JPH0357064B2 - - Google Patents

Info

Publication number
JPH0357064B2
JPH0357064B2 JP58167091A JP16709183A JPH0357064B2 JP H0357064 B2 JPH0357064 B2 JP H0357064B2 JP 58167091 A JP58167091 A JP 58167091A JP 16709183 A JP16709183 A JP 16709183A JP H0357064 B2 JPH0357064 B2 JP H0357064B2
Authority
JP
Japan
Prior art keywords
sintered body
oxides
lubricious
lubricating
nitrides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58167091A
Other languages
Japanese (ja)
Other versions
JPS6060965A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP58167091A priority Critical patent/JPS6060965A/en
Publication of JPS6060965A publication Critical patent/JPS6060965A/en
Publication of JPH0357064B2 publication Critical patent/JPH0357064B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、自己潤滑性を有し、高硬度、高靭
性、耐食性、耐酸化性、耐摩耗性及び熱伝導性に
優れた低摩擦係数の潤滑性焼結体に関する。 従来、自己潤滑性を有する潤滑性材料としては
Cu、Co、Ni、Fe、Sn、Ag、Mn等の金属に
MoS2、WS2、黒鉛等の自己潤滑性の高い物質を
添加してなる金属基材料があり、この金属基材料
は、電気伝導性、熱伝導性に優れている反面低硬
度で耐摩耗性が劣り、高温における軟化が著しく
耐食性が劣るために使用領域が狭い範囲に限られ
るという問題がある。金属基材料を改良するもの
として、例えば特開昭53−122059号公報に開示さ
れているMoS2、WS2、黒鉛等の自己潤滑性の高
い物質とCu、Co、Ni、Fe、Sn、Ag、Mn等の金
属に周期律表第4a、5a、6a族遷移金属あるいは
これらの炭化物、窒化物を添加してなるサーメツ
ト基材料は、金属基材料に比較して耐摩耗性が向
上したがまだまだ硬度及び靭性が低く、しかも金
属を含有しているために耐食性が劣り、高温での
軟化と塑性変形が生じることからやはり使用領域
が狭いという問題がある。 本発明の潤滑性焼結体は、上記のような上来の
問題点を解決したもので自己潤滑性を有する材料
としては特に高硬度、高靭性で、実質的に金属を
含有していないために耐食性、耐酸化性に優れ、
しかも熱伝導性も優れた低摩擦係数を有する焼結
体を提供するものである。即ち本発明の潤滑性焼
結体は、Ti、Zr、Hf、Hh、V、Nb、Taの炭化
物、窒化物、酸化物のの少なくとも2種の固溶体
による硬質相20〜95体積%と残り黒鉛、六方晶窒
化硼素、酸化鉛、弗化カルシウム、弗化バリウ
ム、弗化リチウム、窒化硅素、Ti、Zr、Ta、
W、Moの硫化物、セレン化物、テルル化物、酸
化モリブデン及びこれらの相互固溶体の中の少な
くとも1種の分散相と不可避的不純物とからなる
焼結体である。 本発明の潤滑性焼結体は、Ti、Zr、Hf、Th、
V、Nb、Taの炭化物、窒化物、酸化物の中の少
なくとも2種もしくはそれらの相互固溶体を組合
わせた出発原料を焼結過程で反応焼結により固溶
体にすることによつて焼結し難い黒鉛、六方晶窒
化硼素、酸化鉛、弗化カルシウム、弗化バリウ
ム、弗化リチウム、窒化硅素、Ti、Zr、Ta、
W、Moの硫化物、セレン化物、テルル化物、酸
化モリブデン及びこれらの相互固溶体の中の少な
くとも1種の自己潤滑性物質を分散相対として焼
結できることを見い出したもので、特にTi、Zr、
Hf、Th、Ta、Nb、Vの炭化物、窒化物、酸化
物の内、金相学的に全率固溶もしくは溶解度ギヤ
ツプが存在する2種以上を組合わせることによつ
てスピノーダル分解又はバイノーダル分解を発生
させると一層容易に緻密な焼結体になることを見
い出したものである。 本発明の焼結体は、Ti、Zr、Hf、Th、V、
Nb、Taの炭化物、窒化物、酸化物の中の少なく
とも2種からなる固溶体の硬質相が焼結体の緻密
化と高硬度、高靭性に寄与し、この硬質相の結晶
粒界に黒鉛、六方晶窒化硼素、酸化鉛、弗化カル
シウム、弗化バリウム、弗化リチウム、窒化硅
素、Ti、Zr、Ta、W、Moの硫化物、セレン化
物、テルル化物、酸化モリブデン及びこれらの相
互固溶体の中の少なくとも1種の自己潤滑性の有
る分散相を分散させてなる焼結体であつて、この
焼結体の種として強度を高める役割をしている硬
質相と主として摩擦係数を低下させる役割をして
いる分散相とからなる焼結体は、実質的に金属を
含有していないために耐食性、耐酸化性に優れる
と共に高温において塑性変形も生じ難い焼結体に
なる。このように硬質相と硬質相の結晶粒界に分
散した自己潤滑性の有る分散相とからなる本発明
の焼結体は、実際に摺動材又は潤滑材として実用
すると焼結体中の分散層が相手材の面に潤滑性の
移着被膜を作り出して摩擦係数を低下するのと硬
質相の有する高硬度によつて耐摩耗性が著しく優
れたものになり、仮りに負荷が加わる用途であつ
ても硬質相の高硬度、高靭性によつて負荷を支え
ることができ、又実質的に金属を含有していない
ので耐食性、耐酸化性が優れているために使用温
度及び雰囲気に対しても広範囲に耐える焼結体で
ある。このように広範囲の用途に適した本発明の
焼結体は、工業化するための価格と焼結対の硬
度、靭性及び軽量化等の特性から硬質層が炭化チ
タン5〜95体積%と残りTiの窒化物、酸化物並
びにZr、Hf、Th、V、Nb、Taの炭化物、窒化
物、酸化物の中の少なくとも1種からなることが
望ましく、硬質相の結晶粒界に分散する分散相が
熱伝導性、耐熱衝撃性、耐酸化性、耐食性に優
れ、しかも大気中で約500℃程度でも潤滑性を失
わずに低摩擦係数を保持する黒鉛および/または
六方晶窒化硼素を含有していることが望ましい。
この本発明の焼結体は、焼結体の諸特性全体から
判断すると分散相としては黒鉛および/または六
方晶窒化硼素を含有していることが望ましいが真
空中で本発明の焼結体を使用するときは硬質相と
分散相の相互結合強度を高めて高靭性化となり、
しかも摩擦係数を低下させる効果の高いTi、Zr、
Ta、W、Moの硫化物、セレン化物、テルル化
物、酸化モリブデン及びこれらの相互固溶体化合
物の中の少なくとも1種を含有した分散相が好ま
しく、又焼結体の熱安定性、特に大気中での熱安
定性が必要なときには窒化硅素を含有した分散層
がよく次いで酸化鉛、弗化カルシウム、弗化バリ
ウム、弗化リチウムを含有している分散相が好ま
しい。 本発明の潤滑性焼結体は、出発原料としてTi、
Zr、Hf、Th、V、Nb、Taの炭化物、窒化物、
酸化物の中の単一化合物を2種以上組合わせた
り、又はこれらの相互固溶体、更には相互固溶体
と単一化合物を組合わせてもよく、これに黒鉛、
六方晶窒化硼素、酸化鉛、弗化カルシウム、弗化
バリウム、弗化リチウム、窒化硅素、Tr、Zr、
Ta、W、Moの硫化物、セレン化物、テルル化
物、酸化モリブデン及びこれらの相互固溶体の中
の1種以上とからなる混合粉末を粉末治金におけ
る通常の方法により所定の形状に形成し、これを
真空又はN2、H2、Ar、CO等の非酸化性雰囲気
中で無加圧焼結又は加圧焼結(加圧焼結の場合は
大気中でも可)によつて1500℃〜1800℃に昇温し
て焼結することができるし、又、このようにして
焼結した後熱間静水圧加圧(HIP)によつて処理
することにより焼結体の強度を高めることもでき
る。このような本発明の焼結体の製造方法の内、
特に焼結を促進させて緻密な焼結体にするために
は出発原料としてTr、Zr、Hf、Th、V、Nb、
Taの炭化物、窒化物、酸化物の内で金相学的に
全率固溶もしくは溶解度ギヤツプが存在する2種
以上を単一化合物の組合わせ又は単一化合物を含
む組合わせにして焼結過程でスピノーダル分解又
はバイノーダル分解の発生させながら固溶体化反
応を行い、このスピノーダル分解又はバイノーダ
ル分解により固溶体化反応が生じるときに黒鉛、
六方晶窒化硼素、酸化鉛、弗化カルシウム、弗化
バリウム、弗化リチウム、窒化硅素、Ti、Zr、
Ta、W、Moの硫化物、セレン化物、テルル化
物、酸化モリブデン及びこれらの相互固溶体の中
の少なくとも1種の自己潤滑性物質との相互反応
