JPH01246342A - Supermagnetostrictive material and its manufacture - Google Patents

Supermagnetostrictive material and its manufacture

Info

Publication number
JPH01246342A
JPH01246342A JP63073439A JP7343988A JPH01246342A JP H01246342 A JPH01246342 A JP H01246342A JP 63073439 A JP63073439 A JP 63073439A JP 7343988 A JP7343988 A JP 7343988A JP H01246342 A JPH01246342 A JP H01246342A
Authority
JP
Japan
Prior art keywords
powder
alloy
hot
giant magnetostrictive
magnetostrictive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63073439A
Other languages
Japanese (ja)
Inventor
Shinichirou Yahagi
矢荻 慎一郎
Akihiko Saito
斉藤 章彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP63073439A priority Critical patent/JPH01246342A/en
Publication of JPH01246342A publication Critical patent/JPH01246342A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture the title material having high absolute value of satulated magnetostriction and having excellent mechanical strength by quenching the molten metal of an alloy constituted of transition metals such as Fe, Ni and Co and lanthanoids into the shape of powder having fine crystal grains and converting it into a block by hot pressing treatment, etc. CONSTITUTION:The molten metal of an alloy expressed by the general formula RTx (in the formula, R denotes at least one kind of lanthanoids among La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu, T denotes at least one kind among the transition metals such as Fe, Ni and Co and X satisfies 1.0<=X<=9.0 by atomic mol number) is quenched at a cooling speed of 10<3>-10<5> deg.C/sec and is converted into the shape of a thin strip or flake having an extremely fine structure of <=15mum crystal grain size. It is ground into the shape of powder having 200mum average grain size, and as the starting material, is converted into a block by a hot pressing method or a hot isostatic pressing method, by which the supermagnetostrictive material having extremely high absolute value of the saturated magnetostriction and having high mechanical strength and density for fine crystal grains can be manufactured.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は超磁歪材料とそれを製造する方法に関し、飽和
磁歪の絶対値が大きくかつ機械的強度も優れている新規
な超磁歪材料とその製造方法に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a giant magnetostrictive material and a method for manufacturing the same, and relates to a novel giant magnetostrictive material that has a large absolute value of saturation magnetostriction and excellent mechanical strength, and its method. Regarding the manufacturing method.

(従来の技術) 磁化変化を形状変化に転換できる(その逆も可能な)磁
歪材料は、その特性を生かして古くから例えば超音波発
振器用の材料として用いられている。そして最近、希土
類元素と遷移金属とからなる材料において巨大な磁歪を
示すことが発見されて以来、各種技術分野における軽薄
短小化動向の進む中で、各種機器の微調整制御を行なう
際の材料として新たに脚光を浴びつつある。
(Prior Art) Magnetostrictive materials that can convert magnetization changes into shape changes (and vice versa) have long been used as materials for ultrasonic oscillators, for example, by taking advantage of their properties. Recently, it was discovered that materials made of rare earth elements and transition metals exhibit enormous magnetostriction, and as the trend towards lighter, thinner, and smaller materials progresses in various technical fields, materials are being used to fine-tune and control various devices. It is newly attracting attention.

ところで、従来から超磁歪材料を製造する方法には、大
別して次のような切断法と粉末法が知られている。
By the way, conventionally known methods for manufacturing giant magnetostrictive materials are roughly divided into the following cutting method and powder method.

前者の方法においては、まず所定組成の磁性合金を溶融
したのちその融液を冷却して該合金の単結晶または結晶
粒の結晶軸方向が一方向に配向して凝固しているインゴ
ットを調製する。このインゴットは極めて脆い材料であ
り、熱間加工することもできないので、このインゴット
には切断、研摩加工が施されて所定形状の材料が切出さ
れるのである。 また、この方法の変形として、前記し
た磁性合金の融液を例えば石英管を用いて吸上げそのま
ま石英管内で凝固せしめるという方法も行なわれている
In the former method, a magnetic alloy of a predetermined composition is first melted, and then the melt is cooled to prepare an ingot in which the single crystal or crystal grains of the alloy are solidified with their crystal axes oriented in one direction. . Since this ingot is an extremely brittle material and cannot be hot worked, the ingot is cut and polished to cut out material in a predetermined shape. In addition, as a modification of this method, a method is also used in which the melt of the magnetic alloy described above is sucked up using, for example, a quartz tube and solidified as it is within the quartz tube.

次に後者の方法においては、前記したインゴットを所定
粒径の微粉に粉砕し、得られた微粉を金型内に充填して
予備成形し、ついでこの成形体を所定の条件下で焼結し
たのちこの焼結体を所定形状に加工することが行なわれ
ている。
Next, in the latter method, the above-mentioned ingot is pulverized into fine powder with a predetermined particle size, the obtained fine powder is filled into a mold and preformed, and then this molded body is sintered under predetermined conditions. This sintered body is later processed into a predetermined shape.

