JPH0254733A - Manufacture of ti sintered material - Google Patents

Manufacture of ti sintered material

Info

Publication number
JPH0254733A
JPH0254733A JP63206703A JP20670388A JPH0254733A JP H0254733 A JPH0254733 A JP H0254733A JP 63206703 A JP63206703 A JP 63206703A JP 20670388 A JP20670388 A JP 20670388A JP H0254733 A JPH0254733 A JP H0254733A
Authority
JP
Japan
Prior art keywords
binder
sintering
low
sintered
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63206703A
Other languages
Japanese (ja)
Inventor
Junichi Ota
純一 太田
Sadamasa Kiyota
禎公 清田
Hiroshi Otsubo
宏 大坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP63206703A priority Critical patent/JPH0254733A/en
Priority to US07/393,765 priority patent/US4964907A/en
Priority to DE8989308327T priority patent/DE68906837T2/en
Priority to EP89308327A priority patent/EP0356131B1/en
Priority to AU40060/89A priority patent/AU612057C/en
Priority to CA000608685A priority patent/CA1333341C/en
Priority to KR1019890011827A priority patent/KR920007456B1/en
Publication of JPH0254733A publication Critical patent/JPH0254733A/en
Priority to US07/549,491 priority patent/US5067979A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture the title material having high density and low C and O2 content at low cost by adding and mixing a binder into Ti fine powder, subjecting the mixture to injection molding, thereafter heating away the binder in a nonoxidizing atmosphere and successively subjecting it to two stage sintering at low temp. and high temp. CONSTITUTION:Thermoplastic resin such as polyethylene and polypropylene or paraffin, etc., as a binder, is mixed, in the ratio of 0.5 to 3.0wt.%, into Ti fine powder having <=30mum average grain size and the mixture is subjected to injection molding into the desired shape. The molded body is heated in a nonoxidizing atmosphere such as N2 at 5 to 20 deg.C/hr heating speed to remove the binder in the molded body away. After that, the molded body is firstly heated to 1050 to 1200 deg.C in vacuum of about 1X10<-3>torr to execute sintering; the sintered body is successively subjected to secondary sintering, by which the Ti sintered material having low C and O2 content and high density can be manufactured.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は粉末冶金法によって製造されるTi焼結材料の
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for producing a Ti sintered material produced by a powder metallurgy method.

〈従来の技術〉 近年、粉末冶金法による焼結部品の製造方法は著しい伸
びを示し、材質も従来からある鉄系から非鉄金属まで広
範囲に渡っている。
<Prior Art> In recent years, methods for manufacturing sintered parts using powder metallurgy have shown remarkable growth, and the materials used range from conventional ferrous metals to non-ferrous metals.

Tiは鉄鋼材料に比べて比重が小さく、しかも強度も鉄
鋼に十分匹敵するため航空機材料として多種の部品に用
いられる。  また、人体の組織との馴染みがよいこと
、害をもたらさないことなどから、医療用器具としても
使用されている。
Ti has a lower specific gravity than steel materials, and its strength is fully comparable to that of steel, so it is used as an aircraft material in a wide variety of parts. It is also used as a medical device because it is compatible with human tissue and does not cause any harm.

しかし、溶製材の部品加工の歩留りが低いことから、高
コスト、低生産性であった。 そこで、複雑な形状の部
品を大量生産できる射出成形法を用いることによって、
低コストで高生産性を達成できるが、Tiは非常に活性
な金属であるため、通常の焼結法においては高密度で低
不純物の材料を得ることが難しいという問題点があった
However, the yield of machining parts from melted lumber is low, resulting in high costs and low productivity. Therefore, by using the injection molding method, which can mass produce parts with complex shapes,
Although high productivity can be achieved at low cost, since Ti is a very active metal, there is a problem in that it is difficult to obtain a material with high density and low impurities using normal sintering methods.

一方、高密度焼結合金の製造方法として、熱間静水圧成
形法や加圧焼結法などが提案されている。
On the other hand, hot isostatic pressing, pressure sintering, and the like have been proposed as methods for producing high-density sintered alloys.