を少し進行させながら焼結後にはスプノーダル分
解又はバイノーダル分解による固溶体化反応によ
つて生じた硬質相とこの硬質相の結晶粒界分散し
た自己潤滑性物質による分散相との焼結体にする
のが好ましい。この出発原料として使用するTi、
Zr、Hf、Th、V、Nb、Taの炭化物、窒化物、
酸化物及びそれらの相互固溶体は、金属元素と非
金属元素のモル比が同一である定比化合物であつ
ても侵入型元素である炭素、窒素、酸素の非金属
元素が欠乏又は過剰に固溶した不定比化合物であ
つても本発明の潤滑性焼結体が得られる。 本発明の潤滑性焼結体の製造工程の内、出発原
料の混合粉砕は、ステンレス製容器、超硬合金を
内張りした容器又はウレタンゴムの内張りした容
器を使用してステンレス製ボール、超硬合金製ボ
ール又は表面被覆したボールと共混合粉枠する。
粉砕効果を高めて出発原料を微細化するには、ス
テンレス製容器又は超硬合金を内張りした容器を
使用して超硬合金製ボールと共に混合粉砕するの
がよく、又アセトン、ヘキサン、ベンゼン、アル
コール等の有機溶媒を加えて湿式混合粉砕するの
がよい。耐食性及び高温での耐摩耗性を利用する
用途向け等で主として金属からなる不純物を考慮
する必要があるときはウレタンゴムで内張りした
容器を使用して表面被覆したボールと共に混合す
るのがよい。不純物は、混合粉砕工程から混入す
る比率が高く、混合粉砕工程で使用する超硬合金
の、超硬合金の主成分である周期律表の4a、5a、
6a族金属化合物が不純物として混入するのは割
合問題がないのに対して超硬合金の結合相である
鉄族金属の混入は2体積%以下出来れば1体積%
以下にするのが望ましい。 本発明の潤滑性焼結体の製造工程の内、混合粉
末の成形は、混合粉砕した粉末を黒鉛モールドに
充填して非酸化性雰囲気中でホツトプレスする方
法、又は混合粉砕した粉末にパラフイン、カンフ
ア等の成形助剤を添加して必要ならば顆粒上にし
た後金型モールドに充填して加圧成形したり、も
しくはラテツクスゴム等で混合粉末を包囲した後
静水圧加圧で外圧を加えて成形する。このように
して成形した粉末圧粉体を直接焼結したり、又は
粉末圧粉体を焼結温度よりも低い温度で予備焼結
した後切断、研削、切削等の加工を施してから焼
結することができる。 ここで本発明の潤滑性焼結体を数値限定した理
由について述べる。 硬質相が20体積%未満になると相対的に分散相
が多くなり過ぎて緻密な焼結体になり難く、たと
え強度の高い材料に埋めて一面のみ潤滑性作用を
利用したとしても硬質相としての効果が発揮され
なく、逆に硬質相が95体積%を超えて多くなると
相対的に分散相が少なくなつて潤滑性効果が弱く
摩擦係数も高くなるために硬質相は20〜95体積%
残り分散相と定めた。硬質相の高硬度、高靭性の
効果と分散相の潤滑性から生じる低摩擦係数の効
果を両立させて耐摩耗性を特に高める最適組成
は、硬質相が50〜80体積%残り分散相であること
が好ましい。 以下に実施例に従つて本発明の潤滑性焼結体を
具体的に説明する。 実施例 1 平均粒径0.2〜3μmの各種化合物粉末を所定の
割合に配合し、この配合粉末に3〜5%のパラフ
インを成形助剤として添加しアセトン溶媒中、
WC基超硬合金製ボールを用いて混合粉砕した。
得られた混合粉末から溶媒を蒸発乾燥後、この混
合粉末を1t/cm2〜5t/cm2の加圧で成形したり、又
は100〜300Kg/cm2の加圧でホツトプレス(H.P)
して、10-3〜10-2mmHgの真空空もしくはAr雰囲
気中で1500〜1800℃の温度、30〜60分保持により
焼結した。第1表に本発明の潤滑性焼結体の配合
組成と比較用して本発明の潤滑性焼結体から外さ
れた配合組成及びそれぞれの焼結条件を示し、第
2表に第1表で示した各試料を焼結後の諸特性値
を示した。
The present invention relates to a lubricious sintered body that is self-lubricating, has high hardness, high toughness, excellent corrosion resistance, oxidation resistance, wear resistance, and thermal conductivity, and has a low coefficient of friction. Conventionally, as lubricating materials with self-lubricating properties,
For metals such as Cu, Co, Ni, Fe, Sn, Ag, Mn, etc.
There are metal-based materials that are made by adding highly self-lubricating substances such as MoS 2 , WS 2 , and graphite. These metal-based materials have excellent electrical conductivity and thermal conductivity, but they also have low hardness and wear resistance. There is a problem that the range of use is limited to a narrow range because the corrosion resistance is poor and softens significantly at high temperatures. To improve metal-based materials, for example, highly self-lubricating substances such as MoS 2 , WS 2 , and graphite disclosed in JP-A-53-122059 and Cu, Co, Ni, Fe, Sn, and Ag are used. Cermet-based materials, which are made by adding transition metals from groups 4a, 5a, and 6a of the periodic table, or their carbides and nitrides, to metals such as , Mn, etc. have improved wear resistance compared to metal-based materials, but still have a long way to go. It has low hardness and toughness, and since it contains metal, it has poor corrosion resistance, and because it undergoes softening and plastic deformation at high temperatures, it has the problem that its range of use is narrow. The lubricating sintered body of the present invention solves the above-mentioned problems, and is particularly hard and tough as a self-lubricating material, and contains virtually no metal. Excellent corrosion resistance and oxidation resistance,
Moreover, the present invention provides a sintered body having excellent thermal conductivity and a low coefficient of friction. That is, the lubricious sintered body of the present invention has a hard phase of 20 to 95% by volume of at least two solid solutions of carbides, nitrides, and oxides of Ti, Zr, Hf, Hh, V, Nb, and Ta, and the remainder is graphite. , hexagonal boron nitride, lead oxide, calcium fluoride, barium fluoride, lithium fluoride, silicon nitride, Ti, Zr, Ta,
