JPH06346168A - Ti or ti-fe injection-molded and sintered alloy and its production - Google Patents

Ti or ti-fe injection-molded and sintered alloy and its production

Info

Publication number
JPH06346168A
JPH06346168A JP5157959A JP15795993A JPH06346168A JP H06346168 A JPH06346168 A JP H06346168A JP 5157959 A JP5157959 A JP 5157959A JP 15795993 A JP15795993 A JP 15795993A JP H06346168 A JPH06346168 A JP H06346168A
Authority
JP
Japan
Prior art keywords
powder
injection
molded
alloy
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5157959A
Other languages
Japanese (ja)
Inventor
Masakazu Enboku
正和 遠北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP5157959A priority Critical patent/JPH06346168A/en
Publication of JPH06346168A publication Critical patent/JPH06346168A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a Ti or Ti-Fe injection-molded and sintered alloy excellent in mechanical properties such as breaking elongation CONSTITUTION:One of W, Mo, Nb, Cr, Zr, Ta, V and Ca is incorporated into Ti powder, Ti powder and Fe powder or Ti-Fe alloy powder by 1-6.5 atomic % of the total amt. of the metals and the powder is kneaded with an org. binder. The kneaded material is injection-molded, freed of the binder and sintered to obtain the objective Ti or Ti-Fe injection-molded and sintered alloy contg. one of W, Mo, Nb, Cr, Zr, Ta, V and Ca by 1-6.5 atomic % of the total amt. of all the components.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、Ti又はTi−Fe系
射出成形焼結合金及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Ti or Ti-Fe based injection molded sintered alloy and a method for producing the same.

【0002】[0002]

【従来の技術】射出成形焼結金属は、金属粉末と多量の
有機バインダーとの混練物を金型内に射出し成形して、
グリーン体とし、該グリーン体を脱バインダー処理後、
焼結して焼結金属製品とする。従来、Ti粉末又はTi
粉末とFe粉末又はTi−Fe合金粉末を使用して射出
成形焼結法により焼結体を製造できるが、前記の有機バ
インダーの分解により生じた炭素により焼結体中に粗大
なTi炭化物が生成し、特に破断伸び等の機械的性質が
著しく劣ったものとなるため実用に供されていなかっ
た。
2. Description of the Related Art Injection-molded sintered metal is manufactured by injecting a kneaded product of metal powder and a large amount of an organic binder into a mold,
After forming a green body and debinding the green body,
Sinter to give a sintered metal product. Conventionally, Ti powder or Ti
Although a sintered body can be manufactured by an injection molding sintering method using powder and Fe powder or Ti-Fe alloy powder, coarse Ti carbide is generated in the sintered body due to carbon generated by decomposition of the organic binder. However, the mechanical properties such as elongation at break are remarkably inferior, so that they have not been put to practical use.

【0003】[0003]

【発明が解決しようとする課題】本発明は、破断伸び等
の機械的性質の優れたTi又はTi−Fe系射出成形焼
結合金及びその製造方法を提供することを課題とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a Ti or Ti-Fe based injection molded sintered alloy having excellent mechanical properties such as elongation at break and a method for producing the same.

【0004】[0004]

【課題を解決するための手段】本発明はW、Mo、N
b、Cr、Zr、Ta、V、Caの内から選ばれた1種
を全成分中に1〜6.5原子%含有するTi又はTi−
Fe系射出成形焼結合金、及びW、Mo、Nb、Cr、
Zr、Ta、V、Caの内から選ばれた1種を全金属成
分中に1〜6.5原子%含有せしめたTi粉末又はTi
粉末とFe粉末又はTi−Fe合金粉末と、有機バイン
ダーとの混練物を射出成形し、脱バインダー後焼結する
Ti又はTi−Fe系射出成形焼結合金の製造方法を課
題解決の手段とする。
The present invention is based on W, Mo, N
Ti or Ti-containing 1 to 6.5 atomic% in all components, one selected from b, Cr, Zr, Ta, V and Ca.
Fe-based injection molded sintered alloy, and W, Mo, Nb, Cr,
Ti powder or Ti containing 1 to 6.5 atom% of all metal components selected from Zr, Ta, V and Ca
A method for producing a Ti or Ti-Fe-based injection-molded sintered alloy, in which a kneaded material of powder, Fe powder or Ti-Fe alloy powder, and an organic binder is injection-molded, and after debinding, sintered is used as a means for solving the problem. .

