JPH1046201A - Additive for powder metallurgy and production of sintered compact - Google Patents

Additive for powder metallurgy and production of sintered compact

Info

Publication number
JPH1046201A
JPH1046201A JP21610996A JP21610996A JPH1046201A JP H1046201 A JPH1046201 A JP H1046201A JP 21610996 A JP21610996 A JP 21610996A JP 21610996 A JP21610996 A JP 21610996A JP H1046201 A JPH1046201 A JP H1046201A
Authority
JP
Japan
Prior art keywords
powder
powder metallurgy
raw material
sintered body
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21610996A
Other languages
Japanese (ja)
Inventor
Yasushi Narisawa
靖 成澤
Hisao Abe
尚生 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nikko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Materials Co Ltd filed Critical Nikko Materials Co Ltd
Priority to JP21610996A priority Critical patent/JPH1046201A/en
Publication of JPH1046201A publication Critical patent/JPH1046201A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a powder metallurgical means capable of stably furnishing a high-quality sintered compact product without spoiling the appearance of the product of damaging the wall of a sintering furnace. SOLUTION: An additive composed of an org. acid-cobalt metallic soap is admixed with a powder for powder metallurgy to improve the lubricity of the raw powder and to improve the strength of a sintered compact product. Further, an additive composed of an org. acid-cobalt metallic soap is admixed with the raw powder (cuprous metallic powder, etc.) preferably by 0.1-2.0wt.%, and the mixed powder is molded and sintered to obtain a sintered compact.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、粉末冶金用原料粉末
への添加剤並びに該添加剤を使用して焼結体を製造する
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an additive to a raw material powder for powder metallurgy and a method for producing a sintered body using the additive.

【0002】[0002]

【従来技術とその課題】金属の粉末を原料とし、これを
金型により所要形状に圧縮成形して得た圧粉体を加熱・
焼結し焼結材とする粉末冶金は、今や溶製が困難な材質
から成る部品や多孔質部品あるいは複雑形状部品等を製
造するために欠かせない技術の1つとなっている。
2. Description of the Related Art A metal powder is used as a raw material, and a green compact obtained by compression-molding the metal powder into a required shape is heated and heated.
2. Description of the Related Art Powder metallurgy as a sintered material has become one of the technologies that are indispensable for manufacturing components made of materials that are difficult to melt, porous components, or components with complicated shapes.

【0003】ところで、粉末冶金法によって焼結体を製
造する際には、まず当該焼結体の組成に合わせて1種又
は複数の成分の粉末原料を必要な割合となるように混合
して原料粉末を作成するが、通常、この粉末原料の混合
に先立ち、金型成形時における原料粉末の潤滑性を改善
して圧縮効果を向上させるべく“潤滑剤”を添加するこ
とが行われている。
[0003] When a sintered body is manufactured by powder metallurgy, powdery raw materials of one or more components are first mixed in a required ratio according to the composition of the sintered body, and the raw materials are mixed. Powder is prepared, and usually, prior to the mixing of the powder raw material, a "lubricant" is added to improve the lubricating property of the raw material powder at the time of molding and improve the compression effect.

【0004】これは、上述の如く粉末原料に潤滑剤を添
加して混合・調整された粉末冶金用原料粉末では、金型
中での圧縮過程において粒子の移動や変形が円滑に進行
するので圧粉体の密度分布が均一となる上に平均密度も
高くなり、更には金型から圧粉体を取り出す際に圧粉体
が割れる率が減って歩留りが良くなるばかりか、寸法精
度や表面光沢が増して品質向上に役立つ等といった好ま
しい特性が発揮されるからである。
[0004] In the powder metallurgy raw material powder prepared by adding a lubricant to the powder raw material as described above and mixed and adjusted, during the compression process in the mold, the movement and deformation of the particles progress smoothly, so that the pressure is reduced. The density distribution of the powder becomes uniform and the average density becomes higher. Furthermore, when the green compact is removed from the mold, the rate of cracking of the green compact is reduced and the yield is improved, as well as dimensional accuracy and surface gloss. This is because preferable characteristics such as increased quality and usefulness in quality improvement are exhibited.

【0005】なお、添加する潤滑剤としてはパラフィ
ン,オレイン酸ベンゾ−ル溶液,ステアリン酸亜鉛,黒
鉛グリ−ス,合成樹脂等が知られているが、潤滑性の良
さから近年ではステアリン酸亜鉛が最も広く使用される
ようになっている。
[0005] As a lubricant to be added, paraffin, benzoyl oleate solution, zinc stearate, graphite grease, synthetic resin and the like are known, but zinc stearate is recently used due to its good lubricity. It has become the most widely used.