This is a sintered body comprising a dispersed phase of at least one of W, Mo sulfides, selenides, tellurides, molybdenum oxides, and mutual solid solutions thereof, and inevitable impurities. The lubricious sintered body of the present invention includes Ti, Zr, Hf, Th,
A starting material that is a combination of at least two of carbides, nitrides, and oxides of V, Nb, and Ta, or a mutual solid solution thereof, is made into a solid solution by reaction sintering during the sintering process, making it difficult to sinter. Graphite, hexagonal boron nitride, lead oxide, calcium fluoride, barium fluoride, lithium fluoride, silicon nitride, Ti, Zr, Ta,
It has been discovered that at least one self-lubricating substance among W, Mo sulfides, selenides, tellurides, molybdenum oxides, and their mutual solid solutions can be sintered as a dispersed material, especially Ti, Zr,
Spinodal decomposition or binodal decomposition is generated by combining two or more of carbides, nitrides, and oxides of Hf, Th, Ta, Nb, and V that have total solid solution or solubility gap metallographically. It has been found that a dense sintered body can be formed more easily by doing so. The sintered body of the present invention includes Ti, Zr, Hf, Th, V,
A solid solution hard phase consisting of at least two of carbides, nitrides, and oxides of Nb and Ta contributes to the densification, high hardness, and high toughness of the sintered body, and the grain boundaries of this hard phase include graphite, Hexagonal boron nitride, lead oxide, calcium fluoride, barium fluoride, lithium fluoride, silicon nitride, sulfides of Ti, Zr, Ta, W, Mo, selenide, telluride, molybdenum oxide, and mutual solid solutions of these A sintered body in which at least one self-lubricating dispersed phase is dispersed, with a hard phase acting as a seed for increasing the strength of the sintered body and a hard phase mainly serving to reduce the coefficient of friction. A sintered body consisting of a dispersed phase containing substantially no metal contains excellent corrosion resistance and oxidation resistance, and is resistant to plastic deformation at high temperatures. In this way, when the sintered body of the present invention, which is composed of a hard phase and a self-lubricating dispersed phase dispersed in the grain boundaries of the hard phase, is actually used as a sliding material or a lubricant, the dispersion in the sintered body The layer creates a lubricating transfer film on the surface of the mating material, lowering the coefficient of friction, and the high hardness of the hard phase provides extremely excellent wear resistance, making it ideal for applications where loads are applied. Even if the hard phase has high hardness and toughness, it can support the load, and since it contains virtually no metal, it has excellent corrosion resistance and oxidation resistance, so it can withstand the operating temperature and atmosphere. It is also a sintered body that can withstand a wide range of conditions. As described above, the sintered body of the present invention, which is suitable for a wide range of uses, has a hard layer of 5 to 95% by volume of titanium carbide and the rest of titanium carbide, due to the cost for industrialization and the characteristics such as hardness, toughness, and weight reduction of the sintered material. It is preferable that the dispersed phase is made of at least one of nitrides and oxides of Zr, Hf, Th, V, Nb, and Ta carbides, nitrides, and oxides of Zr, Hf, Th, V, Nb, and Ta. Contains graphite and/or hexagonal boron nitride, which has excellent thermal conductivity, thermal shock resistance, oxidation resistance, and corrosion resistance, and maintains a low coefficient of friction without losing lubricity even in the atmosphere at approximately 500°C. This is desirable.