【0005】使用するTi粉末は市販品を用いることが
できる。Ti−Fe系合金を形成する場合は、Ti粉末
と鉄粉を用いるか、Ti−Fe合金粉末を用いる。これ
ら粉末は平均粒度20〜200μmのものが使用され
る。
The Ti powder used may be a commercially available product. When forming a Ti-Fe type alloy, Ti powder and iron powder are used, or Ti-Fe alloy powder is used. These powders have an average particle size of 20 to 200 μm.

【0006】W、Mo、Nb、Cr、Zr、Ta、V、
Caは単体の粉末を用いるか、Tiと合金化したものを
用いる。単体の粉末の場合は種類により平均粒径数μm
から数十μmのものを用いるが、細かい方がよい。
W, Mo, Nb, Cr, Zr, Ta, V,
As Ca, a single powder is used or an alloy with Ti is used. In the case of a single powder, the average particle size is several μm depending on the type
To tens of μm, but finer ones are better.

【0007】金属粉末射出成形に用いる有機バインダー
は、一般的に射出成形時に粉末に流動性を与える滑剤
と、グリーン体に形状保持性を与える結合剤とからな
る。滑剤としては、パラフィンワックス、カルナバワッ
クス、マイクロクリスタリンワックス、低分子量ポリエ
チレンワックス、変成ワックス、モンタン系エステルワ
ックス類が使用される。
The organic binder used for metal powder injection molding generally comprises a lubricant that gives fluidity to the powder at the time of injection molding and a binder that gives shape retention to the green body. As the lubricant, paraffin wax, carnauba wax, microcrystalline wax, low molecular weight polyethylene wax, modified wax, montan ester wax are used.

【0008】結合剤としては、アクリル樹脂、ポリエチ
レン、ポリプロピレン、エチレン−酢酸ビニル共重合
体、エチレン−アクリレート共重合体、ポリスチレン等
のポリマーが使用される。また必要に応じて、分散剤や
表面活性剤として、ステアリン酸、オレイン酸、ホウ酸
エステル等が添加されることもある。
As the binder, polymers such as acrylic resin, polyethylene, polypropylene, ethylene-vinyl acetate copolymer, ethylene-acrylate copolymer and polystyrene are used. If necessary, stearic acid, oleic acid, boric acid ester or the like may be added as a dispersant or a surface active agent.

【0009】[0009]

【作用】これらの有機バインダーが加熱されると、全成
分が揮発分解せずに炭素となって残留する。有機バイン
ダーに由来する炭素は一般に2〜3重量%で、最も多く
ても6重量%以下と考えられる。本発明はこの残留炭素
とTiが反応して炭化物を形成するのを抑制するため
に、添加した、炭化物を形成し易い金属状態のW、M
o、Nb、Cr、Zr、Ta、V、Caと反応させ、T
i炭化物が生成するのを抑制して、Ti又はTi−Fe
合金の特に破断伸び等の機械的性質が劣化しないように
したものである。
When these organic binders are heated, all components remain as carbon without evaporating and decomposing. The carbon derived from the organic binder is generally 2-3% by weight, and is considered to be 6% by weight or less at most. In the present invention, in order to suppress the reaction between the residual carbon and Ti to form a carbide, W, M added in a metal state in which a carbide is easily formed is added.
T react with o, Nb, Cr, Zr, Ta, V, Ca
i or Carbide is suppressed to form Ti or Ti-Fe.
It is intended to prevent deterioration of mechanical properties such as elongation at break of the alloy.

