JPS6136173A - High temperature solid lubricating ceramics - Google Patents

High temperature solid lubricating ceramics

Info

Publication number
JPS6136173A
JPS6136173A JP59155557A JP15555784A JPS6136173A JP S6136173 A JPS6136173 A JP S6136173A JP 59155557 A JP59155557 A JP 59155557A JP 15555784 A JP15555784 A JP 15555784A JP S6136173 A JPS6136173 A JP S6136173A
Authority
JP
Japan
Prior art keywords
nitrides
sintered body
oxides
temperature solid
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59155557A
Other languages
Japanese (ja)
Other versions
JPH0220592B2 (en
Inventor
裕子 津谷
幹夫 福原
府川 明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Tungaloy Corp
Original Assignee
Agency of Industrial Science and Technology
Toshiba Tungaloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Toshiba Tungaloy Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP59155557A priority Critical patent/JPS6136173A/en
Publication of JPS6136173A publication Critical patent/JPS6136173A/en
Publication of JPH0220592B2 publication Critical patent/JPH0220592B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、硬度、靭性、耐食性、耐酸化性が優れるとと
もに、なによりも摩擦係数が0.25以下であり摩耗率
も小さく自己潤滑性に優れたセラミックス焼結体に関す
る。
Detailed Description of the Invention [Technical Field of the Invention] The present invention has excellent hardness, toughness, corrosion resistance, and oxidation resistance, and above all, has a friction coefficient of 0.25 or less, a low wear rate, and is self-lubricating. Regarding excellent ceramic sintered bodies.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来から自己潤滑性を有する材料としては、C14、C
o 、 Ni 、 Fe 、 Sn 、 Ag + M
n 等の金属にMoS z + WS2 + CaFa
 HLI F2  +黒鉛のような自己潤滑性の高い物
質を所定量配合した金属基材料が知られている。
Traditionally, materials with self-lubricating properties include C14 and C.
o, Ni, Fe, Sn, Ag + M
MoS z + WS2 + CaFa for metals such as n
Metal-based materials containing a predetermined amount of highly self-lubricating substances such as HLI F2 + graphite are known.

この金属基材料に、電気伝導性、熱伝導性に優れている
が、しかしその反面、イ1!:硬度で耐摩耗性に劣り、
高温における軟化が著しくかつ耐食性も劣るため、その
使用分野は制阻ヲ受けざる全得ない状態にある。
This metal-based material has excellent electrical conductivity and thermal conductivity, but on the other hand, it has 1! : Hardness and poor wear resistance.
Since it softens significantly at high temperatures and has poor corrosion resistance, its use is completely restricted.

このような問題の解決を目的として上記の金稙基材オ」
に更に周期律表IVa 、 Va 、 Va族の遷移金
属又はこれら金属の炭化物、窒化物を配合して成るザー
メット材料が開発されている。たしかに、このザー・メ
ット材料の耐岸耗性は上記金属基材料に比べて向上する
。しかし、その硬度及び靭性は依然として低く、しかも
金&4を含有しているので耐食性が劣り、かつ高温での
軟化、塑性変形會きたすので、やはりその使用分野は狭
く限定せさるを得ない。
In order to solve such problems, the above-mentioned gold base material
Further, cermet materials have been developed which are made by blending transition metals of groups IVa, Va, and Va of the periodic table, or carbides and nitrides of these metals. Certainly, the abrasion resistance of this Ther-Met material is improved compared to the metal-based material. However, its hardness and toughness are still low, and since it contains gold and 4, its corrosion resistance is poor, and it undergoes softening and plastic deformation at high temperatures, so its field of use must be narrowly limited.

〔発明の目的〕[Purpose of the invention]

本発明に、土i;r−: t、た従来の潤滑性材料の間
vjAiを解消し、高硬度、高靭性であって、実質的に
金属を単体として含有していないので耐食性、耐酸化性
に優れ、しかも熱伝導性も良好であり高温でも自己潤滑
性を有するセラミックス焼結体の提供を目的とする。
The present invention eliminates vjAi between conventional lubricating materials, has high hardness and high toughness, and has corrosion resistance and oxidation resistance because it does not contain substantially any metal. The purpose of the present invention is to provide a ceramic sintered body having excellent properties, good thermal conductivity, and self-lubricating properties even at high temperatures.