例えば、特開昭63−500874号で示されるように
70〜211 kg/c+n’の圧力範囲内で加圧する
ことによって高密度を達成しようとするものがある。
For example, as shown in Japanese Patent Application Laid-Open No. 63-500874, there is a method that attempts to achieve high density by applying pressure within a pressure range of 70 to 211 kg/c+n'.

〈発明が解決しようとする課題〉 しかし、上記の方法は原料として、低C2低OのTi粉
末を用いなけねばならず、原料粉末が高純度で、高価な
ものとなり、粉末冶金法の経済性を損ねるものである。
<Problems to be Solved by the Invention> However, the above method requires the use of low C2, low O Ti powder as a raw material, which makes the raw material powder highly pure and expensive, making it difficult to achieve the economic efficiency of the powder metallurgy method. It damages the

さらに、射出成形法を用いる場合には、原料粉のほかに
結合剤を用いる必要があり、この結合剤を後工程で完全
に除去することは難しいため、得られた高C1高0の成
形体を焼結する必要があり、不純物の除去は不可能であ
る。
Furthermore, when using the injection molding method, it is necessary to use a binder in addition to the raw material powder, and since it is difficult to completely remove this binder in the post-process, the resulting molded product has a high C1 and high 0. must be sintered, and it is impossible to remove impurities.

また、熱間静水圧法は、装置が複雑なため作業時間が増
し、かつ高価な装置であることから、経済的に不利であ
るという問題を有していた。
In addition, the hot isostatic pressure method has the problem of being economically disadvantageous because the equipment is complicated, which increases the working time, and the equipment is expensive.

本発明は、上記問題を解決し、特別な装置を必要とせず
、通常の真空炉を用いることによって、高密度で、低不
純物のTi焼結材料を製造する方法を提供することを目
的としている。
The present invention aims to solve the above problems and provide a method for manufacturing a Ti sintered material with high density and low impurity by using an ordinary vacuum furnace without requiring special equipment. .

く課題を解決するための手段〉 上記目的を達成するために本発明によれば、原料として
、平均粒径30μm以下のTi粉末を用い、該粉末に結
合剤を添加、混合して射出成形した後、該成形体中の結
合剤を非酸化l雰囲気中で加熱して除去し、続いて10
50〜1200℃の温度、I X 10−3Torr以
下の圧力で焼結し、さらに1200〜1400℃の温度
で焼結することを特徴とするTi焼結材料の製造方法が
提供される。
Means for Solving the Problems> In order to achieve the above object, according to the present invention, Ti powder with an average particle size of 30 μm or less is used as a raw material, a binder is added to the powder, mixed, and injection molded. After that, the binder in the molded body was removed by heating in a non-oxidizing atmosphere, and then heated for 10 minutes.
A method for producing a Ti sintered material is provided, which comprises sintering at a temperature of 50 to 1200°C and a pressure of I x 10 -3 Torr or less, and further sintering at a temperature of 1200 to 1400°C.

また、成形体中の結合剤を加熱して除去すると共に焼結
に際し、予め成形体中のC10モル比を0.5〜3.0
に調整するのが好ましい。
In addition, the binder in the molded body is removed by heating, and the C10 molar ratio in the molded body is adjusted to 0.5 to 3.0 in advance during sintering.
It is preferable to adjust to

以下に本発明をざらに詳細に説明する。The invention will now be described in more detail.

本発明では、原料粉末として平均粒径3゜μm以下の粉
末を用いるが、その理由は下記のとおりである。
In the present invention, a powder having an average particle size of 3 mm or less is used as the raw material powder for the following reasons.

粉末の粒径が小さくなる程、焼結性が向上し、密度は増
加する。 平均粒径が30μmを超えると高密度が得ら
れないばかりか、成形時の流動性が低下し、成形体の充
填具合が不均一となり、変形や寸法精度が劣るという欠
点をもつようになる。  したがって、上限を30μm
とした。
As the particle size of the powder becomes smaller, the sinterability improves and the density increases. If the average particle size exceeds 30 μm, not only will high density not be obtained, but the fluidity during molding will be reduced, the filling of the molded product will be non-uniform, and there will be disadvantages such as deformation and poor dimensional accuracy. Therefore, the upper limit is 30 μm
And so.

