JPH04124248A - Sintered alloy for oilless bearing and its production - Google Patents

Sintered alloy for oilless bearing and its production

Info

Publication number
JPH04124248A
JPH04124248A JP24258390A JP24258390A JPH04124248A JP H04124248 A JPH04124248 A JP H04124248A JP 24258390 A JP24258390 A JP 24258390A JP 24258390 A JP24258390 A JP 24258390A JP H04124248 A JPH04124248 A JP H04124248A
Authority
JP
Japan
Prior art keywords
powder
sintered
sintered alloy
bearing
shaft material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24258390A
Other languages
Japanese (ja)
Inventor
Isamu Kikuchi
勇 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP24258390A priority Critical patent/JPH04124248A/en
Publication of JPH04124248A publication Critical patent/JPH04124248A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve durability and conformability to a shaft material by mixing bronze powder, graphitic carbon, etc., with iron powder in a specific ratio, compacting the resulting powdered raw material mixture, and then sintering the resulting green compact at a temp. in a specific range. CONSTITUTION:A mixture is prepared by mixing 92-97%, by weight, of iron powder, 2-5% of bronze powder, 0.3-5% of graphitic carbon, and 1.2% of MnS and/or FeS. This powdered raw material is compacted and the resulting green compact is sintered at 850-<1000 deg.C, by which a sintered alloy for oilless bearing can be obtained. Because this sintered alloy is reduced in temp. rise at the time of rotating the shaft material, it is free from seizure even under very severe conditions of rotation and causes no damage to the shaft material. Further, wear loss can be minimized and superior durability can be provided, and stable bearing property can be maintained over a long period.

Description

【発明の詳細な説明】 「発明の目的」 本発明は含油軸受用焼結合金およびその製造方法に係り
、耐摩耗性に優れ、モータ回転時などにおける軸受温度
の上昇が少く、回転軸を損耗することがなく、なじみ性
の良好なFe系含油軸受用焼結合金およびその好ましい
製造方法を提供しようとするものである。
Detailed Description of the Invention Object of the Invention The present invention relates to a sintered alloy for oil-impregnated bearings and a method for producing the same, which has excellent wear resistance, reduces the rise in bearing temperature during motor rotation, and prevents wear and tear on the rotating shaft. It is an object of the present invention to provide a Fe-based sintered alloy for oil-impregnated bearings that has good conformability without causing any damage, and a preferable method for producing the same.

(産業上の利用分野) 洗濯機や攪拌ないし混合機器などのそれなりの負荷状態
で駆動される家庭用ないし各種産業用機器における軸受
材として利用される焼結合金およびその製造技術。
(Industrial Application Field) Sintered alloys and their manufacturing technology used as bearing materials in household and various industrial equipment that are driven under certain loads, such as washing machines and stirring or mixing equipment.

(従来の技術) 軸受材としては耐熱摩耗性に優れ、使用時の温度上昇が
少く、また低コストであることが好ましいことは当然で
、従来からこのような軸受材を得べく種々の検討が重ね
られて来たが、これらの特質を共に満足することは容易
でない。
(Prior art) It goes without saying that it is desirable for bearing materials to have excellent heat abrasion resistance, low temperature rise during use, and low cost, and various studies have been conducted to obtain such bearing materials. Although they have been overlapped, it is not easy to satisfy these characteristics together.

即ち、上記したようにそれなりの負荷を有する機器の軸
受材を量産的に得るためには焼結金属を用いることが不
可欠であり、このような焼結金属において含油せしめて
潤滑性を得しめ、しかも耐摩耗性などを得るためには鉄
系のものに黒鉛などの固形潤滑剤と共にCuやPbなど
の合金元素を20%以下のように添加したものを用いる
ことが行われている。
That is, as mentioned above, in order to mass-produce bearing materials for equipment that has a certain load, it is essential to use sintered metal, and such sintered metal is impregnated with oil to obtain lubricity. Furthermore, in order to obtain wear resistance, iron-based materials are used in which 20% or less of alloying elements such as Cu and Pb are added together with a solid lubricant such as graphite.