【0006】ところが、粉末冶金用潤滑剤としてのステ
アリン酸亜鉛は成形体の焼結過程において気化し亜鉛化
合物を放出するという物性を有しており、最近、この放
出された亜鉛化合物が焼結体に付着して製品の外観を汚
染したり焼結炉の内壁に付着して炉壁を損傷することが
問題視されるようになってきた。
[0006] However, zinc stearate as a lubricant for powder metallurgy has the property of vaporizing and releasing a zinc compound during the sintering process of a molded product. It has become a problem to adhere to the surface and contaminate the appearance of the product or to adhere to the inner wall of the sintering furnace and damage the furnace wall.

【0007】このようなことから、本発明が目的とした
のは、製品の外観汚染や焼結炉の炉壁損傷を引き起こす
ことなく高品質の焼結体製品を安定提供できる粉末冶金
手段を確立することであった。
Accordingly, an object of the present invention is to establish a powder metallurgy means capable of stably providing a high-quality sintered product without causing external contamination of the product and damage to the furnace wall of the sintering furnace. Was to do.

【0008】[0008]

【課題を解決するための手段】そこで、本発明者等は上
記目的を達成すべく鋭意研究を重ねた結果、次に示すよ
うな知見を得ることができた。 a) これまで、工業的な実用例としてはラジアルタイヤ
用バインダ−剤等が知られているだけで粉末冶金材料と
しては一顧だにされることもなかった“有機酸コバルト
金属石けん”は、粉末冶金用潤滑剤として市販のステア
リン酸亜鉛と同等の潤滑性を発揮する上、ステアリン酸
亜鉛のように焼結過程で金属成分(コバルト)を気化・
放出することもなく、従って、有機酸コバルト金属石け
んを粉末冶金用潤滑剤として用いた場合には、気化金属
成分による製品の外観汚染や炉壁の損傷を引き起こすこ
となく高品質の焼結体を得ることが可能である。
The inventors of the present invention have conducted intensive studies to achieve the above object, and as a result, have obtained the following findings. a) Until now, a binder material for radial tires, etc. was known as an industrial practical example and was not considered as a powder metallurgy material. As a metallurgical lubricant, it exhibits the same lubricity as commercially available zinc stearate, and also vaporizes metal components (cobalt) during the sintering process like zinc stearate.
It does not release, so when using organic acid cobalt metal soap as a lubricant for powder metallurgy, a high-quality sintered body can be produced without causing appearance contamination of the product and damage to the furnace wall due to vaporized metal components. It is possible to get.

【0009】b) また、粉末冶金用原料混合粉に有機酸
コバルト金属石けんを添加・混合して焼結を行うと、そ
の際の加熱により有機酸コバルト金属石けん中のコバル
トが焼結体中に残留してマトリックスに拡散する現象が
起きると共に、この現象により焼結が促進され、得られ
る焼結体の強度が向上する。
B) In addition, when an organic acid cobalt metal soap is added to and mixed with the raw material powder for powder metallurgy and sintering is performed, the cobalt in the organic acid cobalt metal soap is converted into a sintered body by heating at that time. A phenomenon of remaining and diffusing into the matrix occurs, and this phenomenon promotes sintering, thereby improving the strength of the obtained sintered body.