本発明は、上記微粉を用いるため、射出成形に際し、金
属粉末だけでは所望の流動性が得られず、成形不可能と
なる。
Since the present invention uses the above-mentioned fine powder, during injection molding, the desired fluidity cannot be obtained with just the metal powder, making molding impossible.

そこで、これらの欠陥が生じないように結合剤を添加、
混合して成形する。 結合剤は、ポリエチレン、ボップ
ロピレン、ポリスチレンなどの熱可塑性樹脂、パラフィ
ン、マイクロワックス、カルナバなどのワックス、ある
いは両方混合して用いても成形可能である。 もちろん
本発明はこれらの結合剤に限定されるものではない。
Therefore, we added a binder to prevent these defects from occurring.
Mix and shape. The binder may be a thermoplastic resin such as polyethylene, vopropylene or polystyrene, a wax such as paraffin, microwax or carnauba, or a mixture of both may be used for molding. Of course, the present invention is not limited to these binders.

結合剤の量は成形法によって異なる。 成形機は従来の
金型ブレス機のほかに押出成形機や粉末圧延機、射出成
形機などが使用される。
The amount of binder varies depending on the molding method. In addition to conventional mold presses, the molding machines used include extrusion molding machines, powder rolling machines, and injection molding machines.

結合剤は通常の金型プレスでは0.5〜3. 0重量%
はどであるが、複雑形状の製品を成形できる射出成形法
では10重量%程の結合剤を要する。
The binder is 0.5 to 3. 0% by weight
However, the injection molding method, which can mold products with complex shapes, requires about 10% by weight of a binder.

成形後、結合剤を除去するために非酸化性雰囲気中で一
定速度で昇温、保持する。 この時の昇温速度を速くし
過ぎると製品に割れや膨れが生じるため、5〜b 結合剤を除去した後、高密度化を達成するために焼結す
る。 結合剤は完全に除去されずに残っているが、この
残留結合剤の炭素とTi粉の表面に存在する酸化被膜の
酸素の反応を促進させることによって、最終焼結体の不
純物であるC10量を極力減少させる。 その際、結合
剤の除去程度を加減するか、あるいは除去後、焼結前の
加熱温度、雰囲気中の酸素ポテンシャルの調節によりC
10モル比を最適値に調節することによってC10量の
低減化を図る。
After molding, the temperature is raised and maintained at a constant rate in a non-oxidizing atmosphere to remove the binder. If the heating rate at this time is too high, the product will crack or bulge, so 5-b After removing the binder, the product is sintered to achieve high density. Although the binder remains without being completely removed, the amount of C10, which is an impurity in the final sintered body, is reduced by promoting the reaction between the carbon of this residual binder and the oxygen of the oxide film present on the surface of the Ti powder. Reduce as much as possible. At that time, the degree of removal of the binder may be adjusted, or after removal and before sintering, the heating temperature and oxygen potential in the atmosphere may be adjusted.
By adjusting the 10 molar ratio to an optimum value, the amount of C10 is reduced.

その後、1050〜1200℃、1× 10−3Torr以下の真空中で焼結する。 続いて1
200〜1400℃で焼結することによって焼結密度比
が92%以上の高密度焼結体を得ることができる。
Thereafter, sintering is performed at 1050 to 1200° C. in a vacuum of 1×10 −3 Torr or less. followed by 1
By sintering at 200 to 1400°C, a high-density sintered body with a sintered density ratio of 92% or more can be obtained.

本発明に係るTi粉末は非常に活性な金属であり、酸素
との親和力が高いので、通常の焼結工程で用いられてい
る水素7囲気では還元が難しい。
The Ti powder according to the present invention is a very active metal and has a high affinity for oxygen, so it is difficult to reduce it in a hydrogen atmosphere used in a normal sintering process.

そこで本発明では、真空焼結によって含有Cの作用によ
り容易に還元を促進させる手法をとった。
Therefore, in the present invention, a method was adopted in which the reduction was easily promoted by the action of the contained C through vacuum sintering.