(発明が解決しようとする課B) ところが前記したような家庭用ないし産業用機器におい
ても近時においては苛酷な条件で使用されることが多く
なりつつある。例えば家庭用洗濯機においては従来から
の2槽弐のものの外に、最近では全自動型のものの普及
が著しく、処理量の増加と共に一層苛酷な条件で使用さ
れるようになり、モータ軸受なども厳しい条件にさらさ
れるようになっている。
(Problem B to be solved by the invention) However, in recent years, household or industrial equipment as described above is increasingly being used under harsh conditions. For example, in household washing machines, in addition to the traditional two-tub type, fully automatic models have recently become widespread, and as the throughput increases, they are used under harsher conditions, and motor bearings, etc. They are now exposed to harsh conditions.

このようなことから使用時における温度上昇が大となり
摩耗も大となって耐用性に劣ることとならざるを得ない
。又前記したようにCuあるいはpbなどの合金元素を
多量に添加したものは必然的に高価となり、更になじみ
性などにおいて必ずしも好ましいものでない。
For this reason, the temperature rise during use becomes large, the wear becomes large, and the durability becomes poor. Furthermore, as described above, materials to which a large amount of alloying elements such as Cu or PB are added are inevitably expensive and are not necessarily desirable in terms of compatibility.

「発明の構成」 (課題を解決するための手段) 本発明は上記したような従来技術における課題を解消す
るように検討して創案されたものであって、以下の如く
である。
"Structure of the Invention" (Means for Solving the Problems) The present invention was developed after consideration to solve the problems in the prior art as described above, and is as follows.

(11Fe: 92〜97wt%、Cu: 1.5〜5
.0wt%、Sn : 0.1〜1.3wt% を含有すると共に遊離炭素またはセメンタイトとしての
Cを0.3〜5wt%含有し、残部不可避不純物であっ
て、気孔率12〜25容量%の焼結組織としたことを特
徴とする含油軸受用焼結合金。
(11Fe: 92-97wt%, Cu: 1.5-5
.. 0 wt%, Sn: 0.1 to 1.3 wt%, and 0.3 to 5 wt% of C as free carbon or cementite, with the remainder being unavoidable impurities and having a porosity of 12 to 25 volume%. A sintered alloy for oil-impregnated bearings, characterized by having a tissue structure.

(2)  Fe: 92〜97wt%、Cu : 1.
5〜5.0wt%、Sn : 0.1〜1.3wt% を含有すると共に遊離炭素またはセメンタイトとしての
Cを0.3〜5wt%と、MnSまたはFeSの何れか
一方または双方を0.25〜1゜2wt%含有し、残部
不可避不純物であって、気孔率12〜25容量%の焼結
組織としたことを特徴とする含油軸受用焼結合金。
(2) Fe: 92 to 97 wt%, Cu: 1.
5 to 5.0 wt%, Sn: 0.1 to 1.3 wt%, 0.3 to 5 wt% of C as free carbon or cementite, and 0.25 wt% of either MnS or FeS or both. A sintered alloy for an oil-impregnated bearing, characterized in that the sintered alloy contains ~1.2 wt%, the remainder being unavoidable impurities, and has a sintered structure with a porosity of 12 to 25% by volume.

(3)鉄粉92〜97−t%、青銅粉2〜5皆t%、黒
鉛質炭素0.3〜5wt%、MnSまたはFeSの1種
または2種が1.2wt%の割合で混合した原料粉を圧
粉成形してから850℃以上1000°C未満で焼結す
ることを特徴とする含油軸受用焼結合金の製造方法。
(3) 92-97-t% iron powder, 2-5 t% bronze powder, 0.3-5 wt% graphitic carbon, and 1.2 wt% of one or two of MnS or FeS. A method for producing a sintered alloy for oil-impregnated bearings, which comprises compacting raw material powder and sintering it at 850°C or more and less than 1000°C.

(作用) 上記した本発明によるものの組成について−t%(以下
単に%という)により説明すると以下の如くである。
(Function) The composition of the product according to the present invention described above is explained in terms of -t% (hereinafter simply referred to as %) as follows.

Fe:92〜97%。Fe: 92-97%.

Feは本発明焼結合金の主体をなすもので、92%以上
とすることにより適当な強度を得しめると共に低コスト
性を確保する。又その上限を97%とすることにより他
のCu、 Snおよび遊離炭素またはセメンタイトとし
てのCを適量含有せしめ、耐摩耗性、軸受作用時の温度
上昇低減ないし回転軸に対する好ましいなしみ性を得し
める。
Fe constitutes the main component of the sintered alloy of the present invention, and by setting it to 92% or more, appropriate strength can be obtained and low cost can be ensured. In addition, by setting the upper limit to 97%, appropriate amounts of other Cu, Sn, and free carbon or C as cementite can be contained, thereby achieving wear resistance, reducing temperature rise during bearing operation, and achieving preferable stain resistance for rotating shafts. .