【0010】焼結体中に含まれる添加金属の割合を全体
中の1〜6.5原子%となるようにするのは、1原子%
未満或は6.5原子%を超えると、引っ張り強さや破断
伸びが小さくなり過ぎる。なお、原子%はガス成分は計
算に含めない通常の計算方法によった。
The proportion of the added metal contained in the sintered body is 1 atom% to 1 atom% to 6.5 atom% of the whole.
If it is less than 6.5 atom% or more, the tensile strength and elongation at break become too small. In addition, the atomic% was calculated by the usual calculation method in which the gas component was not included in the calculation.

【0011】[0011]

【実施例】粒度325メッシュアンダーの純Ti粉末、
平均粒径5μmのカーボニル鉄粉末、平均粒径3μmの
W粉末、平均粒径3μmのMo粉末、平均粒径2μmの
Nb粉末、平均粒径3μmのV粉末、粒径32μm以下
のCr粉末、粒径44μm以下のZr粉末、平均粒径3
μmのTa粉末、平均粒径44μmのCa粉末を表1に
示す化学組成に配合した。
Example: Pure Ti powder having a grain size of 325 mesh under,
Carbonyl iron powder having an average particle size of 5 μm, W powder having an average particle size of 3 μm, Mo powder having an average particle size of 3 μm, Nb powder having an average particle size of 2 μm, V powder having an average particle size of 3 μm, Cr powder having a particle size of 32 μm or less, particles Zr powder with a diameter of 44 μm or less, average particle size 3
μm Ta powder and Ca powder having an average particle size of 44 μm were mixed in the chemical composition shown in Table 1.

【0012】前記の混合粉末850gに、アクリル樹脂
(三洋化成工業社製 商品名CB−1)と、融点120
゜Fのパラフインワックス(日本石油精製社製)とを等
重量混合した有機バインダー150gを混合した。この
混合物を射出温度90℃で、射出圧力600kgf/c
2の条件で射出成形してJIS 6号引っ張り試験片
(JIS Z 2201)形状のグリーン体とした。
To 850 g of the above-mentioned mixed powder, an acrylic resin (manufactured by Sanyo Chemical Industry Co., Ltd., trade name CB-1) and a melting point of 120
150 g of an organic binder obtained by mixing equal weight of paraffin wax of ° F (manufactured by Nippon Oil Refinery Co., Ltd.) was mixed. This mixture is injected at a temperature of 90 ° C. and an injection pressure of 600 kgf / c.
Injection molding was performed under the condition of m 2 to obtain a JIS No. 6 tensile test piece (JIS Z 2201) shaped green body.

【0013】このグリーン体を窒素気流中で300℃ま
で加熱して脱バインダー処理を行った。その後、10-5
Torrの真空中で、加熱速度10℃/分で昇温し、1
300℃に1時間保持した後、炉冷し、焼結体を得た。
この焼結体を引っ張り試験機で引っ張り試験を行い、引
っ張り強さ、及び破断伸びを測定した。その結果を表1
に示す。
This green body was heated to 300 ° C. in a nitrogen stream to remove the binder. Then 10 -5
In a vacuum of Torr, the temperature was raised at a heating rate of 10 ° C./minute to 1
After holding at 300 ° C. for 1 hour, furnace cooling was performed to obtain a sintered body.
This sintered body was subjected to a tensile test with a tensile tester to measure tensile strength and breaking elongation. The results are shown in Table 1.
Shown in.

