JPH0220592B2 - - Google Patents

Info

Publication number
JPH0220592B2
JPH0220592B2 JP59155557A JP15555784A JPH0220592B2 JP H0220592 B2 JPH0220592 B2 JP H0220592B2 JP 59155557 A JP59155557 A JP 59155557A JP 15555784 A JP15555784 A JP 15555784A JP H0220592 B2 JPH0220592 B2 JP H0220592B2
Authority
JP
Japan
Prior art keywords
sintered body
nitrides
powder
oxides
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59155557A
Other languages
Japanese (ja)
Other versions
JPS6136173A (en
Inventor
Hiroko Tsuya
Mikio Fukuhara
Akira Fukawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Tungaloy Corp
Original Assignee
Agency of Industrial Science and Technology
Toshiba Tungaloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Toshiba Tungaloy Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP59155557A priority Critical patent/JPS6136173A/en
Publication of JPS6136173A publication Critical patent/JPS6136173A/en
Publication of JPH0220592B2 publication Critical patent/JPH0220592B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 本発明は、硬度、靭性、耐食性、耐酸化性が優
れるとともに、なによりも摩擦係数が0.25以下で
あり摩耗率も小さく自己潤滑性に優れたセラミツ
クス焼結体に関する。 〔発明の技術的背景とその問題点〕 従来から自己潤滑性を有する材料としては、
Cu,Co,Ni,Fe,Sn,Ag,Mn等の金属に
MoS2,WS2,CaF2,LiF2、黒鉛のような自己潤
滑性の高い物質を所定量配合した金属基材料が知
られている。 この金属基材料は、電気伝導性、熱伝導性に優
れているが、しかしその反面、低硬度で耐摩耗性
に劣り、高温における軟化が著しくかつ耐食性も
劣るため、その使用分野は制限を受けざるを得な
い状態にある。 このような問題の解決を目的として上記の金属
基材料に更に周期律表a,a,a族の遷移
金属又はこれら金属の炭化物、窒化物を配合して
成るサーメツト材料が開発されている。たしか
に、このサーメツト材料の耐摩耗性は上記金属基
材料に比べて向上する。しかし、その硬度及び靭
性は依然として低く、しかも金属を含有している
ので耐食性が劣り、かつ高温での軟化、塑性変形
をきたすので、やはりその使用分野は狭く限定せ
ざるを得ない。 〔発明の目的〕 本発明は、上記した従来の潤滑性材料の問題点
を解消し、高硬度、高靭性であつて、実質的に金
属を単体として含有していないので耐食性、耐酸
化性に優れ、しかも熱伝導性も良好であり高温で
も自己潤滑性を有するセラミツクス焼結体の提供
を目的とする。 〔発明の概要〕 本発明者らは上記目的を達成すべく鋭意研究を
重ねる過程で、周期律表a,a,a族の金
属元素の酸化物はいずれも、大気中、1000℃まで
の環境下で固体潤滑性を示すこと、とりわけCr
の酸化物はその潤滑性が優れている、という事実
を見出した。そしてまた、上記知見を基礎にして
潤滑性材料の摺動面が例えば炭化物、窒化物であ
つたとしても上記した高温の大気中では、摺動面
部分に存在するこれら炭化物、窒化物は容易に酸
化して炭酸化物、窒酸化物、炭窒酸化物、酸化物
の緻密な被膜となり、その結果、摺動面の潤滑性
は向上するとの着想を得、本発明の自己潤滑性セ
ラミツクスを開発するに到つた。 すなわち、本発明の高温固体潤滑性セラミツク
スは、Cr炭化物、窒化物、酸化物、炭窒化物、
炭酸化物、窒酸化物及び炭窒酸化物の中から選ば
れた少なくとも1種1〜89wt%とTi,Zr,Hf,
V,Nb,Ta,Mo,W,Si,B,Yの炭化物、
窒化物、酸化物及びこれらの相互固溶体の中から
選ばれた少なくとも1種11〜99%とからなる硬質
相と、不可避的不純物とでなることを特徴とす
る。 本発明のセラミツクスの必須成分は、次式:
(Cra,Mb)(Cx,Ny、Ozoでその組成が示され
る硬質相である場合が特に好ましい。 式中、MはTi,Zr,Hf,V,Nb,Ta,Mo,
Wのいずれか1種又は2種以上の金属元素を表わ
す。a,bはそれぞれCr,Mのモル比であつて、
0.98≧a≧0.2,0.8≧b≧0.02a+b=1の関係を
満足する数である。 x,y,zはいずれもC,N,Oなどの非金属
元素のモル比であつて、それぞれは、0.4≦x≦
1,0≦y≦0.5,0≦z≦0.3、そしてx+y+
z=1の関係を満足する数である。zが0.3を超
える場合は、得られた焼結体は酸化物主体となり
その強度が低下するのみならずCrの酸化物が高
い蒸気圧を有するため焼結時においても焼結体使
用時においてもCr成分が蒸発し、品質管理上及
び環境衛生上から好ましくない。x,y,zがそ
れぞれ0.4≦x≦1,0≦y≦0.5,0≦z≦0.3,
x+y+z=1の関係を満足する数である場合
は、硬質相の潤滑性が優れるのみならずその高温
強度も向上するので好適である。 nは、金属元素(CrとM)に対する非金属元
素(CとNとO)全体のモル比であつて、その値
は0.44≦n<1.33の範囲に設定される。nがこの
範囲を外れた場合、得られた硬質相がB1構造を
主体とする強靭な化合物とはなりにくく、脆弱な
低級化合物が形成されるようになつて不都合であ
る。 また、上記した硬質相にあつては、更にSi,
B,Yの炭化物、窒化物、酸化物の1種又は2種
以上が含有されていてもよい。 本発明のセラミツクスは次のようにして製造す
ることができる。 上記した群に属する各化合物の単一粉末若しく
は2種以上を適宜に混合した混合粉末又はこれら
の相互固溶体の粉末、更には相互固溶体の粉末と
各化合物の単一粉末又は亜化学量論的な化合物を
組合わせて混合して成る混合粉末を、目的とする
焼結体における各成分の組成比から逆規定した割
合で混合し、この混合粉末を粉末治金法で慣用と
なつている手法により成形し、ついで得られた成
形体を真空中又は窒素、水素、アルゴン、一酸化
炭素などの非酸化性雰囲気中で無加圧焼結又は加
圧焼結する。 出発原料に関しては、Cr,V,Tiなどの周期
律表第四周期の元素の酸化物はその生成自由エネ
ルギーが小さく、多くの低級酸化物が存在して比
較的不安定な化合物であるため、これら酸化物か
らのみ焼結体を製造する場合、その組成の調節が
困難であると同時に得られた焼結体の強度も非常
に低くなり、その実用性が極めて阻害される。し
たがつて、本発明にあつては、原料としては酸化
物のみではなく、更に炭化物、窒化物、炭窒化
物、炭酸化物、窒酸化物、炭窒酸化物を配合する
ことが望ましい。 本発明の焼結体の製造工程において、出発原料
の混合粉砕は、容器としてステンレス製容器、超
硬合金を内張りした容器又はウレタンゴムを内張
りした容器を使用し媒体としてステンレス製ボー
ル、超硬合金製ボール又は例えば、周期律表4a,
5a,6a族金族の化合物で表面被覆したボールと
共に混合粉砕する。粉砕効果を高めて出発原料を
微細化するためには、ステンレス製容器又は超硬
合金を内張りした容器を使用して超硬合金製ボー
ルと共に混合粉砕する方法を適用するのがよく、
又アセトン、ヘキサン、ベンゼン、アルコール等
の有機溶媒を加えて湿式混合粉砕するのがよい。
耐食性及び高温での耐摩耗性を利用する用途向け
等で主として金属からなる不純物を考慮する必要
があるときは、ウレタンゴムで内張りした容器を
使用して表面被覆したボールと共に混合するのが
よい。不純物は、混合粉砕工程から混入する場合
が多く、混合粉砕工程で使用する超硬合金の内、
超硬合金の主成分である周期律表のa,a,
a族金属化合物が不純物として混入するのは割
合問題がないのに対して超硬合金の結合相である
鉄族金属の混入は2体積%以下出来れば1体積%
以下にするのが望ましい。 混合粉末の成形は、混合粉砕した粉末を黒鉛モ
ールドに充填して非酸化性雰囲気中でホツトプレ
スする方法、又は混合粉砕した粉末にパラフイ
ン、カンフア等の成形助剤を添加して必要ならば
顆粒状にした後金型モールドに充填して加圧成形
する方法、もしくはラテツクスゴム等で混合粉末
を包囲した後静水圧加圧で外圧を加えて成形する
方法などが適用できる。このようにして成形した
粉末圧粉体を直接焼結したり、又は粉末圧粉体を
焼結温度よりも低い温度で予備焼結した後、切
断、研削、切削等の加工を施してから焼結するこ
とができる。 焼結時の条件に関しては、例えば出発原料に亜
化学量論的組成の化合物を用いた場合、原子空孔
が焼結の駆動力として作用して低温無加圧でも焼
結性が促進され、また、Crの含有量が多い場合
には、焼結中にCrが蒸発して得られた焼結体の
固体潤滑性の低下傾向があらわれるので高真空、
高温焼結を避けなければならなくなる、などの実
際上生起する問題との関係で適宜に選定すること
が必要になる。したがつて、焼結時の条件は、出
発原料の組成等に対応して変化させるので一義的
に定められない。 なお、得られた焼結体を、更に、熱間静水圧焼
結(HIP)で処理すると、その焼結体の強度が一
層高くなるので有効である。 また、この焼結体を実際の高温摺動部材として
使用する場合、該焼結体を予め酸化雰囲気中で処
理し、その表面に厚み10μm以下の酸化物の層を
形成すると、内部は高強度で表面のみが潤滑性大
という両機能が発現するので有効である。 〔発明の実施例〕 実施例 1〜12 (1) 焼結体の製造とその特性 第1表に示した各種の化合物の粉末(平均粒径
0.2〜3μm)を表示の割合に配合し、この配合粉
末に3〜5%のパラフインを成形助剤として添加
し、アセトン溶媒中、WC基超硬合金製ボールを
用いて混合粉砕した。得られた混合粉末から溶媒
を蒸発乾燥後、この混合粉末を1t/cm2〜5t/cm2
の加圧で成形、100〜300Kg/cm2の加圧でホツト
プレス(H.P)して成形し、得られた成形体を
10-3〜10-2mmHgの真空中もしくはAr雰囲気、
1350〜1800℃の温度、30〜60分の条件下で焼結し
た。 得られた各焼結体の特性を一括して第1表に示
した。
[Technical Field of the Invention] The present invention relates to a ceramic sintered body that has excellent hardness, toughness, corrosion resistance, and oxidation resistance, and above all, has a friction coefficient of 0.25 or less, a low wear rate, and excellent self-lubricating properties. [Technical background of the invention and its problems] Traditionally, materials with self-lubricating properties include:
For metals such as Cu, Co, Ni, Fe, Sn, Ag, Mn, etc.
Metal-based materials containing a predetermined amount of highly self-lubricating substances such as MoS 2 , WS 2 , CaF 2 , LiF 2 , and graphite are known. This metal-based material has excellent electrical and thermal conductivity, but on the other hand, it has low hardness, poor wear resistance, significant softening at high temperatures, and poor corrosion resistance, so its field of use is limited. I am in a situation where I have no choice but to do so. In order to solve these problems, cermet materials have been developed in which transition metals of groups A, A, and A of the periodic table or carbides and nitrides of these metals are blended with the above-mentioned metal base materials. Certainly, the wear resistance of this cermet material is improved compared to the metal-based materials mentioned above. However, its hardness and toughness are still low, and since it contains metal, its corrosion resistance is poor, and it softens and plastically deforms at high temperatures, so its field of use must be narrowly limited. [Object of the invention] The present invention solves the problems of the conventional lubricating materials described above, and has high hardness and toughness, and since it does not substantially contain any metal, it has good corrosion resistance and oxidation resistance. The purpose of the present invention is to provide a ceramic sintered body having excellent thermal conductivity and self-lubricating properties even at high temperatures. [Summary of the Invention] In the course of intensive research to achieve the above object, the present inventors discovered that oxides of metal elements in groups a, Showing solid lubricity under Cr
It has been discovered that the oxide of Based on the above knowledge, even if the sliding surface of a lubricating material is made of carbides or nitrides, these carbides and nitrides existing on the sliding surface can easily be removed in the high-temperature atmosphere mentioned above. The self-lubricating ceramics of the present invention were developed based on the idea that oxidation forms a dense film of carbonates, nitrides, carbonitrides, and oxides, which improves the lubricity of sliding surfaces. I reached it. That is, the high-temperature solid lubricating ceramics of the present invention contain Cr carbides, nitrides, oxides, carbonitrides,
1 to 89 wt% of at least one selected from carbonates, nitrides, and carbonitoxides, and Ti, Zr, Hf,
Carbide of V, Nb, Ta, Mo, W, Si, B, Y,
It is characterized by consisting of a hard phase consisting of 11 to 99% of at least one selected from nitrides, oxides, and mutual solid solutions thereof, and inevitable impurities. The essential components of the ceramics of the present invention are expressed by the following formula:
A hard phase whose composition is represented by (C a , M b ) (C x , N y , O z ) o is particularly preferred. In the formula, M is Ti, Zr, Hf, V, Nb, Ta, Mo,
Represents any one or more metal elements of W. a and b are the molar ratios of Cr and M, respectively,
This is a number that satisfies the following relationships: 0.98≧a≧0.2, 0.8≧b≧0.02a+b=1. x, y, and z are all molar ratios of nonmetallic elements such as C, N, and O, and each is 0.4≦x≦
1, 0≦y≦0.5, 0≦z≦0.3, and x+y+
This is a number that satisfies the relationship z=1. If z exceeds 0.3, the obtained sintered body will be composed mainly of oxides, and its strength will not only decrease, but also the Cr oxide will have a high vapor pressure, which will cause problems during sintering and when using the sintered body. The Cr component evaporates, which is unfavorable from the standpoint of quality control and environmental hygiene. x, y, z are respectively 0.4≦x≦1, 0≦y≦0.5, 0≦z≦0.3,
When the number satisfies the relationship x+y+z=1, it is preferable because not only the lubricity of the hard phase is excellent but also its high temperature strength is improved. n is the molar ratio of all nonmetallic elements (C, N, and O) to metallic elements (Cr and M), and its value is set in the range of 0.44≦n<1.33. If n is out of this range, the obtained hard phase will not be a strong compound mainly having the B1 structure, but a brittle lower compound will be formed, which is disadvantageous. In addition, in the case of the above-mentioned hard phase, Si,