CLI:1.5〜5.0%、Su:0.1〜1.3%。CLI: 1.5-5.0%, Su: 0.1-1.3%.

Cuは本発明において、Suと共に、好ましくはそれら
の合金として含有せしめられることが必要で、Feヲベ
ースとした合金体においてその摩擦係数を低下して軸受
作用時の温度上昇を抑制し軸材を傷めることの少い製品
を得しめるもので、Cuが1.5%未満、5nlJ<0
.1%未満ではこれらの作用が乏しい。一方Cuが5%
を超え、Sr+が1.3%を超えると高価となると共に
材質的に脆くなり、寸法精度の高いことが要求される含
油軸受において寸法精度を満足させるべ〈実施されるサ
イジング加工において割れが発生し易くなり適切な製品
の製造が困難となる。
In the present invention, Cu is required to be contained together with Su, preferably as an alloy thereof, and reduces the coefficient of friction in an alloy body based on Fe, suppresses temperature rise during bearing operation, and damages the shaft material. A product with less than 1.5% Cu, 5nlJ<0
.. If the amount is less than 1%, these effects will be poor. On the other hand, Cu is 5%
If Sr+ exceeds 1.3%, it becomes expensive and the material becomes brittle. Dimensional accuracy must be satisfied in oil-impregnated bearings that require high dimensional accuracy. (Cracks occur during the sizing process.) This makes it difficult to manufacture suitable products.

遊離炭素またはセメンタイトとしてのC:O,3〜5%
C:O as free carbon or cementite, 3-5%
.

この遊離炭素またはセメンタイトとしてのCは潤滑性を
与え、また摩耗を低減する作用をなし、0.3%以下で
はこのような作用が不充分で、一方5%を超えると強度
や耐摩耗性を劣化する。
This free carbon or C in the form of cementite provides lubricity and has the effect of reducing wear. If it is less than 0.3%, this effect is insufficient, while if it exceeds 5%, it may deteriorate strength and wear resistance. to degrade.

気孔率=12〜25容量%。Porosity = 12-25% by volume.

焼結組織における気孔率が12容量%未満では含油軸受
として製品化した場合に適切な含油量が得られない。こ
れに対し25容量%を超えると焼結合金体としての強度
が不充分となるのでこれを上限とする。
If the porosity in the sintered structure is less than 12% by volume, an appropriate oil content cannot be obtained when manufactured as an oil-impregnated bearing. On the other hand, if it exceeds 25% by volume, the strength as a sintered alloy body will be insufficient, so this is set as the upper limit.

MnSまたはFeS  : 0.25〜1.2%。MnS or FeS: 0.25-1.2%.

MnSまたはFeSの何れか一方または双方を含有する
ことにより軸材などと摩擦した場合に微細な摩耗粉を発
生して溶着化を防止すると共に軸材などの損傷を回避し
て安定な回転を得しめる。0.25%未満ではこれらの
作用が不充分で、一方1.2%を超えると焼結合金組織
を脆弱化する傾向が認められるのでこれを上限とする。
By containing one or both of MnS and FeS, when it rubs against the shaft material, fine abrasion powder is generated and welding is prevented, and damage to the shaft material is avoided to ensure stable rotation. Close. If it is less than 0.25%, these effects are insufficient, while if it exceeds 1.2%, there is a tendency to weaken the sintered alloy structure, so this is set as the upper limit.

製造に際し、鉄粉92〜97%、青銅粉2〜5%、黒鉛
質炭素0.3〜5%の割合に混合した原料粉を用いるこ
とにより、前記したようなFe、 Cu、SnおよびC
よりなる特定組成の焼結体を得しめる。
During production, by using raw material powder mixed at a ratio of 92 to 97% iron powder, 2 to 5% bronze powder, and 0.3 to 5% graphitic carbon, Fe, Cu, Sn, and C as described above can be produced.
A sintered body having a specific composition is obtained.

焼結温度:850〜1000℃未満。Sintering temperature: 850 to less than 1000°C.

