867

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250