【0010】本発明は、上記知見事項等に基づいてなさ
れたもので、次の1)乃至6)項に記載される各事項によっ
て構成されるところを特徴とするものである。 1) 有機酸コバルト金属石けんを成分とする、 粉末冶
金用原料粉末への添加剤。 2) 有機酸コバルト金属石けんを成分とする、粉末冶金
用原料粉末へ添加する潤滑剤。 3) 粉末冶金用原料粉末に有機酸コバルト金属石けんを
成分とする添加剤を添加して混合し、 この混合粉末を
金型成形してから焼結することを特徴とする、焼結体の
製造方法。 4) 粉末冶金用原料粉末が銅系金属の粉末冶金材料であ
る、上記3)項に記載の焼結体の製造方法。 5) 粉末冶金用原料粉末が鉄系金属の粉末冶金材料であ
る、前記3)項に記載の焼結体の製造方法。 6) 粉末冶金用原料粉末に対する有機酸コバルト金属石
けんの添加割合を 0.1〜 2.0重量%とする、前記3)乃至
5)項の何れかに記載の焼結体の製造方法。
The present invention has been made based on the above findings and the like, and is characterized by being constituted by the following items 1) to 6). 1) Additive to raw material powder for powder metallurgy, which contains organic acid cobalt metal soap. 2) Lubricants containing cobalt metal organic soap as a component and added to raw material powder for powder metallurgy. 3) Production of a sintered body characterized by adding and mixing an additive containing organic acid cobalt metal soap to raw material powder for powder metallurgy, molding the mixed powder, and then sintering. Method. 4) The method for producing a sintered body according to the above item 3), wherein the raw material powder for powder metallurgy is a copper-based metal powder metallurgy material. 5) The method for producing a sintered body according to the above item 3), wherein the raw material powder for powder metallurgy is an iron-based metal powder metallurgy material. 6) The addition ratio of the organic acid cobalt metal soap to the powdered powder metallurgy is 0.1 to 2.0% by weight.
5) The method for producing a sintered body according to any one of the above items.

【0011】上述のように、本発明は、「粉末冶金用原
料粉末に添加・混合して原料粉末の潤滑性向上効果,焼
結体製品の強度向上効果を確保するための添加剤を有機
酸コバルト金属石けんから成る構成とすることにより、
製品の外観汚染や焼結炉の炉壁損傷を生じることなく高
品質の焼結体製品が得られるようにした点」 あるいは
「粉末冶金用原料粉末に“有機酸コバルト金属石けんを
成分とする添加剤”を添加して混合し、 この混合粉末を
金型成形し焼結して焼結体を製造することにより、 製品
の外観汚染や焼結炉の炉壁損傷を引き起こすことなく高
品質の焼結体製品を安定製造し得るようにした点」を骨
子とするものであるが、粉末冶金用原料粉末としては特
に制限されるものではなく、銅系金属(Cu又はCu合金)
粉,鉄系金属(Fe又はFe合金)粉,ニッケル系金属(Ni
又はNi合金)粉,硬質分散相となる物質(炭化物,窒化
物,炭窒化物,酸化物)の粉末と結合相となる金属(F
e,Mo,Co,Al等)の粉末,セラミックス粉末等の何れ
であっても良い。
[0011] As described above, the present invention relates to a method of adding and mixing an additive to a raw material powder for powder metallurgy to ensure an effect of improving lubricity of the raw material powder and an effect of improving strength of a sintered product. By adopting a structure consisting of cobalt metal soap,
A point that high quality sintered products can be obtained without causing product appearance contamination and sintering furnace wall damage. ”Or“ Addition of “Cobalt organic acid metal soap to raw material powder for powder metallurgy” The mixture is then added and mixed, and the mixed powder is molded and sintered to produce a sintered body, so that high-quality sintering can be achieved without causing appearance contamination of the product or damage to the furnace wall of the sintering furnace. The main point is that the product can be manufactured stably. However, the raw material powder for powder metallurgy is not particularly limited. Copper-based metal (Cu or Cu alloy)
Powder, iron-based metal (Fe or Fe alloy) powder, nickel-based metal (Ni
Or Ni alloy) powder, a powder of a substance (carbide, nitride, carbonitride, oxide) to be a hard dispersed phase and a metal (F
e, Mo, Co, Al, etc.), ceramic powder, or the like.

【0012】なお、有機酸コバルト金属石けんから成る
粉末冶金用添加剤は微粉状の形態とするのが好ましく、
またその使用方法は従来から粉末冶金用潤滑剤として用
いられていたステアリン酸亜鉛の場合と同様で良い。即
ち、粉末冶金法により焼結体を製造するに際しては、ま
ず目指す焼結体の組成に合わせて1種又は複数成分の粉
末原料を必要な割合で混合して原料粉末を作成するが、
この混合時に、次の成形工程における金型潤滑に必要な
(あるいは焼結体に所望強度を付与するのに必要な)有
機酸コバルト金属石けんを好ましくは微粉末形態で 0.1
〜 2.0重量%添加して混合する。そして、この混合原料
粉末を金型成形し、焼結を行って焼結体を作成すれば良
い。
It is preferable that the powder metallurgy additive comprising the organic acid cobalt metal soap is in the form of fine powder.
The method of use may be the same as that of zinc stearate which has been conventionally used as a lubricant for powder metallurgy. That is, when producing a sintered body by powder metallurgy, first, one or more kinds of powdered raw materials are mixed at a required ratio according to the composition of a target sintered body to prepare a raw material powder.
At the time of this mixing, cobalt metal soap, which is necessary for lubricating the mold in the next molding step (or necessary for imparting the desired strength to the sintered body), is preferably added in the form of fine powder to 0.1%.
Add ~ 2.0 wt% and mix. Then, the mixed raw material powder may be molded and sintered to form a sintered body.