(発明が解決しようとする課B) しかしながら、前者の方法の場合、合金融液を凝固する
ときに、成長してくる結晶粒の結晶軸方向を一方向に配
向せしめることが必要となるため、その凝固速度は小さ
く設定することが必要になる。
(Problem B to be solved by the invention) However, in the case of the former method, when solidifying the alloy liquid, it is necessary to orient the crystal axes of the growing crystal grains in one direction. It is necessary to set the solidification rate low.

すなわち、この方法の場合はインゴット調製時の生産性
が低くなり工業的メリットは少ない。
That is, in the case of this method, the productivity during ingot preparation is low and there is little industrial merit.

また、インゴットの切断、研摩加工時には、不可避的に
多量の切断、研摩ロスが発生してしまう。
Further, when cutting and polishing the ingot, a large amount of cutting and polishing loss inevitably occurs.

しかも特性が均一な材料を切出すためには高度な熟練を
必要にするという問題もある。
Moreover, there is also the problem that a high degree of skill is required to cut out a material with uniform properties.

更に、石英管等で合金融液を吸上げる方法の場合は、大
物形状の材料や複雑形状の材料を製造することができな
いという制約がある。
Furthermore, in the case of the method of sucking up the alloy liquid using a quartz tube or the like, there is a restriction that it is not possible to manufacture materials with large shapes or materials with complicated shapes.

後者の粉末法の場合、合金内には一最に希土類元素が含
有されているので、微粉の取扱い過程で雰囲気中に酸素
が混入すると、希土類元素の酸化が急速に進んで微粉が
発火したり、更には爆発するという事態を招くことがあ
る。それゆえ、その防止のためには防爆設備等信の付帯
設備が不可欠となる。
In the case of the latter powder method, rare earth elements are primarily contained in the alloy, so if oxygen gets mixed into the atmosphere during the handling process of the fine powder, oxidation of the rare earth elements will proceed rapidly and the fine powder may catch fire. This may even lead to an explosion. Therefore, to prevent this, explosion-proof equipment and other auxiliary equipment are essential.

また、この方法で得られた焼結体は、その密度が理論密
度に対し95%程度であって、その内部には空隙が残存
している。それゆえ、その機械的強度も小さく脆性であ
り使用中の破損事故を招くことが多い、また、空隙を有
するため、耐酸化性も低く、時として発錆することがあ
る。
Further, the density of the sintered body obtained by this method is about 95% of the theoretical density, and voids remain inside the sintered body. Therefore, its mechanical strength is low and it is brittle, which often causes breakage during use.Furthermore, since it has voids, its oxidation resistance is low, and it sometimes rusts.

ところで、最近、飽和磁歪の絶対値の大きい磁歪材料の
開発が進められているが、その材料の1つとして組成が
次式、RITI、+ (式中、R゛はSII、Tb5D
V等のランタニド元素、T゛はFe、、Go、 Niの
遷移金属、Xoは原子モル数で通常2付近の数値である
)で示される金属間化合物が注目されている。
By the way, recently, the development of magnetostrictive materials with a large absolute value of saturation magnetostriction has been progressing, and one of these materials has a composition of the following formula: RITI, + (where R' is SII, Tb5D
Intermetallic compounds represented by lanthanide elements such as V, T' are transition metals such as Fe, Go, and Ni, and Xo is the number of atomic moles, usually around 2, are attracting attention.

この化合物のうち、SmFezはその飽和磁歪の絶対値
(1λ、1)が1000 X 10− ” (測定条件
:測定温度は室温、印加磁界はl0KO,)と大きく、
超磁歪材料としての価値が高い。
Among these compounds, SmFez has a large absolute value of saturation magnetostriction (1λ, 1) of 1000 x 10-'' (measurement conditions: measurement temperature is room temperature, applied magnetic field is 10KO,);
Highly valuable as a giant magnetostrictive material.

この材料はたしかに1λ、1は大きいが、しかし、その
結晶粒の大きさはその粒径が通常数100μm程度と大
きいので、このSmFetから製造された磁歪材料にお
いては、粒界蓄積歪みが太き(、破壊応力は小さく、そ
の機械的強度が小さいという問題がある。
It is true that this material has a large value of 1λ, 1, but its crystal grains are usually as large as several 100 μm, so in the magnetostrictive material manufactured from this SmFet, the grain boundary accumulated strain is large. (The problem is that the fracture stress is small and the mechanical strength is low.

これは、インゴットの調製時に一方向性凝固処理が施さ
れるため、上記したように、その結晶粒径が粗大になる
ためであるといえる。
This can be said to be because, as described above, the crystal grain size becomes coarse due to the unidirectional solidification treatment performed during the preparation of the ingot.

本発明は、上記したような従来の材料に関する問題を解
決し、結晶粒が微細であり、それゆえ機械的強度が優れ
ている新規な&lll磯構造を有する超磁歪材料とその
製造方法の提供を目的とする。
The present invention solves the problems related to conventional materials as described above, and provides a novel giant magnetostrictive material having a &llll iso structure, which has fine crystal grains and therefore excellent mechanical strength, and a method for manufacturing the same. purpose.