850℃未満では前記したような青銅粉を用いた条件下
においても適切な焼結が得られない。−方1000℃以
上の焼結温度では添加したCu−Sn合金の影響により
焼結が進行しすぎて変形が大きくなると共に、硬い組織
であるセメンタイトの発生量が多くなり強度や硬度は高
くなるものの、伸びが低下し、結局、軸受として要求さ
れる高い寸法精度を確保するために実施するサイジング
において形状を矯正し切れず、望む軸受寸法を得ること
ができない。
If the temperature is lower than 850°C, proper sintering cannot be obtained even under the conditions described above using bronze powder. - On the other hand, at a sintering temperature of 1000℃ or higher, sintering progresses too much due to the influence of the added Cu-Sn alloy, resulting in large deformation, and the amount of cementite, which is a hard structure, increases, resulting in higher strength and hardness. , the elongation decreases, and as a result, the shape cannot be corrected completely during sizing performed to ensure the high dimensional accuracy required for the bearing, making it impossible to obtain the desired bearing dimensions.

従って、本発明による焼結含油軸受を製造するためには
、特に寸法精度の面から1000℃未満の温度での焼結
が必要条件とされる。
Therefore, in order to manufacture the sintered oil-impregnated bearing according to the present invention, sintering at a temperature of less than 1000° C. is required, especially from the viewpoint of dimensional accuracy.

なお圧粉成形に際してはステアリン酸亜鉛のような気化
性潤滑剤を若干混合することが成形を容易ならしめ、し
かも焼結後における多孔組織形成に有利である。
It should be noted that during powder compaction, mixing a small amount of a vaporizable lubricant such as zinc stearate facilitates compaction and is also advantageous for forming a porous structure after sintering.

(実施例) 本発明によるものの具体的な実施例について説明すると
、本発明者等は添附図面第1図に示すように直径が20
鶴の球体1の両端を切欠端面2.2となし、これらの切
欠端面2.2間の厚みが14mとされたものに両切欠端
面2.2の中心部を貫通せしめて径1011の軸受孔3
を貫通させた軸受体10を製造するに当り、80メソシ
ユ以下の鉄粉と、Snが5〜25%で残部がCuである
各種青銅粉および黒鉛粉と成型潤滑剤としてのステアリ
ン酸亜鉛を用い、次の第1表に示すような原料粉を配し
、均等に夫々混合せしめた。
(Embodiment) To explain a specific embodiment of the present invention, the present inventors have discovered that the diameter is 20 mm as shown in FIG. 1 of the attached drawings.
Both ends of the crane sphere 1 are notched end surfaces 2.2, and the thickness between these notched end surfaces 2.2 is 14 m, and a bearing hole with a diameter of 1011 is made by penetrating the center of both notched end surfaces 2.2. 3
In manufacturing the bearing body 10 which has been penetrated, iron powder of 80 mesos or less, various bronze powders and graphite powders containing 5 to 25% Sn and the remainder Cu, and zinc stearate as a molding lubricant are used. The raw material powders shown in Table 1 below were arranged and mixed evenly.

青銅粉および黒鉛粉ならびにステアリン酸亜鉛の粒度は
以下の如くである。
The particle sizes of bronze powder, graphite powder, and zinc stearate are as follows.

青銅粉        80メツシユ以下黒鉛粉   
    100メツシユ以下ステアリン酸亜鉛  20
0メツシユ以下第 表 (重量部) 前記した第1表の各原料粉を用いて圧粉成形し焼結、サ
イジングして第1図の軸受体を得たが、この場合の焼結
温度、気孔率は次の第2表の如くである。
Bronze powder Graphite powder less than 80 mesh
100 mesh or less Zinc stearate 20
0 mesh or less Table (parts by weight) Using each raw material powder in Table 1 above, the bearing body shown in Figure 1 was obtained by compacting, sintering, and sizing. The rates are shown in Table 2 below.