〔発明の概要〕[Summary of the invention]

本発明者らは上記目的を達成すべく鉄量研究を重ねる過
程で、周期律表IVa 、 Va 、 Va族の金属元
素の酸化物はいずれも、大気中、1000℃までの環境
下で固体@滑性を示すこと、とQわけCrの酸化物はそ
の潤滑性が優れている、という事実を見出した。そして
また、上記知見全基礎にして潤滑性材料の摺動面が例え
ば炭化物、窒化物であったとしても上記した高温の大気
中では、摺動面部分に存在するこれら炭化物、窒化物は
容易に酸化して炭酸化物、窒酸化物、炭窒酸化物、酸化
物の緻密な被膜となり、その結果、摺動面の潤滑性は向
上するとの着想を得、本発明の自己潤滑性セラミックス
を開発するに到った。
In the course of conducting research on iron content to achieve the above objective, the present inventors found that all oxides of metal elements in groups IVa, Va, and Va of the periodic table become solid @ at temperatures up to 1000°C in the atmosphere. It has been found that oxides of Cr exhibit excellent lubricity. Based on all the above findings, even if the sliding surface of a lubricating material is made of carbide or nitride, for example, in the high-temperature atmosphere mentioned above, these carbides and nitrides existing on the sliding surface can be easily removed. The self-lubricating ceramic of the present invention was developed based on the idea that oxidation forms a dense film of carbonates, nitrides, carbonitoxides, and oxides, which improves the lubricity of sliding surfaces. reached.

すなわち、本発明の高温固体@滑性セラミックスは、C
rの炭化物、窒化物、酸化物、炭窒化物。
That is, the high temperature solid @ slippery ceramics of the present invention has C
r carbides, nitrides, oxides, carbonitrides.

炭酸化物、窒酸化物及び炭窒酸化物の中から選ばれた少
lくとも1種とTiT Zr + Hf ) V t 
Nb +Ta 、 Mo 、 W 、 St 、 B 
、 Yの炭化物、窒化物、酸化物及びこれらの相互固溶
体の中から選ばれた少なくとも1種とからなる硬質相と
、不可避的不純物とでなること全特替とする。 ゛ 本発明セラミックスの必須成分に、次式:(Cra。
At least one selected from carbonates, nitrides, and carbonitoxides, and TiT (Zr + Hf) V t
Nb + Ta, Mo, W, St, B
, a hard phase consisting of at least one selected from carbides, nitrides, oxides of Y, and mutual solid solutions thereof, and unavoidable impurities.゛The essential components of the ceramics of the present invention include the following formula: (Cra.

Mb) (CX + Ny 、 Oz ) nでその組
成が示されるri11!質相である4、 式中、M n ’ri 、 Zr 、 Hf 、 V 
、 Nb 、 Ta 、 Mo。
Mb) (CX + Ny, Oz) ri11! whose composition is indicated by n. 4, which is a qualitative phase, where M n'ri , Zr , Hf , V
, Nb, Ta, Mo.

Wのいずれか1種又は2種世上の金属元素を表わす。a
 、bUそれぞれCr、Mのモル比であって、0 、2
≦a<1.(1(b≦(]、8.a+b=1の関係を満
足する数であ^O X+ y+ ZuいずれもC、N 、 OZど非金属元
素のモル比であって、それそねは、0.4≦X≦1゜0
≦y≦(+、5 、0≦2≦0.3、ぞしてx十y十z
−1の関係′fr:満足する数である。2が0.3を超
える場合は、得られた焼結体は酸化物生体となりその強
度が低下するのみならずCrの酸化物が高い蒸気圧を有
するため焼結時においても焼結体使用時においてもCr
成分が蒸発し、品質省・埋土及び環境衛生上から好壕し
くない。X * ’! + Zがそれぞれ0.4≦X≦
1,0≦y≦0.5 、0≦2≦0.3 、 x十y+
z=1の関係を満足する数である場合は、硬質相の潤滑
性が優れるのみならずその高温強度も向上するので好適
である。
Represents any one or both of the metal elements of W. a
, bU are the molar ratios of Cr and M, respectively, and are 0 and 2
≦a<1. (1(b≦(], 8. A number that satisfies the relationship of a+b=1^O .4≦X≦1゜0
≦y≦(+, 5, 0≦2≦0.3, so x y y z
-1 relationship 'fr: Satisfied number. If 2 exceeds 0.3, the obtained sintered body will become an oxide living body, and its strength will not only decrease, but also the Cr oxide will have a high vapor pressure, making it difficult to use the sintered body during sintering. Also in Cr
The ingredients evaporate, making it unsuitable for quality control, soil burial, and environmental hygiene. X*'! + Z is 0.4≦X≦, respectively
1, 0≦y≦0.5, 0≦2≦0.3, x10y+
When the number satisfies the relationship z=1, it is preferable because not only the lubricity of the hard phase is excellent but also its high temperature strength is improved.