【0013】ここで、粉末冶金用原料粉末に添加・混合
する有機酸コバルト金属石けんの添加割合は、粉末冶金
用原料粉末の種類に関わりなく 0.1〜 2.0重量%に調整
するのが良い。なぜなら、有機酸コバルト金属石けんの
添加割合が 0.1重量%未満であると所望の潤滑性向上効
果,焼結体強度の向上効果を安定して得るのが難しく、
一方、2.0 重量%を超える割合で添加するとマトリック
ス粉末粒子間に入り込む有機酸コバルト金属石けん粒子
が多くなり、 焼結を阻害して強度低下を招くからであ
る。
Here, the addition ratio of the organic acid cobalt metal soap to be added to and mixed with the powder metallurgy raw material powder is preferably adjusted to 0.1 to 2.0% by weight regardless of the type of the powder metallurgy raw material powder. Because, when the addition ratio of the organic acid cobalt metal soap is less than 0.1% by weight, it is difficult to stably obtain the desired lubricating property improving effect and the sintered body strength improving effect.
On the other hand, if added in a proportion exceeding 2.0% by weight, the amount of organic acid cobalt metal soap particles entering between the matrix powder particles increases, which hinders sintering and causes a decrease in strength.

【0014】[0014]

【作用及び効果】さて、粉末冶金用潤滑剤として従来か
ら使用されていたステアリン酸亜鉛とは異なり、本発明
に従って有機酸コバルト金属石けんを粉末冶金用添加剤
として使用した場合には、これを添加・混合した原料粉
末の焼結中にコバルト成分が気化して“焼結体製品の外
観汚染”や“炉壁損傷”の原因となることはない。 こ
れは、有機酸コバルト金属石けんが焼結工程で加熱され
てもコバルト成分を気化・放出することがなく、コバル
ト成分は焼結体中に残留するためである。
[Function and Effect] Unlike zinc stearate which has been conventionally used as a powder metallurgy lubricant, when an organic acid cobalt metal soap is used as an additive for powder metallurgy according to the present invention, it is added. -The cobalt component does not vaporize during the sintering of the mixed raw material powder, and does not cause "stained product appearance contamination" or "furnace wall damage". This is because even when the organic acid cobalt metal soap is heated in the sintering step, the cobalt component does not evaporate and release, and the cobalt component remains in the sintered body.

【0015】しかも、有機酸コバルト金属石けんはステ
アリン酸亜鉛と同等の優れた潤滑性を発揮するため、こ
れを添加剤として原料粉末に混合することで、原料粉末
の圧縮効果が顕著に向上して圧粉体を均一で高い密度と
することができると共に圧粉体の成形歩留りが高まり、
かつ焼結体の寸法精度や表面性状も増して優れた焼結体
製品品質を確保できるようになる。
In addition, since the organic acid cobalt metal soap exhibits the same excellent lubricity as zinc stearate, by adding it to the raw material powder as an additive, the compression effect of the raw material powder is remarkably improved. The green compact can be made uniform and of high density, and the molding yield of the green compact increases,
In addition, the dimensional accuracy and surface properties of the sintered body are increased, so that excellent sintered product quality can be secured.

【0016】更に、前述したように、有機酸コバルト金
属石けんを配合した粉末冶金用原料粉末を焼結すると有
機酸コバルト金属石けん中のコバルトが焼結体中に残留
するが、更に焼結過程での加熱によってこのコバルトが
マトリックスに拡散するため焼結が促進され、焼結体の
強度を向上する。従って、有機酸コバルト金属石けんを
粉末冶金用添加剤として使用することにより焼結体製品
の強度を効果的に向上させることも可能となる。
Further, as mentioned above, when the raw material powder for powder metallurgy mixed with the organic acid cobalt metal soap is sintered, the cobalt in the organic acid cobalt metal soap remains in the sintered body. This cobalt diffuses into the matrix due to the heating of sintering, which promotes sintering and improves the strength of the sintered body. Therefore, the use of the organic acid cobalt metal soap as an additive for powder metallurgy makes it possible to effectively improve the strength of the sintered product.