第 表 又これら第1.2表の本発明によるものとは別に比較例
として前記と同じ80メツシユ以下の鉄粉94.5部に
Cu粉1.5部、鉛粉4.0部およびステアリン酸亜鉛
0.5部の割合に混合し圧粉成形したものを1050℃
で焼結して第1図と同じ含油率24.4容量%の軸受体
としたものを比較材1とした。更に同し鉄粉95.5部
に電解銅粉2部、黒鉛粉2.5部、ステアリン酸亜鉛0
.5部を配合し、圧粉成形したものを1000℃で焼結
、サイジングして含油率19.3容量%で同じ形状、寸
法の軸受体としたものを比較材2とした。
In Table 1 and Table 1.2, as a comparative example, 94.5 parts of iron powder of 80 mesh or less, 1.5 parts of Cu powder, 4.0 parts of lead powder, and stearic acid were added. Mixed with 0.5 part of zinc and compacted at 1050℃
Comparative material 1 was obtained by sintering the bearing body with an oil content of 24.4% by volume, which is the same as that shown in FIG. Furthermore, 95.5 parts of the same iron powder, 2 parts of electrolytic copper powder, 2.5 parts of graphite powder, and 0 parts of zinc stearate.
.. Comparative material 2 was prepared by blending 5 parts of the same and powder molding, sintering and sizing at 1000°C to obtain a bearing body with an oil content of 19.3% by volume and the same shape and dimensions.

上記のようにして得られた本発明軸受体および比較材に
関し、それぞれタービン油#83を含浸せしめ、その軸
受孔に345C生材による径9.990論でシャフト面
粗度が0.8 S〜1.68の軸材を挿嵌し、荷重15
kgの負荷条件で180Orpmの回転速度で500時
間の回転軸受性能試験を実施した。試料各5個について
の内径平均摩耗量は次の第3表に示す如くである。
Regarding the bearing body of the present invention and the comparative material obtained as described above, each was impregnated with turbine oil #83, and the bearing hole was made of 345C raw material with a diameter of 9.990 mm and a shaft surface roughness of 0.8 S~. Insert the shaft material of 1.68, load 15
A rotary bearing performance test was conducted for 500 hours at a rotational speed of 180 Orpm under a load condition of 500 kg. The average wear amount of the inner diameter of each of the five samples is as shown in Table 3 below.

第 表 即ち本発明によるものは何れも5μm以下で、特にMn
SまたはFeSを含有させた階8以下のものにおいては
その摩耗量が3μm未満であって耐用性に優れ、且つ軸
材に対するなじみ性なども優れたものであることが確認
された。これに対し比較材1のものは30〜40時間で
80%前後が焼付を発生し前記したような苛酷な試験な
いし使用条件に耐え得ないもので、前記データは焼付か
なかった1個についてのデータである。比較材2のもの
は摩耗量が本発明材の10倍前後に達することは第3表
の如くである。
In Table 1, all of the products according to the present invention have a diameter of 5 μm or less, especially Mn.
It was confirmed that those containing S or FeS and having a grade of 8 or below had a wear amount of less than 3 μm, had excellent durability, and had excellent conformability to the shaft material. On the other hand, about 80% of Comparative Material 1 developed seizing after 30 to 40 hours, and could not withstand the harsh test or usage conditions mentioned above. It is data. As shown in Table 3, the amount of wear of Comparative Material 2 is approximately 10 times that of the material of the present invention.

又前記した試験時における軸受の温度上昇を測定した結
果は第4表に要約して示す如くであって、本発明による
ものは何れも1時間以後において大幅な温度低下が認め
られ、5時間以後においては一般的に比較材1のものの
温度上昇値の半分以下となるが、特に階8〜寛10、隘
12〜隘14のものにおいては著しい温度低下を確保し
得る。
In addition, the results of measuring the temperature rise of the bearing during the above-mentioned test are summarized in Table 4, and in all of the bearings according to the present invention, a significant temperature decrease was observed after 1 hour, and after 5 hours. In general, the temperature increase value is less than half of that of Comparative Material 1, but a significant temperature decrease can be ensured especially in the floors 8 to 10 and the rooms 12 to 14.