nは、金属元素(CrとM)に対する非金属元素(Cと
NとO)全体のモル比であって、その値は0.44≦n
<1.33の範囲に設定される。nがこの範囲を外れた
場合、得られた硬質相がB1構造を主体とする強靭な化
合物とはなりにくく、脆弱な低級化合物が形成されるよ
うになって不都合である。
n is the overall molar ratio of nonmetallic elements (C, N, and O) to metallic elements (Cr and M), and its value is 0.44≦n
<1.33. If n is out of this range, the obtained hard phase is unlikely to be a strong compound mainly having the B1 structure, and a brittle lower compound will be formed, which is disadvantageous.

また、上記した硬質相にあってに、更にS1+B+Yの
炭化物、窒化物、酸化物の1種又は2種以上が含有され
ていてもよい。
Furthermore, the hard phase described above may further contain one or more of carbides, nitrides, and oxides of S1+B+Y.

本発明のセラミックスは次のようにして製造することが
できる。
The ceramics of the present invention can be manufactured as follows.

上記した群に属する各化合物の単−粉末若しくは2種以
上を適宜に混合した混合粉末文にこれらの相互固溶体の
粉末、更には相互固溶体の粉末と各化合物の単−粉末又
に亜化学童論的な化合物を組合わせて混合して成る混合
粉末を、目的とする焼結体における各成分の組成比から
逆規定した割合で混合し、この混合粉末を粉末冶金法で
慣用となっている手法により成形し、ついで得られた成
形体を真空中又は窒素、水素、アルゴン、−酸化炭素な
どの非酸化性雰囲気中で無加圧焼結又は加圧焼結する。
A single powder of each compound belonging to the above group, or a mixed powder of two or more of them suitably mixed together, a powder of a mutual solid solution of these, further a powder of a mutual solid solution and a single powder of each compound, or a chemical powder. This is a method commonly used in powder metallurgy, in which a mixed powder consisting of a combination of various compounds is mixed in a ratio that is inversely specified based on the composition ratio of each component in the desired sintered body. Then, the obtained molded body is sintered under pressure or under pressure in a vacuum or in a non-oxidizing atmosphere such as nitrogen, hydrogen, argon, carbon oxide, etc.

出発P浩に関してけ、Cr+ V 、 Ttなどの周期
律表第四周期の元素の酸化物にその生成自由エネルギー
が小さく、多くの低級酸化物が存在して比較的不安定な
化合物であるため、これら酸化物からのみ焼結体を製造
する場合、ぞの組成の調節が困難であると同時に得られ
た焼結体の強度も非常に低くなり、その実用性が極めて
阻害される。したがって、本発ツJにあっては、原料と
しては酸化物のみではなく、更に炭化物、窒化物、炭窒
化物。
Regarding the starting point, Cr+V, Tt, and other oxides of elements in the fourth period of the periodic table have small free energies of formation, and many lower oxides exist, making them relatively unstable compounds. When producing a sintered body only from these oxides, it is difficult to control the composition, and at the same time, the strength of the obtained sintered body becomes extremely low, which greatly impedes its practical use. Therefore, in the present invention J, the raw materials are not only oxides, but also carbides, nitrides, and carbonitrides.

炭酸化物、窒酸化物、炭窒酸化物を配合することが望ま
しい。
It is desirable to blend carbonates, nitrides, and carbonitrides.

本発明の焼結体の製造工程において、出発原料の混合粉
砕は、容器としてステンレス製容器、超硬合金を内張り
した答器又汀ウレタンゴムを内張りした容器を使用し媒
体としてステンレス製ボール、超硬合金製ボール又は例
えば、周期律表4a。
In the manufacturing process of the sintered body of the present invention, the starting materials are mixed and pulverized using a stainless steel container, a container lined with cemented carbide, or a container lined with urethane rubber as the medium. Hard metal balls or, for example, periodic table 4a.