One or more of carbides, nitrides, and oxides of B and Y may be contained. The ceramics of the present invention can be manufactured as follows. A single powder of each compound belonging to the above group, a mixed powder of two or more of them, or a mutual solid solution powder of these, further a mutual solid solution powder and a single powder of each compound, or a substoichiometric powder. A mixed powder made by combining and mixing compounds is mixed in a proportion inversely specified from the composition ratio of each component in the desired sintered body, and this mixed powder is processed using a method commonly used in powder metallurgy. The molded body obtained is then sintered under pressure or under pressure in a vacuum or in a non-oxidizing atmosphere such as nitrogen, hydrogen, argon, carbon monoxide, etc. Regarding starting materials, oxides of elements in the fourth period of the periodic table, such as Cr, V, and Ti, have a small free energy of formation and are relatively unstable compounds due to the presence of many lower oxides. When producing a sintered body only from these oxides, it is difficult to control the composition, and at the same time, the strength of the obtained sintered body becomes extremely low, which greatly impairs its practicality. Therefore, in the present invention, it is desirable to include not only oxides but also carbides, nitrides, carbonitrides, carbonates, nitoxides, and carbonitoxides as raw materials. In the manufacturing process of the sintered body of the present invention, the starting materials are mixed and pulverized using a container made of stainless steel, a container lined with cemented carbide, or a container lined with urethane rubber, and a stainless steel ball or cemented carbide used as the medium. made of balls or, for example, periodic table 4a,
Mix and grind together with a ball whose surface is coated with a group 5a or 6a metal compound. In order to improve the pulverization effect and make the starting materials finer, it is best to use a method of mixing and pulverizing them together with cemented carbide balls using a stainless steel container or a container lined with cemented carbide.
It is also preferable to add an organic solvent such as acetone, hexane, benzene, alcohol, etc. and perform wet mixing and pulverization.
When it is necessary to consider impurities mainly made of metal, such as for applications that utilize corrosion resistance and high-temperature abrasion resistance, it is best to use a container lined with urethane rubber and mix with surface-coated balls. Impurities are often mixed in during the mixing and grinding process, and among the cemented carbide used in the mixing and grinding process,
a, a, of the periodic table, which is the main component of cemented carbide.
While there is no problem with the ratio of Group A metal compounds mixed as impurities, the mixing of iron group metals, which are the binder phase of cemented carbide, should be 2% by volume or less, preferably 1% by volume.
It is desirable to do the following. The mixed powder can be formed by filling the mixed and pulverized powder into a graphite mold and hot-pressing it in a non-oxidizing atmosphere, or by adding a forming aid such as paraffin or camphor to the mixed and pulverized powder and forming it into granules if necessary. It is possible to apply a method in which the mixed powder is filled into a metal mold and then pressure-molded, or a method in which the mixed powder is surrounded with latex rubber or the like and then external pressure is applied using hydrostatic pressure to form the powder. The powder compact formed in this way can be directly sintered, or the powder compact can be pre-sintered at a temperature lower than the sintering temperature, and then processed by cutting, grinding, cutting, etc., and then sintered. can be tied. Regarding the conditions during sintering, for example, when a compound with a substoichiometric composition is used as the starting material, atomic vacancies act as a driving force for sintering, promoting sinterability even at low temperatures and no pressure. In addition, when the Cr content is high, Cr evaporates during sintering and the solid lubricity of the obtained sintered body tends to decrease, so high vacuum,
It is necessary to make an appropriate selection in relation to practical problems such as the need to avoid high-temperature sintering. Therefore, the conditions during sintering cannot be uniquely determined because they vary depending on the composition of the starting materials. Note that it is effective to further treat the obtained sintered body by hot isostatic pressure sintering (HIP) because the strength of the sintered body is further increased. In addition, when this sintered body is used as an actual high-temperature sliding member, if the sintered body is previously treated in an oxidizing atmosphere and an oxide layer with a thickness of 10 μm or less is formed on the surface, the interior will have high strength. It is effective because only the surface exhibits both functions of high lubricity. [Examples of the invention] Examples 1 to 12 (1) Production of sintered bodies and their properties Powders of various compounds shown in Table 1 (average particle size
0.2 to 3 μm) was blended in the indicated ratio, 3 to 5% paraffin was added as a molding aid to this blended powder, and the mixture was mixed and ground in an acetone solvent using a WC-based cemented carbide ball. After the solvent is evaporated and dried from the obtained mixed powder, this mixed powder is 1 t/cm 2 to 5 t/cm 2
The molded product is molded by hot pressing (HP) with a pressure of 100 to 300 kg/cm 2 .
10 -3 to 10 -2 mmHg vacuum or Ar atmosphere,
Sintering was performed at a temperature of 1350-1800°C for 30-60 minutes. The properties of each of the obtained sintered bodies are summarized in Table 1.