(課題を解決するための手段) 本発明者らは上記課題を解決するために鋭意研究を重ね
た結果、原料として、後述する組成でしかも結晶粒径の
小さい合金粉末を用い、これを後述する方法で熱間プレ
スまたは熱間静水圧プレスした材料は、IJ、lが高く
、しかも機械的強度が優れているとの事実を見出し、本
発明の趙磁歪材料とその製造方法を開発するに到った。
(Means for Solving the Problems) As a result of extensive research in order to solve the above problems, the present inventors used an alloy powder with the composition described below and a small crystal grain size as a raw material, and the following We discovered that materials hot pressed or hot isostatically pressed by this method have high IJ,l and excellent mechanical strength, and we have developed the Zhao magnetostrictive material of the present invention and its manufacturing method. It was.

すなわち、本発明の超磁歪材料は、次式: RTx(た
だし、式中、RはLa、 Ce、 Pr、 Nd、 S
m、Eu、Gd、 Tb5Dy、 Ho、、Er、 T
m、 Yb、 Luの群から選ばれる少なくとも1種の
ランタニド元素を表わし、TはFe、 Co、 Niの
群から選ばれる少なくとも1種の遷移金属を表わし、X
は原子モル数で1.0≦x≦9.0の関係を満足する数
を表わす)で示される組成から成り、かつ、結晶粒径が
15μm以下であることを特徴とし、その製造方法は、
前記組成の合金に冷却速度が1(1’〜10”C/se
cである溶湯急冷法を適用して前記合金の薄帯若しくは
フレークを調製することを特徴とする。そして好ましく
は、前記薄帯若しくはフレークを粉砕したのち得られた
粉末に熱間プレス処理または熱間静水圧プレス処理を施
してブロック化し、更には前記薄帯若しくはフレークを
用いて熱間塑性変形加工を施すのである。
That is, the giant magnetostrictive material of the present invention has the following formula: RTx (wherein, R is La, Ce, Pr, Nd, S
m, Eu, Gd, Tb5Dy, Ho, Er, T
represents at least one lanthanide element selected from the group of m, Yb, and Lu; T represents at least one transition metal selected from the group of Fe, Co, and Ni;
is a number satisfying the relationship of 1.0≦x≦9.0 in terms of atomic moles), and has a crystal grain size of 15 μm or less, and its manufacturing method includes:
For an alloy with the above composition, a cooling rate of 1 (1' to 10"C/se
The method is characterized in that a ribbon or flake of the alloy is prepared by applying the molten metal quenching method described in c. Preferably, the powder obtained after pulverizing the ribbon or flakes is subjected to hot pressing treatment or hot isostatic pressing treatment to form a block, and further, the ribbon or flakes are subjected to hot plastic deformation processing. This is what we do.

まず本発明の超磁歪材料は上記RTxで示される金属間
化合物から構成されているが、その場合、遷移金属:T
の原子モル数(x)が1.0未満の場合、および9.0
より大きい場合は磁歪が極端に小さくなって目的が達成
されない、Xの好ましい範囲は1.5〜2.5である。
First, the giant magnetostrictive material of the present invention is composed of the intermetallic compound represented by RTx, in which case the transition metal: T
When the number of atomic moles (x) of is less than 1.0, and 9.0
If it is larger, the magnetostriction will become extremely small and the objective will not be achieved.The preferred range of X is 1.5 to 2.5.

とくに好ましい組成としては、例えば、SヨF、8.。Particularly preferable compositions include, for example, SyoF, 8. .

をあげることができる。can be given.

更にこの材料において、上記金属間化合物の結晶粒径は
15μm以下の範囲内に設定される。ここでいう結晶粒
径とは、JIS  G−0552で規定する方法で測定
した値をいう、15μmより大きい場合は得られた材料
の機械的強度が低下し、用途に応じた所定形状への加工
時にワレ、カケ等が発生して不都合だからである。
Furthermore, in this material, the crystal grain size of the intermetallic compound is set within a range of 15 μm or less. The crystal grain size here refers to the value measured by the method specified in JIS G-0552. If it is larger than 15 μm, the mechanical strength of the obtained material will decrease, making it difficult to process it into a predetermined shape depending on the application. This is because cracks, chips, etc. sometimes occur, which is inconvenient.

本発明の超磁歪材料は次のようにして製造することがで
きる。
The giant magnetostrictive material of the present invention can be manufactured as follows.

すなわち、上記した組成の合金に溶湯急冷法を適用して
該合金の薄帯若しくはフレークを調製する。
That is, a molten metal quenching method is applied to an alloy having the above-mentioned composition to prepare a ribbon or flake of the alloy.