5a 、6a族金属の化合物で表面被覆したボールと共
に混合粉砕する。粉砕効果を高めて出発原料を微細化す
るためKは、ステンレス製容器又は超硬合金を内張りし
た容器を使用して超硬合金製ボールと共に混合粉砕する
方法を適用するのがよく、又アセトン、ヘキサン、ベン
ゼン、アルコール等の有機溶媒を加えて湿式混合粉砕す
るのがよい。
Mix and grind together with a ball whose surface is coated with a compound of group 5a or 6a metal. In order to improve the grinding effect and make the starting material finer, it is best to mix and grind K with cemented carbide balls in a stainless steel container or a container lined with cemented carbide. It is preferable to add an organic solvent such as hexane, benzene, alcohol, etc. and perform wet mixing and pulverization.

耐食性及び高温での耐摩耗性を利用する用途向は等で主
として金属からなる不純物を考慮する必要があるときは
、ウレタンゴムで内張シした容器を使用して表面被覆し
たボールと共に混合するのがよい。不純物は、混合粉砕
工程から混入する場合が多く、混合粉砕工程で使用する
超硬合金の内、超硬合金の主成分である周期律表の■a
、Va、Ma族金属化合物が不純物として混入するのに
割合問題がないのに対して超硬合金の結合相である鉄族
金属の混入に2体積チ以下出来れば1体8t%以下にす
るのが望ましい。
For applications that utilize corrosion resistance and high-temperature abrasion resistance, etc., and when it is necessary to take into account impurities mainly made of metal, use a container lined with urethane rubber and mix with surface-coated balls. Good. Impurities are often mixed in during the mixing and grinding process, and among the cemented carbide used in the mixing and grinding process, the main component of cemented carbide is ■a of the periodic table.
, Va, and Ma group metal compounds are mixed as impurities without any problem in proportion, but the mixing of iron group metals, which are the binder phase of cemented carbide, should be kept at 2 volume or less, preferably 8 t% or less per body. is desirable.

混合粉末の成形に、混合粉砕した粉末を黒鉛モールドに
充填1−で非酸化性雰囲気中でホットプレスする方法、
又は混合粉砕した粉末にパラフィン、カンファ等の成形
助剤を添加して必要ならは細粒状にした後金型モールド
に充填して加圧成形する方法、もしくσラテックスゴム
等で混合粉末を包囲した後静水圧加圧で外圧を加えて成
形する方法などが適用できる。このようにして成形した
粉末圧粉体を直接焼結したシ、又は粉末圧粉体を焼結温
度よシも低い温度で予備焼結した後、切断、研削、切削
等の加工を施してから焼結することができる。
For molding the mixed powder, the mixed and pulverized powder is filled in a graphite mold and hot pressed in a non-oxidizing atmosphere in 1-;
Alternatively, a molding aid such as paraffin or camphor may be added to the mixed and pulverized powder to form fine particles if necessary, and then the mixture is filled into a metal mold and pressure molded, or the mixed powder is surrounded with σ latex rubber, etc. After that, a method of applying external pressure using isostatic pressure to form the material can be applied. The powder compact formed in this way is directly sintered, or the powder compact is pre-sintered at a temperature lower than the sintering temperature, and then processed by cutting, grinding, cutting, etc. Can be sintered.

焼結時の条件に関しては、例えば出発原料に亜化学量論
的組成の化合物を用いた場合、原子空孔が焼結の駆動力
として作用して低温無加圧でも焼結性が促進され、また
、Crの含有量が多い場合には、焼結中KCrが蒸発し
て得られた焼結体の固体潤滑性の低下傾向があられれる
ので高真空、高潟焼結を避けなければならなくなる、な
どの実際上生起する問題との関係で適宜に選定すること
が必要になる。したがって、焼結時の条件は、出発原料
の組成等に対応して変化させるので一義的に定められな
い。
Regarding the conditions during sintering, for example, when a compound with a substoichiometric composition is used as the starting material, atomic vacancies act as a driving force for sintering, promoting sinterability even at low temperatures and no pressure. In addition, if the Cr content is high, KCr evaporates during sintering and the solid lubricity of the resulting sintered body tends to decrease, so high vacuum and Takagata sintering must be avoided. It is necessary to make an appropriate selection in relation to problems that arise in practice, such as . Therefore, the conditions during sintering cannot be uniquely determined because they vary depending on the composition of the starting materials.