The sintered body of the present invention preferably contains graphite and/or hexagonal boron nitride as a dispersed phase, judging from the overall characteristics of the sintered body. When used, it increases the mutual bonding strength of the hard phase and dispersed phase, resulting in high toughness.
In addition, Ti, Zr, which has a high effect of lowering the friction coefficient,
A dispersed phase containing at least one of Ta, W, Mo sulfides, selenides, tellurides, molybdenum oxides, and mutual solid solution compounds thereof is preferable, and the thermal stability of the sintered body, especially in the atmosphere, is preferable. When thermal stability is required, a dispersed layer containing silicon nitride is preferred, followed by a dispersed phase containing lead oxide, calcium fluoride, barium fluoride, or lithium fluoride. The lubricious sintered body of the present invention uses Ti as a starting material,
Zr, Hf, Th, V, Nb, Ta carbide, nitride,
Two or more types of single compounds among oxides may be combined, or a mutual solid solution thereof, or a mutual solid solution and a single compound may be combined, and graphite,
Hexagonal boron nitride, lead oxide, calcium fluoride, barium fluoride, lithium fluoride, silicon nitride, Tr, Zr,
A mixed powder consisting of Ta, W, Mo sulfide, selenide, telluride, molybdenum oxide, and one or more of these mutual solid solutions is formed into a predetermined shape by a normal method in powder metallurgy. 1500℃ to 1800℃ by pressureless sintering or pressure sintering (in the case of pressure sintering, air can be used) in a vacuum or a non-oxidizing atmosphere such as N 2 , H 2 , Ar, CO, etc. The sintered body can be sintered at an elevated temperature, and the strength of the sintered body can also be increased by treating it with hot isostatic pressing (HIP) after sintering in this way. Among the methods for manufacturing a sintered body of the present invention,
In particular, in order to accelerate sintering and make a dense sintered body, starting materials such as Tr, Zr, Hf, Th, V, Nb,
Two or more carbides, nitrides, and oxides of Ta that have a total solid solution or a solubility gap metallographically are combined as a single compound or a combination that includes a single compound and spinodalized in the sintering process. A solid solution reaction is performed while decomposition or binodal decomposition occurs, and when the solid solution reaction occurs due to this spinodal decomposition or binodal decomposition, graphite,
Hexagonal boron nitride, lead oxide, calcium fluoride, barium fluoride, lithium fluoride, silicon nitride, Ti, Zr,
Spnodal decomposition or binodal decomposition occurs after sintering while slightly progressing the mutual reaction of Ta, W, Mo with at least one self-lubricating substance among sulfides, selenides, tellurides, molybdenum oxides, and their mutual solid solutions. It is preferable to form a sintered body of a hard phase produced by a solid solution reaction by decomposition and a dispersed phase of a self-lubricating substance dispersed in the grain boundaries of this hard phase. Ti used as this starting material,
Zr, Hf, Th, V, Nb, Ta carbide, nitride,
Oxides and their mutual solid solutions are stoichiometric compounds in which the molar ratio of metal elements and nonmetallic elements is the same, but nonmetallic elements such as carbon, nitrogen, and oxygen, which are interstitial elements, are deficient or in solid solution in excess. The lubricating sintered body of the present invention can be obtained even with such a non-stoichiometric compound. In the manufacturing process of the lubricating sintered body of the present invention, the starting materials are mixed and pulverized using a stainless steel container, a container lined with cemented carbide, or a container lined with urethane rubber. Co-mix powder frame with manufactured balls or surface-coated balls.