【表】 **静止大気中1時間加熱後表面変色して粉末状酸化
物が生じる温度
(2) 各温度における摩擦係数の測定 実施例番号1,2,9,10,11の各焼結体につ
き、摩擦摩耗同時試験機により室温から1000℃迄
の大気中における摺動試験を行つた。試験方法
は、外径26mmφ内径20mmφ高さ15mmの円筒と34mm
φ×10mmの円板を各焼結体で作製し、同一試料番
号の中筒と円板を面接触させて荷重50Kg、すべり
速度200cm/secの条件で摩擦摩耗試験を行い、1
時間後における摩擦係数を測定するという方法で
ある。その結果を第2表に示した。
[Table] **Temperature at which surface discoloration occurs and powdery oxide forms after heating in still air for 1 hour
(2) Measurement of friction coefficient at each temperature Each of the sintered bodies of Example Nos. 1, 2, 9, 10, and 11 was subjected to a sliding test in the atmosphere from room temperature to 1000°C using a simultaneous friction and wear tester. . The test method was to use a cylinder with an outer diameter of 26 mmφ, an inner diameter of 20 mmφ, and a height of 15 mm.
A disk of φ×10 mm was prepared from each sintered body, and a friction and wear test was conducted under the conditions of a load of 50 kg and a sliding speed of 200 cm/sec by bringing the disk into surface contact with the inner cylinder of the same sample number.
This method measures the friction coefficient after a certain period of time. The results are shown in Table 2.