焼結作用は粒子同士の接触点から始まり、原子の固体拡
散によって進行するが、粉末表面が酸化物で覆われてい
る場合は原子の拡散が遮られて緻密化が進まず、焼結体
の高密度が達成されない。 つまり、高密度を得るため
には粉末表面の酸化物を還元する必要がある。
The sintering action begins at the point of contact between particles and proceeds by the solid-state diffusion of atoms. However, if the powder surface is covered with oxides, the diffusion of atoms is blocked and densification does not proceed, resulting in the formation of a sintered body. High density is not achieved. In other words, in order to obtain high density, it is necessary to reduce the oxides on the powder surface.

そのために減圧下で焼結する。  t×10−3Tor
rを超えると、酸化物の還元反応が進みにくいため上限
をI X 10 ””Torrとした。
For this purpose, it is sintered under reduced pressure. t×10-3 Tor
If the value exceeds r, the reduction reaction of the oxide is difficult to proceed, so the upper limit was set at I X 10 '''' Torr.

前述のように酸化物の還元反応を含有Cにより容易に促
進させることができるが、その際、焼結前の成形体中の
C10モル比を適当に調整することが必要である。 な
ぜならば、焼結体中のC,Oの低減は、 C+   o   → CO C+20  ”Co2 の反応が進行することによって達成されるからである。
As mentioned above, the reduction reaction of the oxide can be easily promoted by the contained C, but in this case, it is necessary to appropriately adjust the C10 molar ratio in the compact before sintering. This is because the reduction of C and O in the sintered body is achieved by the progress of the reaction C+ o → CO C+20 ”Co2.

C10モル比が不適当であると、CあるいはOを過剰に
残した焼結体となり、C10モル比の下限が0.5未満
の場合、焼結体中のOは0.5重量%を超え、焼結密度
の上昇が見られない。 一方、C10モル比が3.0を
超えた場合、焼結体のC量が0.1重量%を超えるため
硬く、脆くなる。 そこで、焼結前の成形体中の070
モル比を0.5〜3.0の範囲に規定した。
If the C10 molar ratio is inappropriate, the sintered body will have an excessive amount of C or O, and if the lower limit of the C10 molar ratio is less than 0.5, the O in the sintered body will exceed 0.5% by weight. , no increase in sintered density was observed. On the other hand, when the C10 molar ratio exceeds 3.0, the sintered body becomes hard and brittle because the amount of C exceeds 0.1% by weight. Therefore, 070 in the compact before sintering
The molar ratio was defined in the range of 0.5 to 3.0.

第1段目の真空焼結の温度範囲を1050〜1200℃
としたのは、1050℃より低い温度では酸化物の還元
が十分なされないため、酸化物が残留し、その後の焼結
を阻害する。 また、Cも多量に残るため炭化物形成の
恐れもあり、下限を1050℃とした。
The temperature range for the first stage vacuum sintering is 1050-1200℃.
This is because at temperatures lower than 1050° C., the oxide is not sufficiently reduced, so the oxide remains and inhibits subsequent sintering. Furthermore, since a large amount of C remains, there is a risk of carbide formation, so the lower limit was set at 1050°C.

一方、1200℃を上限としたのは、これを超えると気
孔の閉塞化が急激に進み、C01Co2ガスが焼結体内
部に残留し、最終焼結体の不純物量が増すことになるか
らである。 つまり、脱ガスが終了する前に、気孔を閉
塞化させないJ:うに第1段目の焼結温度の上限を12
00℃に規定した。
On the other hand, the upper limit was set at 1200°C because if this temperature was exceeded, the pores would rapidly become blocked, CO1Co2 gas would remain inside the sintered body, and the amount of impurities in the final sintered body would increase. . In other words, the upper limit of the sintering temperature for the first stage of sea urchin is 12
The temperature was set at 00°C.

続いて、1200〜1400℃まで加熱、保持すること
によって高密度化を達成する。
Subsequently, densification is achieved by heating and maintaining the temperature to 1200 to 1400°C.