この場合の溶湯急冷法において、合金融液の冷却速度は
103〜10 ”C/secの範囲内に設定される。冷
却速度が103℃/secより小さい場合は、得られた
薄帯若しくはフレークにおける合金の結晶粒は粗大化し
て、その結晶粒径が15μmより大きくなってしまい、
また10’″C/secより大きい冷却速度の場合は、
得られた薄帯若しくはフレークは一部非晶質となるので
焼なましを行なうことが必要となるからである。なお、
この工程は、A1のような不活性ガス雰囲気中または真
空中で行なわれる。
In the molten metal quenching method in this case, the cooling rate of the alloy liquid is set within the range of 103 to 10"C/sec. If the cooling rate is lower than 103C/sec, the resulting The crystal grains of the alloy become coarse and the grain size becomes larger than 15 μm,
In addition, if the cooling rate is greater than 10'''C/sec,
This is because the obtained ribbon or flake becomes partially amorphous and therefore requires annealing. In addition,
This step is carried out in an inert gas atmosphere such as A1 or in vacuum.

更に上記工程に続けて、上記のようにして得られた薄帯
若しくはフレークを粉砕して所定粒径の粉末にしてもよ
い、この場合の粉砕処理は、不活性雰囲気中または真空
中において、粉砕機等からの外部汚染を防止しつつ、得
られる粉末の平均粒径が約200μmとなるように行な
われる。なお、この粉砕処理に先立ち、薄帯若しくはフ
レークをそれらの結晶化温度末端の所定の温度で焼鈍し
て薄帯若しくはフレークの調製時に蓄積された歪みを除
去してもよい。
Further, following the above steps, the ribbon or flakes obtained as described above may be ground into powder with a predetermined particle size. This is carried out while preventing external contamination from machines etc. so that the average particle size of the obtained powder is about 200 μm. Note that, prior to this pulverization treatment, the ribbon or flakes may be annealed at a predetermined temperature at the end of their crystallization temperature to remove distortion accumulated during the preparation of the ribbon or flakes.

また、上記の粉砕処理で得られた粉末に熱間プレス(H
P)処理若しくは熱間静水圧プレス(HIP)処理を施
してブロック化してもよい。
In addition, hot pressing (H
P) treatment or hot isostatic pressing (HIP) treatment may be performed to form blocks.

このとき、粉末にHP処理を施す場合は、この粉末に予
め次のような予備成形を施すことが好ましい、すなわち
、真空または不活性雰囲気中において、上記した粉末に
ステアリン酸亜鉛のようなバインダを適量(例えば0.
5重量%程度)添加して成る混合粉を所定形状の型内に
充填し、常温下、2〜10 ton/cdのプレス圧で
成形するのである。
At this time, when the powder is subjected to HP treatment, it is preferable to preform the powder in the following way. Namely, in a vacuum or an inert atmosphere, the powder is coated with a binder such as zinc stearate. Appropriate amount (e.g. 0.
The mixed powder obtained by adding about 5% by weight) is filled into a mold of a predetermined shape and molded at room temperature with a press pressure of 2 to 10 ton/cd.

HP処理時の条件は、得られるブロック状の超磁歪材料
が目的とする組成、密度、機械的強度等の関係から適宜
選定されるが、通常プレス時の温度は500〜900℃
、好ましくは600〜700°C、プレス圧は0.5〜
5 ton/c+i、好ましくは約2ton/dに設定
される。
The conditions during HP processing are appropriately selected depending on the desired composition, density, mechanical strength, etc. of the block-shaped giant magnetostrictive material obtained, but the temperature during pressing is usually 500 to 900°C.
, preferably 600~700°C, press pressure 0.5~
5 ton/c+i, preferably about 2 ton/d.

つぎにHIP処理を施す場合は、上記した粉末を炭素鋼
、オーステナイト系ステンレス!l(例えばSUS  
304)のような缶体容器に充填したのち全体を密封し
、この缶体容器に圧力媒体中で静水圧を印加して高密度
化すればよい、このときに適用される温度は500〜9
00°C5圧力は約2000気圧であることが好ましい
Next, when performing HIP treatment, use the powder described above for carbon steel, austenitic stainless steel! l (e.g. SUS
304), the whole can is sealed, and hydrostatic pressure is applied to the can in a pressure medium to densify the can.The temperature applied at this time is 500 to 9
Preferably, the 00°C5 pressure is about 2000 atmospheres.

なお、上記したHP処理、HIP処理によって、結晶軸
方向が適正に配向しておりまた機械的強度も大きいブロ
ック状の超磁歪材料が得られるが、−層配向度を高めて
その1λ、1を大たらしめるためには、更に後述の熱間
塑性変形加工を施すことが好ましい。
By the above-mentioned HP treatment and HIP treatment, a block-shaped giant magnetostrictive material with properly oriented crystal axes and high mechanical strength can be obtained. In order to increase the size, it is preferable to further perform hot plastic deformation as described below.