【表】 (3) 各温度における摩擦係数及び摩耗率の測定 実施例1,3,6,8、比較例2,3の各焼結
体からそれぞれ外径26mmφ内径20mmφ高さ15mmの
円筒を製作し、直径34mmφ厚み10mmの円板を窒化
銅(HRC55)から製作しそれぞれを面接触させて
荷重30Kgを印加して(2)と同様な条件で摩擦摩耗試
験を行なつた。その結果を第3表に示した。な
お、比較例2の焼結体は摩擦係数及び摩耗率共に
本発明の焼結体よりも高く、比較例3の焼結体は
強度が低いために荷重を加えるとクラツクが入
り、特に600℃、1000℃のときは摩擦係数及び摩
耗率の測定が不可能であつた。
[Table] (3) Measurement of friction coefficient and wear rate at various temperatures Cylinders with an outer diameter of 26 mm, an inner diameter of 20 mm, and a height of 15 mm were manufactured from each of the sintered bodies of Examples 1, 3, 6, and 8, and Comparative Examples 2 and 3. Discs with a diameter of 34 mm and a thickness of 10 mm were fabricated from copper nitride (H RC 55), and a friction and wear test was conducted under the same conditions as in (2) by bringing them into surface contact and applying a load of 30 kg. The results are shown in Table 3. The sintered body of Comparative Example 2 has a higher friction coefficient and wear rate than the sintered body of the present invention, and the sintered body of Comparative Example 3 has low strength, so it cracks when a load is applied, especially at 600°C. , it was impossible to measure the friction coefficient and wear rate at 1000°C.