1200℃未満の温度では、Tiの拡散速度も遅く高密
度が得られず、その結果、気孔が多く残ることから機械
的特性、化学的安定性が劣る。 よって、下限を120
0℃とした。
At temperatures below 1200° C., the diffusion rate of Ti is slow and high density cannot be obtained, and as a result, many pores remain, resulting in poor mechanical properties and chemical stability. Therefore, the lower limit is 120
The temperature was 0°C.

1400℃を超えた場合は、固相焼結による気孔の収縮
は終了しているため、顕著な密度上昇の効果が得られな
い。 さらに、真空炉内の耐火物、発熱体の消耗が激し
くなるため、経済性が損われる。 よって、上限を14
00℃に規定した。
If the temperature exceeds 1400° C., the shrinkage of pores due to solid-phase sintering has finished, so that no significant density increase effect can be obtained. Furthermore, the refractories and heating elements in the vacuum furnace are rapidly consumed, which impairs economic efficiency. Therefore, the upper limit is 14
The temperature was set at 00°C.

1200〜1400℃までの焼結は、不純物の混入を防
止するため高純度の不活性ガスの雰囲気下、または真空
の条件下で行なうことが好ましい。
Sintering at a temperature of 1200 to 1400° C. is preferably carried out in an atmosphere of high purity inert gas or under vacuum conditions to prevent contamination of impurities.

本発明のTi焼結材料の製造方法は、以上のような条件
で成形体のC10の調節と比較的低い温度での減圧焼結
と、その後の比較的高温での高密度化焼結を組み合わせ
た2段焼結法であって、これによって、通常の真空炉で
、高密度、低不純物の焼結体を製造することができる。
The method for producing a Ti sintered material of the present invention combines adjusting the C10 of the compact, vacuum sintering at a relatively low temperature, and subsequent high-density sintering at a relatively high temperature under the above conditions. This is a two-stage sintering method that allows the production of high-density, low-impurity sintered bodies in an ordinary vacuum furnace.

〈実施例〉 以下に本発明を実施例に基づき具体的に説明する。<Example> The present invention will be specifically described below based on Examples.

(実施例1〜3、比較例1〜3) 原料粉末として、第1表に示す平均粒径のTi粉末を用
意し、これに結合剤として熱可塑性樹脂とワックスを添
加、混合し、加圧ニーダを用いて混練した。
(Examples 1 to 3, Comparative Examples 1 to 3) Ti powder having the average particle size shown in Table 1 was prepared as a raw material powder, a thermoplastic resin and wax were added as a binder, mixed, and the mixture was pressurized. It was kneaded using a kneader.

これを顆粒状に粉砕し、成形原料とした。This was crushed into granules and used as a molding raw material.

射出成形機を用いて、厚さ2mmの板状に成形し、窒素
雰囲気中で昇温速度10℃/hで600℃まで加熱し、
その後、成形体中のC10モル比が0.5〜1.0にな
るように温度調節および雰囲気中の酸素ポテンシャルの
調節を行なった。
Using an injection molding machine, it was molded into a plate shape with a thickness of 2 mm, and heated to 600 °C at a temperature increase rate of 10 °C/h in a nitrogen atmosphere.
Thereafter, the temperature and the oxygen potential in the atmosphere were adjusted so that the C10 molar ratio in the molded body was 0.5 to 1.0.

これを真空中(< 10−3Torr) 、第1表に示
す温度で1時間以上保持し、続いて、1300℃まで昇
温し、3時間保持した。
This was held in vacuum (<10-3 Torr) at the temperature shown in Table 1 for more than 1 hour, and then the temperature was raised to 1300°C and held for 3 hours.

冷却後、アルキメデス法による密度および真密度から密
度比を求め、また焼結体のC,O量を分析した。
After cooling, the density ratio was determined from the density and true density by the Archimedes method, and the amount of C and O in the sintered body was analyzed.

その結果を第1表に示す。The results are shown in Table 1.

実施例1.2は、原料粉末の平均粒径を10μm、1段
目の焼結温度を1080℃および1150℃としたため
に、高密度で低不純物量の焼結体が得られた。
In Example 1.2, the average particle diameter of the raw material powder was 10 μm, and the first stage sintering temperatures were 1080° C. and 1150° C., so that a sintered body with high density and a low amount of impurities was obtained.