すなわち、HP処理、HIP処理によって得られたブロ
ック素材に熱間押出成形、熱間静水圧加工を施したり、
または熱間アップセット加工を施せばよい、また溶湯急
冷法で製造した粉末を直接熱間塑性変形を生じしめるよ
うな加工(例えば熱間押出し成形、熱間静水圧加工、熱
間アップセット加工)などを施してもよい、このときの
適用温度は通常500〜900°Cであり、適用圧は約
10ton/cj、また加工率は50%以上であること
が好ましい、(発明の実施例) 実施例1〜3 表示した組成の合金を高周波誘導炉で溶融し、得られた
融液を高速回転する銅ロール上に噴射してフレークを調
製した。融液の冷却速度を表に示した。
That is, hot extrusion molding, hot isostatic pressure processing is performed on the block material obtained by HP treatment and HIP treatment,
Alternatively, hot upset processing may be applied, or processing that directly causes hot plastic deformation of powder produced by molten metal quenching (e.g. hot extrusion, hot isostatic pressing, hot upset processing) The applied temperature at this time is usually 500 to 900°C, the applied pressure is preferably about 10 ton/cj, and the processing rate is preferably 50% or more. (Embodiment of the invention) Implementation Examples 1-3 Alloys of the indicated compositions were melted in a high frequency induction furnace and the resulting melt was injected onto a high speed rotating copper roll to prepare flakes. The cooling rate of the melt is shown in the table.

得られたフレークをA、雰囲気中で粉砕し、平均粒径1
50μmの粉末とした。
The obtained flakes were crushed in A, atmosphere, and the average particle size was 1.
It was made into a powder of 50 μm.

ついでこの粉末に0.5重量%量のステアリン酸亜鉛を
混合して直径30閣の型内に充填し、8 ton/dの
圧で予備成形して直径30m高さ10mmのペレットに
した。
Next, this powder was mixed with 0.5% by weight of zinc stearate, filled into a mold with a diameter of 30 cm, and preformed at a pressure of 8 tons/d to form pellets with a diameter of 30 m and a height of 10 mm.

このペレットを直径32■の金型内に静置し、真空中、
温度850°C1圧2 ton/cdの条件でHP処理
に付し、直径32園厚み1wmのペレットを得た。
This pellet was placed in a mold with a diameter of 32 cm, and in a vacuum,
The pellets were subjected to HP treatment at a temperature of 850° C. and a pressure of 2 ton/cd to obtain pellets with a diameter of 32 mm and a thickness of 1 wm.

得られたペレットにつき下記仕様で各種特性を測定した
Various properties of the obtained pellets were measured according to the following specifications.

結晶粒径(μm):各試片の切出し面を鏡面研磨したの
ち、その面を顕微鏡(倍率400)で観察した。
Crystal grain size (μm): After mirror polishing the cut surface of each sample, the surface was observed with a microscope (400 magnification).

飽和磁歪(1λ司):ペレットを水冷エメリーダイアモ
ンドカッター等の刃を用いて切断加工をして、縦5M横
5閣長さ30mの飽和磁歪測定用の試片を切出し、室温
、外部磁界10KOeの条件下において1λ、1を測定
した。
Saturation magnetostriction (1λ): Cut the pellet using a blade such as a water-cooled emery diamond cutter to cut out specimens for saturation magnetostriction measurement with a length of 5 m and a width of 5 cm and a length of 30 m. 1λ,1 was measured under the following conditions.

機械的強度二上記した試片につき曲げ強度を測定した。Mechanical Strength 2 The bending strength of the specimens described above was measured.

あわせて、上記試片の切出し時における切出し面のカケ
の有無を観察し定性的にも強度を判定した。
In addition, the strength was determined qualitatively by observing the presence or absence of chips on the cut surface when cutting out the specimen.

密度(%):上記試片につきX線でその真密度を算出し
、各試片の理論密度に対する百分率で示した。
Density (%): The true density of each specimen was calculated using X-rays and expressed as a percentage of the theoretical density of each specimen.

以上の結果を一括して表に示した。The above results are summarized in the table.

実施例4.5 表示組成の合金に溶湯急、冷法を適用してフレークを調
製し、このフレークを実施例1〜3と同様にして粉砕し
、平均粒径150μmの粉末を得た。
Example 4.5 Flakes were prepared by applying the molten metal rapid cooling method to an alloy having the indicated composition, and the flakes were ground in the same manner as in Examples 1 to 3 to obtain powder with an average particle size of 150 μm.

なお、溶湯急冷法の適用時における冷却速度は表示のと
おりである。
The cooling rate when applying the molten metal quenching method is as shown.

ついで粉末を直径50m深さ30mの炭素鋼製缶体に充
填し、缶体に蓋をし密封した。ついで、この缶体を圧力
媒体がA1であるHIP装置にセットし、温度700°
C1圧力2 ton/c−でプレスした。
The powder was then filled into a carbon steel can body with a diameter of 50 m and a depth of 30 m, and the can body was sealed with a lid. Next, this can body was set in a HIP device where the pressure medium was A1, and the temperature was raised to 700°.
It was pressed at a C1 pressure of 2 ton/c-.