In order to improve the grinding effect and make the starting materials finer, it is best to use a stainless steel container or a container lined with cemented carbide to mix and grind together with cemented carbide balls. It is preferable to add an organic solvent such as the like and perform wet mixing and pulverization. When it is necessary to consider impurities mainly made of metal, such as for applications that utilize corrosion resistance and high-temperature abrasion resistance, it is best to use a container lined with urethane rubber and mix with surface-coated balls. A high proportion of impurities are mixed in during the mixing and grinding process, and the main components of the cemented carbide used in the mixing and grinding process are 4a, 5a, and 4a of the periodic table.
While there is no problem with the ratio of group 6a metal compounds mixed as impurities, the mixing of iron group metals, which are the binder phase of cemented carbide, should be 2% by volume or less, preferably 1% by volume.
It is desirable to do the following. In the manufacturing process of the lubricious sintered body of the present invention, the mixed powder can be formed by filling the mixed and pulverized powder into a graphite mold and hot pressing it in a non-oxidizing atmosphere, or by adding paraffin or camphor to the mixed and pulverized powder. If necessary, add a molding aid such as, make it into granules, then fill it into a metal mold and pressure mold it, or surround the mixed powder with latex rubber, etc. and then apply external pressure using hydrostatic pressure to mold it. do. The powder compact formed in this way can be directly sintered, or the powder compact can be pre-sintered at a temperature lower than the sintering temperature and then subjected to processing such as cutting, grinding, cutting, etc., and then sintered. can do. Here, the reason for numerically limiting the lubricating sintered body of the present invention will be described. If the hard phase is less than 20% by volume, there will be too much dispersed phase and it will be difficult to form a dense sintered body. If the hard phase is not effective and the hard phase exceeds 95% by volume, the dispersed phase will be relatively small and the lubricity effect will be weak and the friction coefficient will be high, so the hard phase should be 20 to 95% by volume.
The remaining phase was defined as the dispersed phase. The optimal composition that particularly enhances wear resistance by achieving both the high hardness and toughness of the hard phase and the low friction coefficient resulting from the lubricity of the dispersed phase is one in which the hard phase remains at 50 to 80% by volume. It is preferable. The lubricating sintered body of the present invention will be specifically described below with reference to Examples. Example 1 Various compound powders with an average particle size of 0.2 to 3 μm were blended in a predetermined ratio, 3 to 5% paraffin was added as a molding aid to this blended powder, and the powder was mixed in an acetone solvent.
Mixing and pulverization were performed using WC-based cemented carbide balls.
After the solvent is evaporated and dried from the obtained mixed powder, the mixed powder is molded under a pressure of 1 t/cm 2 to 5 t/cm 2 or hot pressed (HP) under a pressure of 100 to 300 kg/cm 2 .
Then, sintering was carried out at a temperature of 1500 to 1800°C for 30 to 60 minutes in a vacuum of 10 -3 to 10 -2 mmHg or an Ar atmosphere. Table 1 shows the composition of the lubricious sintered body of the present invention and the compositions excluded from the lubricious sintered body of the present invention and the respective sintering conditions, and Table 2 shows the composition of the lubricious sintered body of the present invention. Various characteristic values after sintering of each sample shown in are shown.