実施例3は、25μmと実施例1.2に比較して、大き
くなったために、密度は95%で、ざらに低C1低Oの
焼結体が得られた。
In Example 3, the diameter was 25 μm, which was larger than that in Example 1.2, so that a sintered body with a density of 95% and roughly low C1 and low O was obtained.

比較例1は、1段目の焼結温度が1000℃と低く、十
分な脱炭、脱酸が進まないうちに高温焼結に移行したた
めに、最終焼結体のC,O量が高くなったと考えられる
In Comparative Example 1, the sintering temperature in the first stage was as low as 1000°C, and the transition to high-temperature sintering occurred before sufficient decarburization and deoxidation progressed, resulting in a high C and O content in the final sintered body. It is thought that

比較例2は、1段目の焼結温度が1250℃と高いため
気孔の閉塞化が進み、CoXCO2ガスが残留し、最終
焼結体のC10量が高くなったと考えられる。
In Comparative Example 2, the sintering temperature in the first stage was as high as 1250° C., so the pores were blocked, and CoXCO2 gas remained, presumably resulting in a high C10 content in the final sintered body.

比較例3は、1段目の焼結温度が1150℃で脱C1脱
0は進んでいるが、原料粉の平均粒径が35μmと粗粒
粉であるため、高密度焼結体が得られなかった。
In Comparative Example 3, the sintering temperature in the first stage was 1150°C, and the removal of C1 and O0 was progressing, but since the raw material powder was a coarse powder with an average particle size of 35 μm, a high-density sintered body could not be obtained. There wasn't.

(実施例4,5、比較例4.5) 実施例1〜3と同様の方法で成形体を製造し、脱結合剤
処理を施した。 その後、成形体中のC10モル比が0
.2〜4.0になるように調整した。
(Examples 4 and 5, Comparative Examples 4 and 5) Molded bodies were produced in the same manner as in Examples 1 to 3, and treated with a debinding agent. After that, the C10 molar ratio in the molded body was 0.
.. It was adjusted to be between 2 and 4.0.

その後、実施例1〜3と同様の方法で焼結し、密度およ
び焼結体のC量、0量を分析した。
Thereafter, it was sintered in the same manner as in Examples 1 to 3, and the density and the amount of C and zero in the sintered body were analyzed.

その結果を第2表に示す。The results are shown in Table 2.

実施例4.5は、C10モル比が本発明範囲であるため
、高密度、低不純物量の焼結体が得られた。
In Example 4.5, since the C10 molar ratio was within the range of the present invention, a sintered body with high density and low impurity content was obtained.

比較例4は、C10モル比が小さ過ぎるために、つまり
Offが多過ぎるために酸化物が残留し、密度上昇を阻
害したと考えられる。
In Comparative Example 4, it is thought that because the C10 molar ratio was too small, that is, because Off was too large, oxides remained and inhibited the increase in density.

比較例5は、C10モル比が大き過ぎるために、つまり
残留C量が多く、還元反応によっても未反応のCが最終
焼結体に多量に残ったと考えられる。
In Comparative Example 5, the C10 molar ratio was too large, that is, the amount of residual C was large, and it is considered that a large amount of unreacted C remained in the final sintered body even after the reduction reaction.

第1表 第  2 表 〈発明の効果〉 本発明は、以上説明したように構成されているので、原
料として平均粒径30μm以下の粉末を用いて、通常の
真空炉で焼結前の成形体のC10調節および減圧下での
低温焼結および高温焼結を併用することによって、高密
度で低C1低OのTi焼結材料を製造することができ、
これにより低コストで生産性に優れたTi焼結部品を製
造することができる。
Table 1 Table 2 <Effects of the Invention> Since the present invention is configured as described above, a molded body is prepared before sintering in a normal vacuum furnace using powder with an average particle size of 30 μm or less as a raw material. By combining C10 adjustment and low-temperature sintering under reduced pressure and high-temperature sintering, it is possible to produce a Ti sintered material with high density and low C1 and low O.
Thereby, Ti sintered parts can be manufactured at low cost and with excellent productivity.