【表】 (4) 各温度における摩擦係数の測定 実施例1,3,9,10の焼結体で(2)と同様の円
筒を製作した。円板はSUS304で製作し、両者を
面接触させたときの荷重は10Kg、両者間にエステ
ル系合成油を潤滑油として用いたことを除いては
(2)の場合と同様にして各温度における摩擦係数を
測定した。その結果を第4表に示した。
[Table] (4) Measurement of friction coefficient at each temperature A cylinder similar to (2) was manufactured using the sintered bodies of Examples 1, 3, 9, and 10. The disc is made of SUS304, and the load when the two are in surface contact is 10 kg, except that ester-based synthetic oil was used as a lubricant between the two.
The friction coefficient at each temperature was measured in the same manner as in (2). The results are shown in Table 4.

〔発明の効果〕〔Effect of the invention〕

以上の説明で明らかなように、本発明のセラミ
ツクス焼結体は、従来の潤滑性材料に比較して高
硬度であり、抗折力から判断した靭性も4〜8倍
と高く、熱伝導性、耐食性、耐酸化性に優れ、
又、硬質相が金属的性質を有しているため電気伝
導性も優れ、しかも大気中高温下における摩擦係
数及び摩耗率の低いこと並びに潤滑油が存在して
300℃と温度が高い場合にも充分に低い摩擦係数
を保持することが確認できた。 したがつて、本発明の潤滑性セラミツクスは、
ターボチヤージヤー用のジヤーナル軸受、熱間圧
延ロール、連続鋳造用軸受、エアスピンドル用軸
受、スラスト軸受などのオイルレス軸受部材及び
シールリングの分野から潤滑油、有機溶媒、薬品
等の腐食性液体と接触しつつ高温で作動するポン
プ等の摩擦用部品などの広範囲の用途に使用可能
であつてその工業的価値は極めて大である。
As is clear from the above explanation, the ceramic sintered body of the present invention has higher hardness than conventional lubricating materials, has 4 to 8 times higher toughness as determined by transverse rupture strength, and has higher thermal conductivity. , excellent corrosion resistance and oxidation resistance,
In addition, because the hard phase has metallic properties, it has excellent electrical conductivity, and has a low friction coefficient and wear rate at high temperatures in the atmosphere, and the presence of lubricating oil.
It was confirmed that a sufficiently low coefficient of friction was maintained even at temperatures as high as 300°C. Therefore, the lubricating ceramics of the present invention:
From oil-less bearing parts and seal rings such as journal bearings for turbochargers, hot rolling rolls, continuous casting bearings, air spindle bearings, and thrust bearings, to corrosive liquids such as lubricating oils, organic solvents, and chemicals. It can be used in a wide range of applications, such as friction parts such as pumps that operate at high temperatures while in contact with water, and its industrial value is extremely large.