【0017】なお、本発明において有機酸コバルト金属
石けんとは、例えば(RCOO)2Co又は(RCOO)2Co
・nH2 O(n=1〜2)等で表される飽和脂肪酸コバ
ルト(R:炭素数;12〜36)を意味する。飽和脂肪酸と
しては、直鎖上のステアリン酸,バルチミン酸等、環状
のナフテン酸等が例示される。ここで、炭素数が12未満
の場合は飽和脂肪酸コバルトが固体(粉末)とならず、
一方、炭素数が36を超えると潤滑性が低下するので、何
れも好ましくない。そして、飽和脂肪酸コバルトの中で
ステアリン酸コバルトが潤滑性等の特性を考慮に入れる
と最も好ましい。
In the present invention, the organic acid cobalt metal soap is, for example, (RCOO) 2 Co or (RCOO) 2 Co
· NH 2 O (n = 1~2 ) saturated fatty acid cobalt represented by like (R: the number of carbon atoms; 12-36) means. Examples of the saturated fatty acid include linear stearic acid, baltimic acid, and cyclic naphthenic acid. Here, when the carbon number is less than 12, the saturated fatty acid cobalt does not become solid (powder),
On the other hand, if the number of carbon atoms exceeds 36, lubricity is reduced, and neither is preferable. Of the saturated fatty acid cobalt, cobalt stearate is most preferable in consideration of properties such as lubricity.

【0018】以下、本発明の効果を、実施例により比較
例と対比しながら更に具体的に説明する。
Hereinafter, the effects of the present invention will be described more specifically with reference to examples and comparative examples.

【実施例】【Example】

〔実施例1〕Cu−10重量%Sn組成の銅合金粉(粒度:−
150μm)にステアリン酸コバルト粉末(粒度:−4
5μm,平均粒径:13μm)を 0.3重量%あるいは
0.5重量%添加して10分間混合した原料粉末を用い、
直径:9.5mm×長さ:9.5mmの円柱状試験片を金型で加圧成
形したが、この時の「金型から試験片を抜き出す際の抜
き出し力」と「成形した試験片の圧粉密度」を測定し
た。
[Example 1] Copper alloy powder having a Cu-10% by weight Sn composition (particle size:-
150 μm) to cobalt stearate powder (particle size: -4)
5 μm, average particle size: 13 μm) by 0.3% by weight or
Using raw powder mixed with 0.5% by weight and mixed for 10 minutes,
A cylindrical test specimen of diameter: 9.5 mm x length: 9.5 mm was press-molded with a mold.At this time, the `` withdrawal force when removing the test specimen from the mold '' and `` the compaction of the molded specimen Density "was measured.

【0019】また、比較のため、市販のステアリン酸亜
鉛粉末(粒度:−45μm,平均粒径:13μm)を用
いて上記と同様の試験を行った。これらの結果を整理し
て表1に示す。
For comparison, the same test as above was carried out using a commercially available zinc stearate powder (particle size: -45 μm, average particle size: 13 μm). Table 1 summarizes these results.

【0020】[0020]

【表1】 [Table 1]

【0021】表1に示される結果からも明らかなよう
に、ステアリン酸コバルトを添加した混合粉は、市販ス
テアリン酸亜鉛を添加した混合粉とほぼ同等の優れた成
形性を有していることが分かる。
As is evident from the results shown in Table 1, the mixed powder to which cobalt stearate was added had almost the same excellent moldability as the mixed powder to which zinc stearate was added. I understand.

【0022】〔実施例2〕何れも粒度が−150μmの
電解銅粉と錫粉とを重量比「91:9」で配合した混合
粉末にステアリン酸コバルト(粒度:−45μm,平均
粒径:13μm)を0.25重量%, 0.5重量%あるいは
1.0重量%添加し混合した原料粉末を用い、寸法が「内
径:10mm×外径:18mm×長さ:7mm」で圧粉密度が6.4g
/cm3の軸受型圧粉体を金型にて加圧成形した。次に、こ
の圧粉体を水素気流中にて780℃×30min の条件で
焼結し、得られた焼結体の焼結特性(圧環強さ)を測定
した。
Example 2 Cobalt stearate (particle size: -45 μm, average particle size: 13 μm) was mixed with a mixed powder in which electrolytic copper powder and tin powder each having a particle size of -150 μm were blended in a weight ratio of “91: 9”. ) Is 0.25% by weight, 0.5% by weight or
Using the raw material powder added and mixed at 1.0% by weight, the dimensions are "inner diameter: 10mm x outer diameter: 18mm x length: 7mm" and the green density is 6.4g
/ cm 3 of a bearing compact was press-molded with a mold. Next, this green compact was sintered under a condition of 780 ° C. × 30 min in a hydrogen stream, and the sintering characteristics (ring compaction strength) of the obtained sintered body were measured.