なお、得られた焼結体を、更に、熱間静水圧焼結(HI
P)で処理すると、その焼結体の強度が一層高くなるの
で有効である。
Note that the obtained sintered body is further subjected to hot isostatic sintering (HI
Treatment with P) is effective because it further increases the strength of the sintered body.

また、この焼結体を実際の高温摺動部材として使用する
場合、該焼結体を予め酸化雰囲気中で処理し、その表面
に厚み10μm以下の酸化物の層を形成すると、内部は
高強度で表面のみが潤滑性大という両機能が発現するの
で有効である。
In addition, when this sintered body is used as an actual high-temperature sliding member, if the sintered body is treated in advance in an oxidizing atmosphere and an oxide layer with a thickness of 10 μm or less is formed on the surface, the inside will have high strength. It is effective because only the surface exhibits both functions of high lubricity.

〔発明の実施例〕[Embodiments of the invention]

実施例1〜12 (11焼結体の製造とその特性 第1表に示した各種の化合物の粉末(平均粒径0.2〜
3μm)を表示の割合に配合し、この配合粉末に3〜5
%のパラフィンを成形助剤として添加し、アセトン溶媒
中、WCC超超硬合金製ボール用いて混合粉砕した。得
られた混合粉末から溶媒を蒸発乾燥後、この混合粉末を
G、)It/d〜5t/crIの加圧で成形、■100
〜300に9/crItの加圧でホットプレス(H,P
 ) t、で成形し、得られた成形体を10〜10mH
rの真空中もしくにAr雰囲気、l 35 (1〜1 
’8 (10℃の温度、30〜60分の条件下で焼結し
た。
Examples 1 to 12 (11 Manufacture of sintered bodies and their characteristics Powders of various compounds shown in Table 1 (average particle size 0.2 to
3 μm) in the indicated ratio, and add 3 to 5 μm to this blended powder.
% of paraffin was added as a molding aid, and the mixture was mixed and ground in an acetone solvent using a WCC cemented carbide ball. After evaporating and drying the solvent from the obtained mixed powder, this mixed powder was molded under pressure of G, )It/d to 5t/crI, ■100
Hot press (H, P) at ~300 to 9/crIt pressure
) t, and the obtained molded body was heated at 10 to 10 mH.
r vacuum or Ar atmosphere, l 35 (1 to 1
'8 (Sintered at a temperature of 10° C. for 30 to 60 minutes.

得られた各焼結体の特性を一括して第1表に示した。The properties of each of the obtained sintered bodies are summarized in Table 1.

(2)各温度における摩擦係数の測定 実施例番号] 、 2 、9 、10 、11の各焼結
体につき、摩擦摩耗同時試験機により室温から1000
℃迄の大気中における摺動試験を行った。試験方法に、
外径26障φ内径20縮φ高さ15喘の円筒と34陥φ
XIO關の円板を各焼結体で作製し、同一試料番号の円
筒と円板全面接触はせて荷重50に2、すべり速度20
0 tyn/ secの条件で摩擦摩耗試験を行い、1
時間稜における摩擦係数を測定するという方法である。
(2) Measurement of friction coefficient at each temperature Example number] For each sintered body of 2, 9, 10, and 11, a friction and wear simultaneous tester was used to measure the friction coefficient from room temperature to 1000.
A sliding test was conducted in the atmosphere up to ℃. In the test method,
A cylinder with an outer diameter of 26 holes, an inner diameter of 20 reductions, a height of 15 mm, and a 34 hole diameter.
A disk related to XIO was made from each sintered body, and the entire surface of the disk was in contact with a cylinder with the same sample number, and the load was 50 2 and the sliding speed was 20.
Friction and wear tests were conducted under the conditions of 0 tyn/sec, and 1
This method measures the friction coefficient at the time edge.

その結果を第2表に示した。The results are shown in Table 2.