Claims (1)

【特許請求の範囲】 1 Crの炭化物、窒化物、酸化物、炭窒化物、
炭酸化物、窒酸化物及び炭窒酸化物の中から選ば
れた少なくとも1種1〜89wt%とTi,Zr,Hf,
V,Nb,Ta,Mo,W,Si,B,Yの炭化物、
窒化物、酸化物及びこれらの相互固溶体の中から
選ばれた少なくとも1種11〜99wt%とから成る
硬質相と、不可避的不純物とでなることを特徴と
する高温固体潤滑性セラミツクス。 2 前記硬質相が次式: (Cra,Mb)(Cx,Ny、Ozo [但し、式中Mは、Ti,Zr,Hf,V,Nb,
Ta,Mo,Wの中の少なくとも1種からなる金属
元素を表わし、a,bはCr及び金属元素Mのモ
ル比を表わし、x,y,zはそれぞれ、C(炭
素)、N(窒素)、O(酸素)のモル比を表わし、n
はCrと金属元素Mとの合計に対するC,N,O
を合計した非金属元素のモル比を表わし、その関
係は、a+b=1,0.98≧a≧0.2,0.8≧b≧
0.02,x+y+z=1,1≧x≧0.4,0.5≧y≧
0,0.3≧z≧0,1.33>n≧0.44を表わす。] で表わされる特許請求の範囲第1項記載の高温固
体潤滑性セラミツクス。
[Claims] 1 Cr carbide, nitride, oxide, carbonitride,
1 to 89 wt% of at least one selected from carbonates, nitrides, and carbonitoxides, and Ti, Zr, Hf,
Carbide of V, Nb, Ta, Mo, W, Si, B, Y,
A high-temperature solid lubricating ceramic characterized by comprising a hard phase consisting of 11 to 99 wt % of at least one selected from nitrides, oxides and mutual solid solutions thereof, and inevitable impurities. 2 The hard phase has the following formula: (Cr a , M b ) (C x , N y , O z ) o [However, in the formula, M is Ti, Zr, Hf, V, Nb,
Represents a metal element consisting of at least one of Ta, Mo, and W, a and b represent the molar ratio of Cr and the metal element M, and x, y, and z are C (carbon) and N (nitrogen), respectively. , represents the molar ratio of O (oxygen), and n
is C, N, O for the sum of Cr and metal element M
It represents the molar ratio of nonmetallic elements that is the sum of
0.02, x+y+z=1, 1≧x≧0.4, 0.5≧y≧
0, 0.3≧z≧0, 1.33>n≧0.44. ] The high-temperature solid lubricating ceramic according to claim 1, which is represented by:
JP59155557A 1984-07-27 1984-07-27 High temperature solid lubricating ceramics Granted JPS6136173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59155557A JPS6136173A (en) 1984-07-27 1984-07-27 High temperature solid lubricating ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59155557A JPS6136173A (en) 1984-07-27 1984-07-27 High temperature solid lubricating ceramics

Publications (2)

Publication Number Publication Date
JPS6136173A JPS6136173A (en) 1986-02-20
JPH0220592B2 true JPH0220592B2 (en) 1990-05-09

Family

ID=15608661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59155557A Granted JPS6136173A (en) 1984-07-27 1984-07-27 High temperature solid lubricating ceramics

Country Status (1)