得られたブロックにつき、実施例1〜3の場合と同様に
して、結晶粒径、飽和磁歪、機械的強度、密度を測定し
その結果を表に示した。
Regarding the obtained blocks, the crystal grain size, saturation magnetostriction, mechanical strength, and density were measured in the same manner as in Examples 1 to 3, and the results are shown in the table.

実施例6.7 実施例1のペレットに温度700″C1押出し比7.0
(S、/S、ただし、So:初期試験片の断面積、S:
加工後試験片の断面積)の条件で加工を施した。得られ
た材料を実施例5とした。
Example 6.7 The pellets of Example 1 were subjected to a temperature of 700″ C1 extrusion ratio of 7.0.
(S, /S, where So: cross-sectional area of the initial test piece, S:
The processing was carried out under the following conditions (cross-sectional area of the test piece after processing). The obtained material was designated as Example 5.

合金組成がTb*、 Jys、 Je+、 scO*、
 +Nie、 +であったことを除いては実施例3と同
様の方法でペレットを製造し、ついでこのペレットに温
度670°c1圧力1.5 ton/cjの条件で熱間
アップセット加工を施した。得られた試料を実施例6と
した。
The alloy composition is Tb*, Jys, Je+, scO*,
Pellets were produced in the same manner as in Example 3, except that the results were +Nie, +, and then the pellets were subjected to hot upset processing at a temperature of 670°C and a pressure of 1.5 ton/cj. . The obtained sample was designated as Example 6.

これらの試料についても実施例1〜3と同様の方法で各
特性を判定し、その結果を表に示した。
Each characteristic of these samples was determined in the same manner as in Examples 1 to 3, and the results are shown in the table.

比較例1 組成: SmFezの合金を調製し、冷却速度的200
″C/hrで徐冷してインゴットを調製した。このイン
ゴットから実施例1〜3と同一形状の試片を切出し、同
様の方法で各特性を測定した。その結果を表に示した。
Comparative Example 1 Composition: An alloy of SmFez was prepared and the cooling rate was 200%.
An ingot was prepared by slow cooling at a temperature of 1.5 C/hr. Samples having the same shape as in Examples 1 to 3 were cut from this ingot, and each characteristic was measured in the same manner. The results are shown in the table.

比較例2 比較例1の合金融液を直径5.0 mの石英管で吸上げ
たのち冷却し、直径5.01長さ2.0 mの棒体を製
造した。この特性を表に示した。
Comparative Example 2 The alloy liquid of Comparative Example 1 was sucked up by a quartz tube with a diameter of 5.0 m, and then cooled to produce a rod with a diameter of 5.0 m and a length of 2.0 m. This characteristic is shown in the table.

比較例3 冷却用銅板の上に黒鉛るつぼを置き、この中に比較例1
の合金融液を注入し、るつぼ外周に配設した上下方向に
可動な高周波誘導加熱コイルを下から上に移動せしめて
、冷却速度が100°C/hrとし、一方向冷却の棒体
を製造した。この特性を表に示した。
Comparative Example 3 A graphite crucible was placed on a cooling copper plate, and Comparative Example 1 was placed in it.
A unidirectionally cooled rod was produced by injecting the alloying liquid and moving a vertically movable high-frequency induction heating coil placed around the outer periphery of the crucible from bottom to top to achieve a cooling rate of 100°C/hr. did. This characteristic is shown in the table.

(以下余白) (発明の効果) 以上の説明で明らかなように、本発明の超磁歪材料は、
その構成が、次式:RTx(ただし、式中、RはLa、
 Ce、 Pr、 Nd5SIISEu、、Gd、 T
b、 Dy、 Ilo。
(The following is a blank space) (Effects of the invention) As is clear from the above explanation, the giant magnetostrictive material of the present invention has
Its configuration is the following formula: RTx (wherein, R is La,
Ce, Pr, Nd5SIISEu,, Gd, T
b, Dy, Ilo.