【0014】[0014]

【表1】 試験番号 焼結体の化学組成 引っ張り強さ 破断伸び 備考 原子% kgf/mm2 % 1 3.2C−0.5Mo−Ti 43 0 比較例 ────────────────────────────────── 2 3.2C−2.0Nb−Ti 78 14 3 3.2C−2.4Ca−5Fe−Ti 78 14 4 3.5C−3.5Zr−5Fe−Ti 97 18 5 3.5C−3.6V−5Fe−Ti 102 19 実施例 6 3.2C−3.3Mo−Ti 75 18 7 3.5C−4.0Cr−5Fe−Ti 98 19 8 3.3C−6.0Ta−Ti 78 14 9 3.2C−6.3W−Ti 76 18 ────────────────────────────────── 10 3.2C−7.0Ca−Ti 78 0 比較例[Table 1] Test number Chemical composition of sintered body Tensile strength Elongation at break Remark Atomic% kgf / mm 2 % 1 3.2C-0.5Mo-Ti 43 0 Comparative example ────────────── ───────────────────── 2 3.2C-2.0Nb-Ti 78 14 3 3.2C-2.4Ca-5Fe-Ti 78 14 4 3.5C-3.5Zr- 5Fe-Ti 97 18 5 3.5C-3.6V-5Fe-Ti 102 19 Example 6 3.2C-3.3Mo-Ti 75 18 7 3.5C-4.0Cr-5Fe-Ti 98 19 8 3.3C-6.0Ta-Ti 78 14 9 3.2C-6.3W-Ti 76 18 ────────────────────────────────── 10 3.2C-7.0 Ca-Ti 78 0 Comparative Example

【0015】表1によれば、Ti又はTi−Fe系射出
成形焼結合金において、W、Mo、Nb、Cr、Zr、
Ta、V、Caの内から選ばれた1種を、全成分中に1
〜6.5原子%含有せしめることにより、機械的性質の
優れた射出成形焼結合金を提供することが可能となる。
According to Table 1, in Ti or Ti--Fe injection molded sintered alloys, W, Mo, Nb, Cr, Zr,
One of Ta, V and Ca selected from all ingredients
By including the content of ˜6.5 at%, it becomes possible to provide an injection-molded sintered alloy having excellent mechanical properties.

【0016】[0016]

【発明の効果】本発明によれば、機械的性質、特に、破
断伸びに優れたTi又はTi−Fe系射出成形焼結合金
を提供できる。
INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a Ti or Ti-Fe based injection-molded sintered alloy excellent in mechanical properties, particularly, elongation at break.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 W、Mo、Nb、Cr、Zr、Ta、
V、Caの内から選ばれた1種を全成分中に1〜6.5
原子%含有するTi又はTi−Fe系射出成形焼結合
金。
1. W, Mo, Nb, Cr, Zr, Ta,
1 to 6.5 in all ingredients, one selected from V and Ca
A Ti or Ti-Fe based injection-molded sintered alloy containing atomic%.
【請求項2】 W、Mo、Nb、Cr、Zr、Ta、
V、Caの内から選ばれた1種を全金属成分中に1〜
6.5原子%含有せしめたTi粉末又はTi粉末とFe
粉末又はTi−Fe合金粉末と、有機バインダーとの混
練物を射出成形し、脱バインダー後焼結するTi又はT
i−Fe系射出成形焼結合金の製造方法。
2. W, Mo, Nb, Cr, Zr, Ta,
1 to 1 selected from V and Ca among all metal components
Ti powder or Ti powder and Fe containing 6.5 atomic%
Powder or Ti-Fe alloy powder and a kneaded product of an organic binder are injection-molded, and the binder or binder is sintered after debinding.
A method for producing an i-Fe-based injection molded sintered alloy.
JP5157959A 1993-06-03 1993-06-03 Ti or ti-fe injection-molded and sintered alloy and its production Pending JPH06346168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5157959A JPH06346168A (en) 1993-06-03 1993-06-03 Ti or ti-fe injection-molded and sintered alloy and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5157959A JPH06346168A (en) 1993-06-03 1993-06-03 Ti or ti-fe injection-molded and sintered alloy and its production

Publications (1)

Publication Number Publication Date
JPH06346168A true JPH06346168A (en) 1994-12-20

Family

ID=15661201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5157959A Pending JPH06346168A (en) 1993-06-03 1993-06-03 Ti or ti-fe injection-molded and sintered alloy and its production

Country Status (1)