Country Link
JP (1) JPS6136173A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61236653A (en) * 1985-04-15 1986-10-21 日本化学工業株式会社 Chromium nitride-zirconia base ceramics and manufacture
JPS61247662A (en) * 1985-04-23 1986-11-04 日本化学工業株式会社 Electroconductive ceramics and manufacture
JPS6256373A (en) * 1985-05-14 1987-03-12 日本化学工業株式会社 Chromium carbonitride-zirconia base ceramic and manufacture
US5215945A (en) * 1988-09-20 1993-06-01 The Dow Chemical Company High hardness, wear resistant materials
JPH02164770A (en) * 1988-12-19 1990-06-25 Agency Of Ind Science & Technol Production of composite ceramic material
JPH0764637B2 (en) * 1989-07-26 1995-07-12 電気化学工業株式会社 Ceramic sliding member
DE19818873C2 (en) * 1998-04-28 2001-07-05 Man B & W Diesel Ag Reciprocating internal combustion engine
JP4911783B2 (en) * 2008-01-28 2012-04-04 三井造船株式会社 Installation method of silencer for blower exhaust noise
GB2458960A (en) * 2008-04-04 2009-10-07 Ricardo Uk Ltd Sliding bearing
CN109180189B (en) * 2018-10-08 2021-03-30 中南大学 High-entropy carbide ultra-high temperature ceramic powder and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59107971A (en) * 1982-12-09 1984-06-22 株式会社クボタ Heat resistant ceramic material
JPS59107970A (en) * 1982-12-09 1984-06-22 株式会社クボタ Heat resistant ceramic material
JPS59107972A (en) * 1982-12-09 1984-06-22 株式会社クボタ Heat resistant ceramic material
JPS60145953A (en) * 1983-12-29 1985-08-01 株式会社クボタ Heated material supporting surface member of heating surface
JPS60191059A (en) * 1984-03-10 1985-09-28 株式会社クボタ Chromium carbide ceramic material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59107971A (en) * 1982-12-09 1984-06-22 株式会社クボタ Heat resistant ceramic material
JPS59107970A (en) * 1982-12-09 1984-06-22 株式会社クボタ Heat resistant ceramic material
JPS59107972A (en) * 1982-12-09 1984-06-22 株式会社クボタ Heat resistant ceramic material
JPS60145953A (en) * 1983-12-29 1985-08-01 株式会社クボタ Heated material supporting surface member of heating surface
JPS60191059A (en) * 1984-03-10 1985-09-28 株式会社クボタ Chromium carbide ceramic material

Also Published As

Publication number Publication date
JPS6136173A (en) 1986-02-20

Similar Documents

Publication Publication Date Title
US4320204A (en) Sintered high density boron carbide
US4194910A (en) Sintered P/M products containing pre-alloyed titanium carbide additives
US6066191A (en) Hard molybdenum alloy, wear resistant alloy and method for manufacturing the same
TW200925295A (en) Metallurgical powder composition and method of production
JPH0220592B2 (en)
JPH04320494A (en) Self-lubricating material and its preparation
US5411571A (en) Hard sintered alloy having fine pores and process for preparing the same
EP0169054A2 (en) Composite materials and products
JP2588096B2 (en) Solid lubricating composite sliding material and method for producing the same
US5034187A (en) Method of making carbide/fluoride/silver composites
JPH0357064B2 (en)
JPS6352081B2 (en)
JP2004211185A (en) Iron based sintered alloy excellent in dimensional precision, strength and sliding property, and its production method
JPH0797256A (en) Sintered body of aluminum oxide base and its production
JPS60231457A (en) Solid lubricating composite material
JPH06279959A (en) Ferrous sintered alloy and its production
JPH1046201A (en) Additive for powder metallurgy and production of sintered compact
JPH0533297B2 (en)
JPS60103162A (en) High-speed tool steel having superior wear resistance and welding resistance
JPS613861A (en) Sintered heat-and wear-resistant hard alloy for hot working tool
JPS61554A (en) High-speed tool steel having superior wear and welding resistance
JPS6221755A (en) Chromium oxide base high temperature lubricating sintered body
JPS6150909B2 (en)
JPS6056779B2 (en) Hard alloy for powder metallurgy molds
JPS60187658A (en) Hard alloy for powder metallurgical die

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term