第  2  表 (3)  各温度における摩擦係数及び摩耗率の測定実
施例1,3,6,8、比較例2,3の各焼結体からそれ
ぞれ外径26門φ内径20關φ高さ15Iolの円筒を
製作し、直径34咽φ厚み10岨の円板ヲ窒化銅(HR
C55)から製作しそれぞれ全面接触させて荷重30k
fを印加して(2)と同様な条件で摩擦摩耗試験を行な
った。その結果を第3表に示した。なお、比較例2の焼
結体は摩擦係数及び摩耗率共に本発明の焼結体よりも高
く、比較例3の焼結体は強度が低いために荷重を加える
とクラックが入り、特に600℃、1000℃のときに
摩擦係数及び摩耗率の測定が不可能であった。
Table 2 (3) Measurement of friction coefficient and wear rate at various temperatures From each sintered body of Examples 1, 3, 6, 8 and Comparative Examples 2 and 3, outer diameter 26 gates φ inner diameter 20 gates φ height 15 Iol A cylinder with a diameter of 34 mm and a thickness of 10 mm was made of copper nitride (HR).
C55), and the load is 30k when the entire surface is in contact with each other.
A friction and wear test was conducted under the same conditions as (2) by applying f. The results are shown in Table 3. The sintered body of Comparative Example 2 has a higher friction coefficient and wear rate than the sintered body of the present invention, and the sintered body of Comparative Example 3 has low strength, so it cracks when a load is applied, especially at 600°C. , it was impossible to measure the friction coefficient and wear rate at 1000°C.

(4(各温度における摩擦係数の測定 実施例1,3,9.10の焼結体で(2)と同様の円筒
を製作した。円板にSUS 304で製作し、両者を面
接触させたときの荷重はIOk八両へ間にエステル系合
成油を潤滑油として用いたことを除いては(2)の場合
と同様にして各温度における摩擦係数を測定した。その
結果を第4表に示した。
(4) Measurement of friction coefficient at each temperature A cylinder similar to (2) was manufactured using the sintered bodies of Examples 1, 3, 9. The friction coefficient at each temperature was measured in the same manner as in case (2) except that ester-based synthetic oil was used as a lubricant between the eight IOk cars.The results are shown in Table 4. Indicated.

第  4  表 〔発明の効果〕 以上の説明で明らかなように、本発明のセラミックス焼
結体は、従来の潤滑性材料に比較して高硬度であり、抗
折力から判断した靭性も4〜8倍と高く、熱伝導性、耐
食性、耐酸化性に優れ、又、硬質相が金属的性質を有し
ているため電気伝導性も優れ、しかも大気中高温下にお
ける摩擦係数及び摩耗率の低いこと並ひに潤滑油が存在
1〜で300℃と温度が高い場合にも充分に低い摩擦係
数を保持することが確認できた。
Table 4 [Effects of the Invention] As is clear from the above explanation, the ceramic sintered body of the present invention has higher hardness than conventional lubricating materials, and has a toughness of 4 to 4 as judged from transverse rupture strength. 8 times higher, it has excellent thermal conductivity, corrosion resistance, and oxidation resistance. Also, because the hard phase has metallic properties, it has excellent electrical conductivity, and has a low friction coefficient and wear rate at high temperatures in the atmosphere. It was also confirmed that a sufficiently low coefficient of friction was maintained even when lubricating oil was present and the temperature was as high as 300°C.

したがって、本発明の潤滑性セラミックスに、ターボチ
ャージャー用のジャーナル軸受、熱nJi圧延ロール、
連続6造用軸受、エアスピンドル用軸受、スラスト軸受
などのぢイル【/ス軸受部材及びシールリングの分野か
ら@滑油、有機溶媒、薬品等の腐食性液体と接触しつつ
高温で作動する。j5ンゾ等の摩擦用部分、耐食性が要
求される食品衛生関係用部品などの広範囲の用途に使用
可能であってその工業的価蝕σ極めて犬である。
Therefore, the lubricating ceramics of the present invention include journal bearings for turbochargers, thermal nJi rolling rolls,
Continuous six-stroke bearings, air spindle bearings, thrust bearings, etc. are used in the field of bearing parts and seal rings that operate at high temperatures while coming into contact with corrosive liquids such as lubricating oil, organic solvents, and chemicals. It can be used in a wide range of applications, such as friction parts such as J5 cylinders, food hygiene-related parts that require corrosion resistance, and its industrial value is extremely high.