Er、 Tm、 Yb、 Luの群から選ばれる少なく
とも1種のランタニド元素を表わし、TはFe5CoS
Niの群から選ば れる少なくとも1種の遷移金属を表
し、Xは原子モル数で1.0≦x≦9.0の関係を満足
する数を表わす)で示される組成から成り、かつ、結晶
粒径が15pm以下であることを特徴とし、また、その
製造方法は、前記した組成の合金に冷却速度が103〜
10’°(:/secである溶湯急冷却法を適用して前
記合金の薄帯若しくはフレークを調製することを特徴と
し、更には、前記薄帯若しくはフレークを粉砕したのち
得られた粉末に熱間プレス処理または、熱間静水圧プレ
ス処理を施してブロック化することを特徴としたので、
この材料は、その飽和磁歪の絶対値が従来材料に比べて
非常に大きくなり、同時に高密度であるためその機械的
強度が大きく種々の形状に加工することができるように
なる。 とくに、熱間塑性変形加工を施したものは、結
晶配向度が高くかつ飽和磁歪の絶対値が高く超磁歪材料
として望ましいものである。
represents at least one lanthanide element selected from the group of Er, Tm, Yb, and Lu, and T is Fe5CoS
represents at least one transition metal selected from the group of Ni; It is characterized by having a diameter of 15 pm or less, and the method for producing it is characterized in that the alloy having the above composition has a cooling rate of 103 to
The method is characterized in that a ribbon or flake of the alloy is prepared by applying a molten metal rapid cooling method of 10'° (:/sec), and further, the ribbon or flake is crushed and the obtained powder is heated. Because it is characterized by being made into blocks by applying an intermediate press treatment or a hot isostatic press treatment,
This material has a much larger absolute value of saturation magnetostriction than conventional materials, and at the same time, because it has a high density, its mechanical strength is high and it can be processed into various shapes. In particular, those subjected to hot plastic deformation have a high degree of crystal orientation and a high absolute value of saturation magnetostriction, and are desirable as giant magnetostrictive materials.

不発明の超磁歪材料は、例えば、コンピュータの端末ハ
ンマプリンタ用、カメラのオートフォーカスの微調整用
、VTR,CDのトラッキングの位置制御用、ロボット
の機能部材、更にはイオントンネル顕微鏡の焦点微調整
用など磁気変化と形状(寸法)変化の微調整を必要とす
る分野に使用することができその工業的価値は極めて大
である。
The uninvented giant magnetostrictive material can be used, for example, in computer terminal hammer printers, camera autofocus fine adjustment, VTR and CD tracking position control, robot functional parts, and even ion tunnel microscope focus fine adjustment. It can be used in fields that require fine adjustment of magnetic changes and shape (dimensional) changes, such as industrial applications, and its industrial value is extremely large.

Claims (4)

【特許請求の範囲】[Claims] (1)次式:RT_x(ただし、式中、RはLa、Ce
、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、
Er、Tm、Yb、Luの群から選ばれる少なくとも1
種のランタニド元素を表わし、TはFe、Co、Niの
群から選ばれる少なくとも1種の遷移金属を表わし、x
は原子モル数で1.0≦x≦9.0の関係を満足する数
を表わす)で示される組成から成り、かつ、結晶粒径が
15μm以下であることを特徴とする超磁歪材料。
(1) The following formula: RT_x (wherein, R is La, Ce
, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho,
At least one selected from the group of Er, Tm, Yb, and Lu
represents a lanthanide element, T represents at least one transition metal selected from the group of Fe, Co, and Ni, and x
A giant magnetostrictive material, characterized in that it has a composition represented by the number of atomic moles (expressing a number satisfying the relationship 1.0≦x≦9.0), and has a crystal grain size of 15 μm or less.
(2)次式:RT_x(ただし、式中、RはLa、Ce
、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、
Er、Tm、Yb、Luの群から選ばれる少なくとも1
種のランタニド元素を表わし、TはFe、Co、Niの
群から選ばれる少なくとも1種の遷移金属を表わし、x
は原子モル数で1.0≦x≦9.0の関係を満足する数
を表わす)で示される組成の合金に冷却速度が10^3
〜10^5℃/secである溶湯急冷法を適用して前記
合金の薄帯若しくはフレークを調製することを特徴とす
る超磁歪材料の製造方法。
(2) The following formula: RT_x (wherein, R is La, Ce
, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho,
At least one selected from the group of Er, Tm, Yb, and Lu
represents a lanthanide element, T represents at least one transition metal selected from the group of Fe, Co, and Ni, and x
is the number of atomic moles that satisfies the relationship 1.0≦x≦9.0), and the cooling rate is 10^3.
A method for producing a giant magnetostrictive material, characterized in that a ribbon or flake of the alloy is prepared by applying a molten metal quenching method at ~10^5°C/sec.
(3)前記薄帯若しくはフレークを粉砕したのち得られ
た粉末に熱間プレス処理または熱間静水圧プレス処理を
施してブロック化する請求項2記載の超磁歪材料の製造
方法。
(3) The method for producing a giant magnetostrictive material according to claim 2, wherein the powder obtained after pulverizing the ribbon or flakes is subjected to hot pressing treatment or hot isostatic pressing treatment to form blocks.
(4)前記薄帯若しくはフレークを用いて、熱間塑性変
形加工を施す請求項2または3記載の超磁歪材料の製造
方法。
(4) The method for producing a giant magnetostrictive material according to claim 2 or 3, wherein the ribbon or flake is subjected to hot plastic deformation.
JP63073439A 1988-03-29 1988-03-29 Supermagnetostrictive material and its manufacture Pending JPH01246342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63073439A JPH01246342A (en) 1988-03-29 1988-03-29 Supermagnetostrictive material and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63073439A JPH01246342A (en) 1988-03-29 1988-03-29 Supermagnetostrictive material and its manufacture