【0023】また、比較のため、市販のステアリン酸亜
鉛粉(粒度:−45μm,平均粒径:13μm)を上記
銅粉と錫粉との混合粉末に 0.5重量%添加して混合した
原料粉末を用い、上記と同様の方法で軸受型焼結体を作
成して圧環強さを測定した。これらの結果を整理して表
2に示す。
For comparison, a raw material powder obtained by adding 0.5% by weight of a commercially available zinc stearate powder (particle size: -45 μm, average particle size: 13 μm) to the above mixed powder of copper powder and tin powder was mixed. A bearing-type sintered body was prepared in the same manner as described above, and the radial crushing strength was measured. Table 2 summarizes these results.

【0024】[0024]

【表2】 [Table 2]

【0025】表2に示される結果から明らかなように、
ステアリン酸コバルトを添加剤として添加して成形し焼
結した焼結体は、ステアリン酸亜鉛を添加したものに比
べて圧環強さが向上している。
As is clear from the results shown in Table 2,
The sintered compact formed by adding cobalt stearate as an additive and sintering has an improved radial crushing strength as compared with the one obtained by adding zinc stearate.

【0026】〔実施例3〕何れも粒度が−150μmの
還元鉄粉と電解銅粉とを重量比「98:2」で配合した
混合粉末にステアリン酸コバルト(粒度:−45μm,平
均粒径:13μm)を 0.8重量%添加し混合した混合粉末
を用い、成形圧力:4.0 t/cm2 にて寸法が「内径:10
mm×外径:18mm×長さ:7mm」の軸受型圧粉体を金型
で加圧成形した。次に、この圧粉体を水素気流中にて1
100℃×30min の条件で焼結し、得られた焼結体の
焼結特性(焼結密度,圧環強さ)を測定した。
EXAMPLE 3 Cobalt stearate (particle size: -45 μm, average particle size) was added to a mixed powder in which reduced iron powder having a particle size of -150 μm and electrolytic copper powder were mixed at a weight ratio of “98: 2”. 13 μm) was added and mixed at a molding pressure of 4.0 t / cm 2 using a mixed powder obtained by adding and mixing 0.8% by weight.
mm × outer diameter: 18 mm × length: 7 mm ”was press-molded with a metal mold. Next, the green compact is placed in a hydrogen stream for 1 hour.
Sintering was performed at 100 ° C. for 30 minutes, and the sintering characteristics (sintering density, radial crushing strength) of the obtained sintered body were measured.

【0027】また、比較のため、市販のステアリン酸亜
鉛粉(粒度:−45μm,平均粒径:13μm)を上記鉄粉
と銅粉との混合粉末に 0.8重量%添加して混合した原料
粉末を用い、上記と同様の方法で軸受型焼結体を作成し
て焼結特性(焼結密度,圧環強さ)の測定を行った。こ
れらの結果を整理して表3に示す。
For comparison, a raw material powder obtained by adding 0.8% by weight of a commercially available zinc stearate powder (particle size: -45 μm, average particle size: 13 μm) to the above mixed powder of iron powder and copper powder and mixing the powder was used. A bearing-type sintered body was prepared in the same manner as described above, and sintering characteristics (sintering density, radial crushing strength) were measured. Table 3 summarizes these results.

【0028】[0028]

【表3】 [Table 3]

【0029】表3に示される結果から明らかなように、
ステアリン酸コバルトを添加剤として添加して成形し焼
結した焼結体は、ステアリン酸亜鉛を添加したものに比
べて圧環強さが向上している。また、成形圧力:4.0t/c
m2にて加圧成形した圧粉体の密度(圧粉密度)がステア
リン酸コバルトを添加した場合とステアリン酸亜鉛を添
加した場合とで同程度であったことから、原料粉末の圧
縮性についてはステアリン酸コバルトを添加した場合で
もステアリン酸亜鉛を添加した場合と同じく良好である
ことが分かる。
As is clear from the results shown in Table 3,
The sintered compact formed by adding cobalt stearate as an additive and sintering has an improved radial crushing strength as compared with the one obtained by adding zinc stearate. Molding pressure: 4.0t / c
Since the density of the pressure-molded green compact (green density) was similar in the case of adding the case and zinc stearate was added cobalt stearate at m 2, the compressibility of the raw powder It can be seen that the case where cobalt stearate is added is as good as the case where zinc stearate is added.