「発明の効果」 以上説明したよ・うな本発明によるときはFeが92%
以上の鉄粉を主体とした軸受用焼結合金であるから低コ
ストに製品を得しめることは明かであり、しかも軸材回
転時の温度上昇が少く相当に苛酷な回転条件下において
も焼付などを生ずることがなく、又軸材を傷めることが
なくて軸材とのなじみが良好であり、摩耗量も僅少で耐
用性に優れ長期に亘って安定且つ卓越し7た軸受性能を
維持することのできる含油軸受用焼結材を有利に製造し
提供し得るものであるから工業的にその効果の大きい発
明である。
"Effect of the invention" As explained above, according to the present invention, Fe is 92%
Since this is a sintered alloy for bearings made mainly of iron powder, it is clear that the product can be obtained at low cost.Moreover, the temperature rise during rotation of the shaft material is small, so there is no risk of seizure even under fairly severe rotation conditions. To maintain stable and excellent bearing performance over a long period of time, with no damage to the shaft material and good compatibility with the shaft material, minimal wear and excellent durability. This invention has great industrial effects because it allows for the advantageous production and provision of a sintered material for oil-impregnated bearings.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の技術的内容を示すものであって、第1図
は本発明の実施例における軸受体の断面図である。 然して第1図において、1は軸受球体、2は切欠端面、
3は軸受孔を示すものである。 氾1図 φ20(球) 一〜−−−
The drawings illustrate the technical content of the present invention, and FIG. 1 is a sectional view of a bearing body in an embodiment of the present invention. However, in FIG. 1, 1 is a bearing sphere, 2 is a notched end surface,
3 indicates a bearing hole. Flood 1 diagram φ20 (ball) 1~---

Claims (3)

【特許請求の範囲】[Claims] (1)Fe:92〜97wt%、Cu:1.5〜5.0
wt%、Sn:0.1〜1.3wt% を含有すると共に遊離炭素またはセメンタイトとしての
Cを0.3〜5wt%含有し、残部不可避不純物であっ
て、気孔率12〜25容量%の焼結組織としたことを特
徴とする含油軸受用焼結合金。
(1) Fe: 92-97wt%, Cu: 1.5-5.0
wt%, Sn: 0.1 to 1.3 wt%, free carbon or C as cementite, 0.3 to 5 wt%, the remainder being unavoidable impurities, and a sintered material with a porosity of 12 to 25% by volume. A sintered alloy for oil-impregnated bearings, characterized by having a tissue structure.
(2)Fe:92〜97wt%、Cu:1.5〜5.0
wt%、Sn:0.1〜1.3wt% を含有すると共に遊離炭素またはセメンタイトとしての
Cを0.3〜5wt%と、MnSまたはFeSの何れか
一方または双方を0.25〜1.2wt%含有し、残部
不可避不純物であって、気孔率12〜25容量%の焼結
組織としたことを特徴とする含油軸受用焼結合金。
(2) Fe: 92-97wt%, Cu: 1.5-5.0
wt%, Sn: 0.1 to 1.3 wt%, C as free carbon or cementite, 0.3 to 5 wt%, and either or both of MnS and FeS, 0.25 to 1.2 wt%. %, the remainder being unavoidable impurities, and having a sintered structure with a porosity of 12 to 25% by volume.
(3)鉄粉92〜97wt%、青銅粉2〜5wt%、黒
鉛質炭素0.3〜5wt%、MnSまたはFeSの1種
または2種が1.2wt%の割合で混合した原料粉を圧
粉成形してから850℃以上1000℃未満で焼結する
ことを特徴とする含油軸受用焼結合金の製造方法。
(3) Raw material powder containing 92 to 97 wt% of iron powder, 2 to 5 wt% of bronze powder, 0.3 to 5 wt% of graphitic carbon, and 1.2 wt% of one or both of MnS or FeS is pressed. A method for producing a sintered alloy for oil-impregnated bearings, which comprises powder-forming and then sintering at a temperature of 850°C or higher and lower than 1000°C.
JP24258390A 1990-09-14 1990-09-14 Sintered alloy for oilless bearing and its production Pending JPH04124248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24258390A JPH04124248A (en) 1990-09-14 1990-09-14 Sintered alloy for oilless bearing and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24258390A JPH04124248A (en) 1990-09-14 1990-09-14 Sintered alloy for oilless bearing and its production

Publications (1)

Publication Number Publication Date
JPH04124248A true JPH04124248A (en) 1992-04-24

Family

ID=17091220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24258390A Pending JPH04124248A (en) 1990-09-14 1990-09-14 Sintered alloy for oilless bearing and its production

Country Status (1)