【表】【table】

【表】【table】

【表】 実施例 2 実施例1の内、本発明の潤滑性焼結体である試
料番号1,2,4,9,10,15の試料について、
摩擦摩耗同時試験機による室温から1000℃迄の大
気中における摺動試験を行つた。試験方法は、外
径26mmφ内径20mmφ高さ15mmの円筒と34mmφ×10
mmの円板を各試料番号のもので作り、同一試料番
号の円筒と円板を面接触させて荷重200Kg、すべ
り速度200cm/secの条件で摩擦摩耗を行い、1時
間後における摩擦係数を測定し、その結果を第3
表に示した。
[Table] Example 2 Regarding the samples of sample numbers 1, 2, 4, 9, 10, and 15, which are the lubricious sintered bodies of the present invention, in Example 1,
Sliding tests were conducted in the atmosphere from room temperature to 1000℃ using a simultaneous friction and wear tester. The test method was to use a cylinder with an outer diameter of 26mmφ, an inner diameter of 20mmφ, and a height of 15mm, and a cylinder with a height of 34mmφ×10.
mm diameter disks were made from each sample number, and the disks were brought into surface contact with the cylinders of the same sample number, and frictional wear was performed under the conditions of a load of 200 kg and a sliding speed of 200 cm/sec, and the friction coefficient was measured after 1 hour. and the results in the third
Shown in the table.

【表】 実施例 3 実施例1の内、本発明の潤滑性焼結体である試
料番号1,3,5,8,14,17及び比較用の試料
番号19、20、21によつて実施例2に示した円筒を
それぞれ作製し、実施例2に示した円板をエンジ
ンのシヤフト材種である窒化綱(HRc55)で作
製して、この各試料の円筒と窒化綱の円板を用い
て荷重30Kgその他の条件は、実施例2と同一にし
て試験を行い、各試料の摩擦係数及び摩耗率を測
定した。その結果を第4表に示した。 試験の結果、比較品試料番号19は摩擦係数及び
摩擦率共に本発明の潤滑性焼結体よりも高く、比
較品試料番号20は強度が低いために荷重を加える
とクラツクが入り、特に600℃、1000℃のときは
摩擦係数及び摩耗率の測定が不可能になつた。
[Table] Example 3 Among Example 1, carried out using sample numbers 1, 3, 5, 8, 14, and 17, which are lubricating sintered bodies of the present invention, and sample numbers 19, 20, and 21 for comparison. The cylinders shown in Example 2 were made, and the disks shown in Example 2 were made of nitride steel (HRc55), which is the shaft material of the engine, and the cylinders of each sample and the disks of nitride steel were used. The test was conducted under the same conditions as Example 2, including a load of 30 kg, and the friction coefficient and wear rate of each sample were measured. The results are shown in Table 4. As a result of the test, comparative product sample number 19 has a higher coefficient of friction and friction coefficient than the lubricating sintered body of the present invention, and comparative product sample number 20 has low strength and therefore cracks when a load is applied, especially at 600°C. , it became impossible to measure the friction coefficient and wear rate at 1000°C.