【0030】[0030]

【効果の総括】以上に説明した如く、この発明によれ
ば、製品の外観汚染や焼結炉の炉壁損傷を生じることの
ない粉末冶金原料用の潤滑性向上,製品強度向上添加剤
を提供することができ、また該添加剤を使用して高品質
の焼結体製品を作業性良く安定製造することを可能なら
しめるなど、産業上有用な効果がもたらされる。
As described above, according to the present invention, there is provided an additive for improving lubricity and improving product strength for powder metallurgy raw materials without causing contamination of the appearance of the product and damage to the furnace wall of the sintering furnace. In addition, industrially useful effects such as enabling high-quality sintered products to be stably manufactured with good workability by using the additives are obtained.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 有機酸コバルト金属石けんを成分とす
る、粉末冶金用原料粉末への添加剤。
An additive to a raw material powder for powder metallurgy, comprising an organic acid cobalt metal soap as a component.
【請求項2】 有機酸コバルト金属石けんを成分とす
る、粉末冶金用原料粉末へ添加する潤滑剤。
2. A lubricant which comprises cobalt metal soap of an organic acid as a component and is added to a raw material powder for powder metallurgy.
【請求項3】 粉末冶金用原料粉末に有機酸コバルト金
属石けんを成分とする添加剤を添加して混合し、この混
合粉末を金型成形してから焼結することを特徴とする、
焼結体の製造方法。
3. An additive having a component of cobalt metal organic soap as an ingredient is added to a raw material powder for powder metallurgy, mixed, and the mixed powder is molded and then sintered.
A method for manufacturing a sintered body.
【請求項4】 粉末冶金用原料粉末が銅系金属の粉末冶
金材料である、請求項3に記載の焼結体の製造方法。
4. The method for producing a sintered body according to claim 3, wherein the raw material powder for powder metallurgy is a powder metallurgy material of a copper-based metal.
【請求項5】 粉末冶金用原料粉末が鉄系金属の粉末冶
金材料である、請求項3に記載の焼結体の製造方法。
5. The method for producing a sintered body according to claim 3, wherein the raw material powder for powder metallurgy is a powder metallurgy material of an iron-based metal.
【請求項6】 粉末冶金用原料粉末に対する有機酸コバ
ルト金属石けんの添加割合を 0.1〜 2.0重量%とする、
請求項3乃至5の何れかに記載の焼結体の製造方法。
6. An addition ratio of an organic acid cobalt metal soap to a raw material powder for powder metallurgy is 0.1 to 2.0% by weight.
A method for producing a sintered body according to claim 3.
JP21610996A 1996-07-29 1996-07-29 Additive for powder metallurgy and production of sintered compact Pending JPH1046201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21610996A JPH1046201A (en) 1996-07-29 1996-07-29 Additive for powder metallurgy and production of sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21610996A JPH1046201A (en) 1996-07-29 1996-07-29 Additive for powder metallurgy and production of sintered compact

Publications (1)

Publication Number Publication Date
JPH1046201A true JPH1046201A (en) 1998-02-17

Family

ID=16683391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21610996A Pending JPH1046201A (en) 1996-07-29 1996-07-29 Additive for powder metallurgy and production of sintered compact

Country Status (1)

Country Link
JP (1) JPH1046201A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006025187A1 (en) * 2004-08-30 2006-03-09 Nippon Mining & Metals Co., Ltd. Metal powder for powder metallurgy mainly containing iron and iron-base sintered material
US7217310B2 (en) 2002-09-10 2007-05-15 Nippon Mining & Metals Co., Ltd. Metal powder for powder metallurgy and iron-based sintered compact
US7347969B2 (en) 2002-09-10 2008-03-25 Nippon Mining & Metals Co., Ltd Iron-based sintered compact and method for production thereof
JPWO2006025188A1 (en) * 2004-08-30 2008-07-31 日鉱金属株式会社 Iron-based sintered metal powder and metal powder for powder metallurgy
CN103537687A (en) * 2013-10-16 2014-01-29 宜兴市炜华合金材料有限公司 Production technology for pressing of alloyed powder