Claims (2)

【特許請求の範囲】[Claims] (1)Crの炭化物、窒化物、酸化物、炭窒化物、炭酸
化物、窒酸化物及び炭窒酸化物の中から選ばれた少なく
とも1種とTi、Zr、Hf、V、Nb、Ta、Mo、
W、Si、B、Yの炭化物、窒化物、酸化物及びこれら
の相互固溶体の中から選ばれた少なくとも1種とからな
る硬質相と、不可避的不純物とでなることを特徴とする
高温固体潤滑性セラミックス。
(1) At least one selected from carbides, nitrides, oxides, carbonitrides, carbonates, nitrides, and carbonitrides of Cr, and Ti, Zr, Hf, V, Nb, Ta, Mo,
A high-temperature solid lubrication characterized by comprising a hard phase consisting of at least one selected from carbides, nitrides, oxides, and mutual solid solutions of W, Si, B, and Y, and inevitable impurities. sexual ceramics.
(2)前記硬質相が次式:(Cr_a、M_b)(C_
x、N_y、O_z)_n〔但し、式中Mは、Ti、Z
r、Hf、V、Nb、Ta、Mo、Wの中の少なくとも
1種からなる金属元素を表わし、a、bはCr及び金属
元素Mのモル比を表わし、x、y、zにそれぞれ、C(
炭素)、N(窒素)、O(酸素)のモル比を表わし、n
はCrと金属元素Mとの合計に対するC、N、Oを合計
した非金属元素のモル比を表わし、その関係は、a+b
=1、1>a≧0.2、0.8≧b>0、x+y+z=
1、1≧x≧0.4、0.5≧y≧0、0.3≧z≧0
、1.33>n≧0.44を表わす。〕で表わせる特許
請求の範囲第1項記載の高温固体潤滑性セラミックス。
(2) The hard phase has the following formula: (Cr_a, M_b) (C_
x, N_y, O_z)_n [However, in the formula, M is Ti, Z
represents a metal element consisting of at least one of r, Hf, V, Nb, Ta, Mo, and W; a and b represent the molar ratio of Cr and the metal element M; (
represents the molar ratio of carbon), N (nitrogen), and O (oxygen), where n
represents the molar ratio of the non-metallic elements that are the sum of C, N, and O to the sum of Cr and the metal element M, and the relationship is a+b
=1, 1>a≧0.2, 0.8≧b>0, x+y+z=
1, 1≧x≧0.4, 0.5≧y≧0, 0.3≧z≧0
, 1.33>n≧0.44. ] The high-temperature solid lubricating ceramic according to claim 1.
JP59155557A 1984-07-27 1984-07-27 High temperature solid lubricating ceramics Granted JPS6136173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59155557A JPS6136173A (en) 1984-07-27 1984-07-27 High temperature solid lubricating ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59155557A JPS6136173A (en) 1984-07-27 1984-07-27 High temperature solid lubricating ceramics

Publications (2)

Publication Number Publication Date
JPS6136173A true JPS6136173A (en) 1986-02-20
JPH0220592B2 JPH0220592B2 (en) 1990-05-09

Family

ID=15608661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59155557A Granted JPS6136173A (en) 1984-07-27 1984-07-27 High temperature solid lubricating ceramics

Country Status (1)

Country Link
JP (1) JPS6136173A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61236653A (en) * 1985-04-15 1986-10-21 日本化学工業株式会社 Chromium nitride-zirconia base ceramics and manufacture
JPS61247662A (en) * 1985-04-23 1986-11-04 日本化学工業株式会社 Electroconductive ceramics and manufacture
JPS6256373A (en) * 1985-05-14 1987-03-12 日本化学工業株式会社 Chromium carbonitride-zirconia base ceramic and manufacture
JPH02164770A (en) * 1988-12-19 1990-06-25 Agency Of Ind Science & Technol Production of composite ceramic material
JPH0360464A (en) * 1989-07-26 1991-03-15 Denki Kagaku Kogyo Kk Sliding member made of ceramic
US5215945A (en) * 1988-09-20 1993-06-01 The Dow Chemical Company High hardness, wear resistant materials
JPH11336555A (en) * 1998-04-28 1999-12-07 Man B & W Diesel Gmbh Reciprocating internal combustion engine
JP2008138687A (en) * 2008-01-28 2008-06-19 Mitsui Eng & Shipbuild Co Ltd Method for mounting device for muffling blower exhaust noise
GB2458960A (en) * 2008-04-04 2009-10-07 Ricardo Uk Ltd Sliding bearing
CN109180189A (en) * 2018-10-08 2019-01-11 中南大学 A kind of high entropy carbide ultra-high temperature ceramic powder and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59107971A (en) * 1982-12-09 1984-06-22 株式会社クボタ Heat resistant ceramic material
JPS59107970A (en) * 1982-12-09 1984-06-22 株式会社クボタ Heat resistant ceramic material
JPS59107972A (en) * 1982-12-09 1984-06-22 株式会社クボタ Heat resistant ceramic material
JPS60145953A (en) * 1983-12-29 1985-08-01 株式会社クボタ Heated material supporting surface member of heating surface
JPS60191059A (en) * 1984-03-10 1985-09-28 株式会社クボタ Chromium carbide ceramic material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59107971A (en) * 1982-12-09 1984-06-22 株式会社クボタ Heat resistant ceramic material
JPS59107970A (en) * 1982-12-09 1984-06-22 株式会社クボタ Heat resistant ceramic material
JPS59107972A (en) * 1982-12-09 1984-06-22 株式会社クボタ Heat resistant ceramic material
JPS60145953A (en) * 1983-12-29 1985-08-01 株式会社クボタ Heated material supporting surface member of heating surface
JPS60191059A (en) * 1984-03-10 1985-09-28 株式会社クボタ Chromium carbide ceramic material