【表】 実施例 4 実施例1の内、本発明の潤滑性焼結体である試
料番号1、3、6、13、16の各試料よつて実施例
2に示した円筒をそれぞれ作製し、実施例2に示
した円板をSUS304で作製して、この各試料の円
筒とSUS304の円板を用いて荷重10Kg、エステル
系合成油を潤滑油としてその他の条件は実施例2
と同一にして試験を行い、各試料の摩擦係数を測
定した。その結果を第5表に示した。
[Table] Example 4 The cylinders shown in Example 2 were prepared from each of sample numbers 1, 3, 6, 13, and 16, which are the lubricating sintered bodies of the present invention, from Example 1. The disk shown in Example 2 was made of SUS304, and the load was 10 kg using the cylinder of each sample and the SUS304 disk, and the other conditions were as in Example 2 using ester-based synthetic oil as the lubricant.
The test was conducted in the same manner as above, and the friction coefficient of each sample was measured. The results are shown in Table 5.

【表】 以上の実施例の結果から本発明の潤滑性焼結体
は、従来の潤滑性材料に比較して高硬度で抗折力
から判断した靭性も4〜8倍高く、熱伝導性、耐
食性、耐酸化性に優れ、又、硬質相が金属的性質
を有しているため電気伝導性も優れ、しかも大気
中高温下における摩擦係数及び摩擦率の低いこと
並びに潤滑油が存在して300℃と温度が高い場合
にも充分に低い摩擦係数を保持することが確認で
きた。このことから本発明の潤滑性焼結体は、タ
ーボチヤージヤー用のジヤーナル軸受、ストラス
軸受等のオイルレス軸受用部材及びシーリングか
ら潤滑油、有機溶媒、薬品等の腐食性液体と接触
しつつ高温で作動するポンプ等の摩擦用部分に広
範囲の用途に使用可能な産業上優れた潤滑性材料
である。
[Table] From the results of the above examples, the lubricant sintered body of the present invention has higher hardness and 4 to 8 times higher toughness judged from transverse rupture strength than conventional lubricant materials, and has excellent thermal conductivity and It has excellent corrosion resistance and oxidation resistance, and because the hard phase has metallic properties, it has excellent electrical conductivity.Moreover, it has a low friction coefficient and coefficient of friction at high temperatures in the atmosphere, and the presence of lubricating oil. It was confirmed that a sufficiently low coefficient of friction was maintained even when the temperature was as high as ℃. Therefore, the lubricious sintered body of the present invention can come into contact with corrosive liquids such as lubricating oils, organic solvents, and chemicals from parts and seals for oil-less bearings such as journal bearings and strass bearings for turbochargers. It is an industrially excellent lubricating material that can be used in a wide range of applications for friction parts such as pumps that operate at high temperatures.

Claims (1)

【特許請求の範囲】 1 Ti、Zr、Hf、Th、V、Nb、Taの炭化物、
窒化物、酸化物の中の少なくとも2種の固溶体に
よる硬質相20〜95体積%と残り黒鉛、六方晶窒化
硼素、酸化鉛、弗化カルシウム、弗化バリウム、
弗化リチウム、窒化硅素、Ti、Zr、Ta、W、
Moの硫化物、セレン化物、テルル化物、酸化モ
リブデン及びこれらの相互固溶体の中の少なくも
1種の分散相と不可避的不純物とからなることを
特徴とする潤滑性焼結体。 2 上記硬質相が炭化チタン5〜95体積%と残り
がTiの窒化物、酸化物並びにZr、Hf、Th、V、
Nb、Taの炭化物、窒化物、酸化物の中の少なく
とも1種からなることを特徴とする特許請求の範
囲第1項記載の潤滑性焼結体。 3 上記分散相が黒鉛および/または六方晶窒化
硼素を含有していることを特徴とする特許請求の
範囲第1項及び第2項記載の潤滑性焼結体。
[Claims] 1 Carbide of Ti, Zr, Hf, Th, V, Nb, Ta,
20 to 95% by volume of a hard phase consisting of a solid solution of at least two of nitrides and oxides, and the remainder graphite, hexagonal boron nitride, lead oxide, calcium fluoride, barium fluoride,
Lithium fluoride, silicon nitride, Ti, Zr, Ta, W,
A lubricious sintered body comprising a dispersed phase of at least one of Mo sulfides, selenides, tellurides, molybdenum oxides, and mutual solid solutions thereof, and inevitable impurities. 2 The hard phase is nitrides and oxides of 5 to 95% by volume of titanium carbide and the rest is Ti, as well as Zr, Hf, Th, V,
The lubricious sintered body according to claim 1, characterized in that the lubricious sintered body is made of at least one of carbides, nitrides, and oxides of Nb and Ta. 3. The lubricious sintered body according to claims 1 and 2, wherein the dispersed phase contains graphite and/or hexagonal boron nitride.
JP58167091A 1983-09-09 1983-09-09 Lubricating sintered body Granted JPS6060965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58167091A JPS6060965A (en) 1983-09-09 1983-09-09 Lubricating sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58167091A JPS6060965A (en) 1983-09-09 1983-09-09 Lubricating sintered body