Country Link
JP (1) JPH06346168A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999005332A1 (en) * 1997-07-25 1999-02-04 Dynamet Technology, Inc. Titanium materials containing tungsten
JP2005048235A (en) * 2003-07-28 2005-02-24 National Institute For Materials Science beta TYPE TITANIUM ALLOY FOR LIVING BODY
CN108103354A (en) * 2018-02-02 2018-06-01 贾红琴 A kind of medical titanium alloy bone implant and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0254733A (en) * 1988-08-20 1990-02-23 Kawasaki Steel Corp Manufacture of ti sintered material
JPH0364402A (en) * 1989-07-31 1991-03-19 Komatsu Ltd Method for controlling carbon content of metallic injection molding
JPH03281701A (en) * 1989-09-18 1991-12-12 Nkk Corp Method for preparing mechanical strength in titanium powder and titanium alloy powder sintered body
JPH051342A (en) * 1991-06-24 1993-01-08 Sumitomo Heavy Ind Ltd Production of titanium alloy and sintered titanium alloy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0254733A (en) * 1988-08-20 1990-02-23 Kawasaki Steel Corp Manufacture of ti sintered material
JPH0364402A (en) * 1989-07-31 1991-03-19 Komatsu Ltd Method for controlling carbon content of metallic injection molding
JPH03281701A (en) * 1989-09-18 1991-12-12 Nkk Corp Method for preparing mechanical strength in titanium powder and titanium alloy powder sintered body
JPH051342A (en) * 1991-06-24 1993-01-08 Sumitomo Heavy Ind Ltd Production of titanium alloy and sintered titanium alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999005332A1 (en) * 1997-07-25 1999-02-04 Dynamet Technology, Inc. Titanium materials containing tungsten
JP2005048235A (en) * 2003-07-28 2005-02-24 National Institute For Materials Science beta TYPE TITANIUM ALLOY FOR LIVING BODY
CN108103354A (en) * 2018-02-02 2018-06-01 贾红琴 A kind of medical titanium alloy bone implant and preparation method thereof

Similar Documents

Publication Publication Date Title
JP3952006B2 (en) Raw material powder for sintering or granulated powder for sintering and sintered body thereof
US20110123384A1 (en) Method of manufacturing powder injection-molded body
CN1708372A (en) Metal powder injection molding material and metal powder injection molding method
US5266264A (en) Process for producing sinters and binder for use in that process
JP2009542905A (en) Manufacturing method of alloy parts by metal injection molding and alloy parts thereof
JP4376826B2 (en) Co-Cr alloy pellet and method for producing the same
JP2793958B2 (en) Method for producing titanium-based sintered body by metal powder injection molding method
JP2001271101A (en) Method for producing sintered body and sintered body
US3161949A (en) Refractory metal base alloys and method of making same
JPH06346168A (en) Ti or ti-fe injection-molded and sintered alloy and its production
JP5470955B2 (en) Metal powder and sintered body
EP0409646A2 (en) Compound for an injection molding
JP2001158925A (en) Method for producing metallic sintered body and metallic sintered body
JP2002206124A (en) METHOD FOR PRODUCING Ti ALLOY SINTERED BODY
US7455711B1 (en) Process for manufacturing hardened powder metal parts
JPH02107703A (en) Composition for injection molding
JPH1046201A (en) Additive for powder metallurgy and production of sintered compact
JPH11181541A (en) Production of stainless steel sintered body
JP2758569B2 (en) Method for producing iron-based sintered body by metal powder injection molding method
JP2793938B2 (en) Manufacturing method of sintered metal parts by metal powder injection molding method
JP2745889B2 (en) Method of manufacturing high-strength steel member by injection molding method
KR930006442B1 (en) Sintered fe-co type magnetic materials
JP2001089824A (en) Manufacture of sintered compact of chromium- molybdenum steel
JPH0931588A (en) Production of invar (r) sintered compact
JPH10140209A (en) Production of cemented carbide by injection molding