Claims (2)

【特許請求の範囲】[Claims] (1)原料として、平均粒径30μm以下のTi粉末を
用い、該粉末に結合剤を添加、混合して射出成形した後
、該成形体中の結合剤を非酸化性雰囲気中で加熱して除
去し、続いて1050〜1200℃の温度、1×10^
−^3Torr以下の圧力で焼結し、さらに1200〜
1400℃の温度で焼結することを特徴とするTi焼結
材料の製造方法。
(1) Using Ti powder with an average particle size of 30 μm or less as a raw material, a binder is added to the powder, mixed and injection molded, and then the binder in the molded body is heated in a non-oxidizing atmosphere. removed, followed by a temperature of 1050-1200℃, 1 x 10^
- Sintered at a pressure of 3 Torr or less, and further 1200 ~
A method for producing a Ti sintered material, characterized by sintering at a temperature of 1400°C.
(2)成形体中の結合剤を加熱して除去すると共に焼結
に際し、予め成形体中のC/Oモル比を0.5〜3.0
に調整する請求項1記載のTi焼結材料の製造方法。
(2) The binder in the compact is removed by heating, and the C/O molar ratio in the compact is adjusted to 0.5 to 3.0 in advance during sintering.
The method for producing a Ti sintered material according to claim 1, wherein the Ti sintered material is adjusted to
JP63206703A 1988-08-20 1988-08-20 Manufacture of ti sintered material Pending JPH0254733A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP63206703A JPH0254733A (en) 1988-08-20 1988-08-20 Manufacture of ti sintered material
US07/393,765 US4964907A (en) 1988-08-20 1989-08-14 Sintered bodies and production process thereof
DE8989308327T DE68906837T2 (en) 1988-08-20 1989-08-16 SINTERED WORKPIECES AND METHOD FOR THEIR PRODUCTION.
EP89308327A EP0356131B1 (en) 1988-08-20 1989-08-16 Sintered bodies and production process thereof
AU40060/89A AU612057C (en) 1988-08-20 1989-08-18 Sintered bodies and production process thereof
CA000608685A CA1333341C (en) 1988-08-20 1989-08-18 Sintered bodies and production process thereof
KR1019890011827A KR920007456B1 (en) 1988-08-20 1989-08-19 Sintered bodies and production process thereof
US07/549,491 US5067979A (en) 1988-08-20 1990-07-06 Sintered bodies and production process thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63206703A JPH0254733A (en) 1988-08-20 1988-08-20 Manufacture of ti sintered material

Publications (1)

Publication Number Publication Date
JPH0254733A true JPH0254733A (en) 1990-02-23

Family

ID=16527720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63206703A Pending JPH0254733A (en) 1988-08-20 1988-08-20 Manufacture of ti sintered material

Country Status (1)

Country Link
JP (1) JPH0254733A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06172810A (en) * 1992-10-08 1994-06-21 Kawasaki Steel Corp Production of tungsten alloy sintered compact
JPH06330105A (en) * 1993-05-18 1994-11-29 Kawasaki Steel Corp Production of ti or ti alloy sintered compact
JPH06346168A (en) * 1993-06-03 1994-12-20 Sumitomo Metal Mining Co Ltd Ti or ti-fe injection-molded and sintered alloy and its production
EP0635325A1 (en) * 1993-07-23 1995-01-25 Asulab S.A. Process for making a workpiece in titanium by sintering and a decorative article made by such a process
FR2708496A1 (en) * 1993-07-30 1995-02-10 Asulab Sa Process for the manufacture of a titanium article by sintering and decorative article produced by such a process
CH684978GA3 (en) * 1993-07-23 1995-02-28 Asulab Sa Process for the manufacture, by sintering, of an article made of titanium and decorated article produced by such a process
KR100508471B1 (en) * 2002-12-10 2005-08-17 주식회사 에스엠코퍼레이션 Method for manufacturing titanium material
KR100725209B1 (en) * 2005-12-07 2007-06-04 박영석 Powder injection molding method for forming article comprising titanium and titanium coating method
KR100749395B1 (en) * 2006-01-04 2007-08-14 박영석 Powder injection molding product, titanium coating product, sprayer for titanium coating and paste for titanium coating
JP2014522452A (en) * 2011-06-13 2014-09-04 チャールズ マルコム ワード‐クローズ Production of metal or alloy objects
CN112010640A (en) * 2020-09-03 2020-12-01 东莞信柏结构陶瓷股份有限公司 Powder for injection, plastic-based binder, process and ceramic filter