Country Link
JP (1) JPH04124248A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08109450A (en) * 1994-10-12 1996-04-30 Hitachi Powdered Metals Co Ltd Wear resistant sintered alloy for oilless bearing
JP2004036745A (en) * 2002-07-03 2004-02-05 Pooraito Kk Sintered oil-bearing gear
CN107891154A (en) * 2017-11-30 2018-04-10 无锡昊瑜节能环保设备有限公司 A kind of preparation method of sliding bearing powdered metallurgical material
CN108465808A (en) * 2018-04-02 2018-08-31 常熟市华德粉末冶金有限公司 A kind of preparation method of tin bronze ferrous based powder metallurgical and its oiliness bearing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5114804A (en) * 1974-07-27 1976-02-05 Yamada Seisakusho Jugen Jidoshayonadono ketsugobuhin oyobi sono seizohoho
JPS5137606A (en) * 1974-07-30 1976-03-30 Staar Sa Kiroku oyobi * mataha saiseisochihenokaatoritsujinosoten oyobi gaisochichikarano kaatoritsujinotoridashinotamenosochi
JPS5376910A (en) * 1976-12-21 1978-07-07 Nippon Funmatsu Goukin Kk Ferrous sintered alloy with excellent abrasion resistance and lubricity
JPS5881954A (en) * 1981-11-09 1983-05-17 Mitsubishi Metal Corp High strength iron base sintered alloy excellent in wear resistance and self-lubricating property
JPS58224147A (en) * 1982-06-21 1983-12-26 Daikin Ind Ltd Bearing metal of tightly sealed compressor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5114804A (en) * 1974-07-27 1976-02-05 Yamada Seisakusho Jugen Jidoshayonadono ketsugobuhin oyobi sono seizohoho
JPS5137606A (en) * 1974-07-30 1976-03-30 Staar Sa Kiroku oyobi * mataha saiseisochihenokaatoritsujinosoten oyobi gaisochichikarano kaatoritsujinotoridashinotamenosochi
JPS5376910A (en) * 1976-12-21 1978-07-07 Nippon Funmatsu Goukin Kk Ferrous sintered alloy with excellent abrasion resistance and lubricity
JPS5881954A (en) * 1981-11-09 1983-05-17 Mitsubishi Metal Corp High strength iron base sintered alloy excellent in wear resistance and self-lubricating property
JPS58224147A (en) * 1982-06-21 1983-12-26 Daikin Ind Ltd Bearing metal of tightly sealed compressor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08109450A (en) * 1994-10-12 1996-04-30 Hitachi Powdered Metals Co Ltd Wear resistant sintered alloy for oilless bearing
JP2004036745A (en) * 2002-07-03 2004-02-05 Pooraito Kk Sintered oil-bearing gear
CN107891154A (en) * 2017-11-30 2018-04-10 无锡昊瑜节能环保设备有限公司 A kind of preparation method of sliding bearing powdered metallurgical material
CN108465808A (en) * 2018-04-02 2018-08-31 常熟市华德粉末冶金有限公司 A kind of preparation method of tin bronze ferrous based powder metallurgical and its oiliness bearing

Similar Documents

Publication Publication Date Title
KR101101078B1 (en) Iron based sintered bearing and method for producing the same
JP4886545B2 (en) Sintered oil-impregnated bearing and manufacturing method thereof
JP5367502B2 (en) Iron-based sintered sliding member and manufacturing method thereof
EP2087250A1 (en) Bearing having improved consume resistivity and manufacturing method thereof
CN106086556B (en) A kind of low-noise wearable oiliness bearing
JPH01275735A (en) Sintered alloy material and its manufacture
JPH0995759A (en) Oil-impregnated sintered bearing and its production
JPH04124248A (en) Sintered alloy for oilless bearing and its production
JPH0140907B2 (en)
JP3410595B2 (en) Iron-based sintered oil-impregnated bearing and its manufacturing method
JP5566394B2 (en) Bearing material
WO2018100660A1 (en) Ferrous sinter oil-containing bearing
JP2019065323A (en) Iron-based sintered shaft bearing, and iron-based sintered oil-containing shaft bearing
JPH01230740A (en) Sintered alloy material for oiliness bearing and its manufacture
JP3254830B2 (en) Sintered sliding member
CN111664182A (en) Powder metallurgy self-lubricating oil-retaining bearing and preparation method thereof
JPH0949064A (en) Wear resistant iron base sintered alloy bearing low in counter part attackability
JPS63282221A (en) Manufacture of composite sintered material
JP2001003123A (en) Sintered alloy for oilless bearing, and its manufacture
JPH0121222B2 (en)
JPS6140027B2 (en)
JPH08209264A (en) Sintered sliding member
JPH01283346A (en) Sintered alloy material and its production
JPS60200927A (en) Production of sintered alloy
JPH0949047A (en) Wear resistant sintered alloy bearing low in counter part attackability