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0561228B2 (en) * 1985-04-15 1993-09-03 Nippon Chemical Ind
JPS61236653A (en) * 1985-04-15 1986-10-21 日本化学工業株式会社 Chromium nitride-zirconia base ceramics and manufacture
JPS61247662A (en) * 1985-04-23 1986-11-04 日本化学工業株式会社 Electroconductive ceramics and manufacture
JPH0561227B2 (en) * 1985-04-23 1993-09-03 Nippon Chemical Ind
JPS6256373A (en) * 1985-05-14 1987-03-12 日本化学工業株式会社 Chromium carbonitride-zirconia base ceramic and manufacture
JPH0535106B2 (en) * 1985-05-14 1993-05-25 Nippon Chemical Ind
US5215945A (en) * 1988-09-20 1993-06-01 The Dow Chemical Company High hardness, wear resistant materials
JPH02164770A (en) * 1988-12-19 1990-06-25 Agency Of Ind Science & Technol Production of composite ceramic material
JPH0585501B2 (en) * 1988-12-19 1993-12-07 Kogyo Gijutsuin
JPH0360464A (en) * 1989-07-26 1991-03-15 Denki Kagaku Kogyo Kk Sliding member made of ceramic
JPH11336555A (en) * 1998-04-28 1999-12-07 Man B & W Diesel Gmbh Reciprocating internal combustion engine
JP2008138687A (en) * 2008-01-28 2008-06-19 Mitsui Eng & Shipbuild Co Ltd Method for mounting device for muffling blower exhaust noise
GB2458960A (en) * 2008-04-04 2009-10-07 Ricardo Uk Ltd Sliding bearing
CN109180189A (en) * 2018-10-08 2019-01-11 中南大学 A kind of high entropy carbide ultra-high temperature ceramic powder and preparation method thereof

Also Published As

Publication number Publication date
JPH0220592B2 (en) 1990-05-09

Similar Documents

Publication Publication Date Title
TW200925295A (en) Metallurgical powder composition and method of production
JPS6136173A (en) High temperature solid lubricating ceramics
US5905937A (en) Method of making sintered ductile intermetallic-bonded ceramic composites
JP3324658B2 (en) Sintered alloy having fine pores and method for producing the same
JPS5822359A (en) Iron base sintered alloy for structural member of fuel supply apparatus
JPH04320494A (en) Self-lubricating material and its preparation
KR20090071459A (en) Hard-particle powder for sintered body and sintered body
JP2588096B2 (en) Solid lubricating composite sliding material and method for producing the same
JPS6352081B2 (en)
US5346529A (en) Powdered metal mixture composition
US7666519B2 (en) High temperature sliding alloy
JPH0357064B2 (en)
JP2004211185A (en) Iron based sintered alloy excellent in dimensional precision, strength and sliding property, and its production method
JPS60231457A (en) Solid lubricating composite material
JPS6347762B2 (en)
JPH06192784A (en) Wear resistant sintered sliding member
JPH1192846A (en) Sintered friction material and its production
JPH07247488A (en) Self-lubricating composite material
JPS6140027B2 (en)
JPH0364426A (en) Sintered copper alloy for heavy-load sliding
JPH04124248A (en) Sintered alloy for oilless bearing and its production
JP2836866B2 (en) Ceramic-SiC-molybdenum disulfide-based composite material and its sliding parts
JPS61279653A (en) Ni-base composite material excellent in wear resistance and corrosion resistance and its production
JPS5919181B2 (en) Sintered sliding parts
JPS613861A (en) Sintered heat-and wear-resistant hard alloy for hot working tool

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term