Publications (1)

Publication Number Publication Date
JPH01246342A true JPH01246342A (en) 1989-10-02

Family

ID=13518276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63073439A Pending JPH01246342A (en) 1988-03-29 1988-03-29 Supermagnetostrictive material and its manufacture

Country Status (1)

Country Link
JP (1) JPH01246342A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129339A (en) * 1988-11-10 1990-05-17 Tdk Corp Magnetostrictive material
US6149736A (en) * 1995-12-05 2000-11-21 Honda Giken Kogyo Kabushiki Kaisha Magnetostructure material, and process for producing the same
JP2005036302A (en) * 2002-10-25 2005-02-10 Showa Denko Kk Method of producing rare earth-containing alloy, rare earth-containing alloy, method of producing rare earth-containing alloy powder, rare earth-containing alloy powder, method of producing rare earth-containing alloy sintered compact, rare earth-containing alloy sintered compact, magnetostriction element, and magnetic refrigeration working substance
WO2005073420A1 (en) * 2004-01-30 2005-08-11 Tdk Corporation Magnetostrictive material and method for production thereof
US7695574B2 (en) 2002-10-25 2010-04-13 Showda Denko K.K. Alloy containing rare earth element, production method thereof, magnetostrictive device, and magnetic refrigerant material
RU2804024C1 (en) * 2022-12-16 2023-09-26 Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Magnetocaloric material for magnetic heat engine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129339A (en) * 1988-11-10 1990-05-17 Tdk Corp Magnetostrictive material
US6149736A (en) * 1995-12-05 2000-11-21 Honda Giken Kogyo Kabushiki Kaisha Magnetostructure material, and process for producing the same
JP2005036302A (en) * 2002-10-25 2005-02-10 Showa Denko Kk Method of producing rare earth-containing alloy, rare earth-containing alloy, method of producing rare earth-containing alloy powder, rare earth-containing alloy powder, method of producing rare earth-containing alloy sintered compact, rare earth-containing alloy sintered compact, magnetostriction element, and magnetic refrigeration working substance
US7695574B2 (en) 2002-10-25 2010-04-13 Showda Denko K.K. Alloy containing rare earth element, production method thereof, magnetostrictive device, and magnetic refrigerant material
US8110049B2 (en) 2002-10-25 2012-02-07 Showa Denko K.K. Alloy containing rare earth element, production method thereof, magnetostrictive device, and magnetic refrigerant material
WO2005073420A1 (en) * 2004-01-30 2005-08-11 Tdk Corporation Magnetostrictive material and method for production thereof
RU2804024C1 (en) * 2022-12-16 2023-09-26 Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Magnetocaloric material for magnetic heat engine

Similar Documents

Publication Publication Date Title
CN1705761B (en) Alloy containing rare earth element, production method thereof, magnetostrictive device, and magnetic refrigerant material
JPH0420242B2 (en)
EP0546799B1 (en) Method for producing rare earth alloy magnet powder
US11335484B2 (en) Permanent magnet
EP0195219B2 (en) Quenched permanent magnetic material
EP0595477A1 (en) Method of manufacturing powder material for anisotropic magnets and method of manufacturing magnets using the powder material
JPS6324030A (en) Anisotropic rare earth magnet material and its production
JP3505261B2 (en) Sm-Co permanent magnet material, permanent magnet and method for producing the same
JPH01246342A (en) Supermagnetostrictive material and its manufacture
EP1770177B1 (en) Method for preparing a magnetostrictive material
US4915738A (en) Alloy target for manufacturing a magneto-optical recording medium
US4533389A (en) Boron containing rapid solidification alloy and method of making the same
US4485080A (en) Process for the production of diamond powder
JPWO2003040421A1 (en) Alloy for Sm-Co magnet, its manufacturing method, sintered magnet and bonded magnet
JPH09263913A (en) Hard magnetic alloy compacted body and its production
JPH10324958A (en) Hard magnetic alloy compacted body, its production and thin type hard magnetic alloy compacted body
Harada et al. Crystallization of amorphous melt-spun Nd15Fe77Bx (x= 6–14) alloys
JPH1171645A (en) Hard magnetic alloy sintered compact and its production
Harada et al. Production of amorphous bulk materials of an Nd15Fe77B8 magnetic alloy and their magnetic properties
CN113046619B (en) Large-expansion-amount rare earth giant magnetostrictive material and preparation method thereof
JP4030176B2 (en) Giant magnetostrictive material and manufacturing method thereof
JP2003089857A (en) Negative magnetostrictive material and its manufacturing method
JPH0770745A (en) Production of target for rare earth magnetic film
JPS5830107A (en) Manufacture of permanent magnet
Clapp et al. A flexible A-15 superconducting tape in the Nb3 (Al Si B) 1 system