Publications (2)

Publication Number Publication Date
JPS6060965A JPS6060965A (en) 1985-04-08
JPH0357064B2 true JPH0357064B2 (en) 1991-08-30

Family

ID=15843251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58167091A Granted JPS6060965A (en) 1983-09-09 1983-09-09 Lubricating sintered body

Country Status (1)

Country Link
JP (1) JPS6060965A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005154258A (en) * 2003-10-29 2005-06-16 Sumitomo Electric Ind Ltd Ceramic composite material and method for producing same
JP2005132654A (en) 2003-10-29 2005-05-26 Sumitomo Electric Ind Ltd Ceramic composite material and its manufacturing process
US8771391B2 (en) 2011-02-22 2014-07-08 Baker Hughes Incorporated Methods of forming polycrystalline compacts
KR102544527B1 (en) * 2018-01-11 2023-06-16 엘지이노텍 주식회사 Heater core, heater and heating system including thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53122059A (en) * 1977-03-30 1978-10-25 Agency Of Ind Science & Technol Solid lubricating composite material and its manufacturing process
JPS54120612A (en) * 1978-03-11 1979-09-19 Toshiba Ceramics Co Bearing
JPS5669275A (en) * 1979-11-08 1981-06-10 Showa Denko Kk Molddreleasing lubricating boron nitride molded body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53122059A (en) * 1977-03-30 1978-10-25 Agency Of Ind Science & Technol Solid lubricating composite material and its manufacturing process
JPS54120612A (en) * 1978-03-11 1979-09-19 Toshiba Ceramics Co Bearing
JPS5669275A (en) * 1979-11-08 1981-06-10 Showa Denko Kk Molddreleasing lubricating boron nitride molded body

Also Published As

Publication number Publication date
JPS6060965A (en) 1985-04-08

Similar Documents

Publication Publication Date Title
JP3782446B2 (en) High-strength, high-temperature, self-lubricating composite material and manufacturing method thereof
JP2012506494A (en) Sliding bearing with improved wear resistance and method for manufacturing the same
EP2087250A1 (en) Bearing having improved consume resistivity and manufacturing method thereof
JPH04320494A (en) Self-lubricating material and its preparation
JPH0220592B2 (en)
CN111748719B (en) Wide-temperature-range self-lubricating VN-Ag2MoO4Composite material and preparation method thereof
JPH0357064B2 (en)
US3427244A (en) Solid lubricant composites
JPS6119750A (en) Cupreous sintered body
JP2588096B2 (en) Solid lubricating composite sliding material and method for producing the same
JPH01255631A (en) Sintered alloy material and its manufacture
JP2007045918A (en) Raw powder for self-lubricating sintered material, method for producing the same and method for producing self-lubricating sintered material
JP3682556B2 (en) Heat and wear resistant sintered stainless steel
US7666519B2 (en) High temperature sliding alloy
JPH0776405B2 (en) Solid lubricious composite material and method for producing the same
JP2000199028A (en) Self-lubricating sintered composite material
JPS62151539A (en) Element for roll bearing
JP2004211185A (en) Iron based sintered alloy excellent in dimensional precision, strength and sliding property, and its production method
JP3785283B2 (en) Boride-based self-lubricating composite materials
JPH1192846A (en) Sintered friction material and its production
JP2002332505A (en) Self-lubricating sintered material
JPH1046201A (en) Additive for powder metallurgy and production of sintered compact
JPS5937735B2 (en) Wear-resistant sintered alloy
JPS63282233A (en) Heat-resisting cage for rolling bearing
JPH07247488A (en) Self-lubricating composite material