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06172810A (en) * 1992-10-08 1994-06-21 Kawasaki Steel Corp Production of tungsten alloy sintered compact
JPH06330105A (en) * 1993-05-18 1994-11-29 Kawasaki Steel Corp Production of ti or ti alloy sintered compact
JPH06346168A (en) * 1993-06-03 1994-12-20 Sumitomo Metal Mining Co Ltd Ti or ti-fe injection-molded and sintered alloy and its production
EP0635325A1 (en) * 1993-07-23 1995-01-25 Asulab S.A. Process for making a workpiece in titanium by sintering and a decorative article made by such a process
CH684978GA3 (en) * 1993-07-23 1995-02-28 Asulab Sa Process for the manufacture, by sintering, of an article made of titanium and decorated article produced by such a process
FR2708496A1 (en) * 1993-07-30 1995-02-10 Asulab Sa Process for the manufacture of a titanium article by sintering and decorative article produced by such a process
KR100508471B1 (en) * 2002-12-10 2005-08-17 주식회사 에스엠코퍼레이션 Method for manufacturing titanium material
KR100725209B1 (en) * 2005-12-07 2007-06-04 박영석 Powder injection molding method for forming article comprising titanium and titanium coating method
KR100749395B1 (en) * 2006-01-04 2007-08-14 박영석 Powder injection molding product, titanium coating product, sprayer for titanium coating and paste for titanium coating
JP2014522452A (en) * 2011-06-13 2014-09-04 チャールズ マルコム ワード‐クローズ Production of metal or alloy objects
CN112010640A (en) * 2020-09-03 2020-12-01 东莞信柏结构陶瓷股份有限公司 Powder for injection, plastic-based binder, process and ceramic filter

Similar Documents

Publication Publication Date Title
EP0356131B1 (en) Sintered bodies and production process thereof
EP0379583B1 (en) SINTERED MAGNETIC Fe-Co MATERIAL AND PROCESS FOR ITS PRODUCTION
EP0378702B1 (en) Sintered alloy steel with excellent corrosion resistance and process for its production
JPH0254733A (en) Manufacture of ti sintered material
US7648675B2 (en) Reaction sintered zirconium carbide/tungsten composite bodies and a method for producing the same
US6967001B2 (en) Method for sintering a carbon steel part using a hydrocolloid binder as carbon source
JPS62185805A (en) Production of high-speed flying body made of tungsten alloy
JPH02107703A (en) Composition for injection molding
JPH11315304A (en) Manufacture of sintered body
CN114672682B (en) High-performance powder metallurgy titanium alloy part and preparation method thereof
JPH0313329A (en) Sintered metal composite material excellent in corrosion resistance, dimensional accuracy and economical efficiency and preparation thereof
JP2745889B2 (en) Method of manufacturing high-strength steel member by injection molding method
JPH0257664A (en) Fe-si soft magnetic sintered material and its manufacture
JPS6229481B2 (en)
JPH0257613A (en) Production of sintered metallic material and its raw powder
JPH02290901A (en) Metal fine powder for compacting and manufacture of sintered body thereof
JP2857751B2 (en) Manufacturing method of cast iron based high density powder sintered compact
JP2001089824A (en) Manufacture of sintered compact of chromium- molybdenum steel
JPH06136405A (en) Production of high-density pure iron sintered compact
JPH03229832A (en) Manufacture of nb-al intermetallic compound
KR930006442B1 (en) Sintered fe-co type magnetic materials
JPH0257605A (en) Production of sintered alloy having excellent dimensional precision
JPH0257661A (en) Manufacture of high-nitrogen stainless steel sintered body
GB1562788A (en) Production of metal articles from tool steel or alloy steel powder
JP2004115882A (en) Production method for sintered compact, and the sintered compact