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7217310B2 (en) 2002-09-10 2007-05-15 Nippon Mining & Metals Co., Ltd. Metal powder for powder metallurgy and iron-based sintered compact
US7347969B2 (en) 2002-09-10 2008-03-25 Nippon Mining & Metals Co., Ltd Iron-based sintered compact and method for production thereof
US7727639B2 (en) 2002-09-10 2010-06-01 Nippon Mining & Metals Co., Ltd Iron-based sintered compact and method for production thereof
WO2006025187A1 (en) * 2004-08-30 2006-03-09 Nippon Mining & Metals Co., Ltd. Metal powder for powder metallurgy mainly containing iron and iron-base sintered material
JPWO2006025187A1 (en) * 2004-08-30 2008-07-31 日鉱金属株式会社 Iron-based sintered metal powder and metal powder for powder metallurgy
JPWO2006025188A1 (en) * 2004-08-30 2008-07-31 日鉱金属株式会社 Iron-based sintered metal powder and metal powder for powder metallurgy
US7666245B2 (en) 2004-08-30 2010-02-23 Nippon Mining & Metals Co., Ltd. Metallic powder for powder metallurgy whose main component is iron and iron-based sintered body
US7691172B2 (en) 2004-08-30 2010-04-06 Nippon Mining & Metals Co., Ltd. Metallic powder for powder metallurgy whose main component is iron and iron-based sintered body
JP4745239B2 (en) * 2004-08-30 2011-08-10 Jx日鉱日石金属株式会社 Metal powder for powder metallurgy mainly composed of iron and iron-based sintered body
JP4745240B2 (en) * 2004-08-30 2011-08-10 Jx日鉱日石金属株式会社 Metal powder for powder metallurgy mainly composed of iron and iron-based sintered body
CN103537687A (en) * 2013-10-16 2014-01-29 宜兴市炜华合金材料有限公司 Production technology for pressing of alloyed powder
CN103537687B (en) * 2013-10-16 2015-12-02 宜兴市炜华合金材料有限公司 A kind of production technology of suppressing alloyed powder

Similar Documents

Publication Publication Date Title
JP5504278B2 (en) Method for producing diffusion-alloyed iron or iron-based powder, diffusion-alloyed powder, composition comprising the diffusion-alloyed powder, and molded and sintered parts produced from the composition
JPH08504233A (en) Method of making lubricious metallurgical powder composition
JP2010285633A (en) Method of producing powder mixture for powder metallurgy, and method of producing sintered body
JP6106323B1 (en) Sintered tungsten-based alloy and method for producing the same
JP2010265454A (en) Lubricant combination and process for preparing the same
JP4964126B2 (en) Method for producing a molded product
JP2010189769A (en) Method of preparing iron-based component by compaction with elevated pressure
JP2009280907A (en) Iron powder mixture for powder metallurgy
JPH1046201A (en) Additive for powder metallurgy and production of sintered compact
US20030230166A1 (en) Powder composition
JP2007045918A (en) Raw powder for self-lubricating sintered material, method for producing the same and method for producing self-lubricating sintered material
US6355207B1 (en) Enhanced flow in agglomerated and bound materials and process therefor
KR20050105243A (en) Cobalt-based metal powder and method for producing components thereof
JPS6136173A (en) High temperature solid lubricating ceramics
JP2001181701A (en) Method for producing high strength/high density ferrous sintered body
JP4126230B2 (en) Iron powder composition containing amide type lubricant and method for producing the same
CA2248447C (en) Boric acid-containing lubricants for powdered metals, and powdered metal compositions containing said lubricants
JPH0238540A (en) Production of nongreased sliding material
JP2001131660A (en) Alloy powder for copper series high strength sintered parts
JPH11181541A (en) Production of stainless steel sintered body
JP4158015B2 (en) Method for producing sintered body and sintered body
JP4018223B2 (en) Composite lubricant for powder metallurgy, mixed powder for powder metallurgy with excellent dimensional stability, and method for producing a sintered product using the mixed powder
JP2003003201A (en) Powder mixture for powder metallurgy
US20030047032A1 (en) Method of producing powder metal parts from metallurgical powders including sponge iron
JP2745889B2 (en) Method of manufacturing high-strength steel member by injection molding method