JP6106323B1 - Sintered tungsten-based alloy and method for producing the same - Google Patents

Sintered tungsten-based alloy and method for producing the same Download PDF

Info

Publication number
JP6106323B1
JP6106323B1 JP2016135455A JP2016135455A JP6106323B1 JP 6106323 B1 JP6106323 B1 JP 6106323B1 JP 2016135455 A JP2016135455 A JP 2016135455A JP 2016135455 A JP2016135455 A JP 2016135455A JP 6106323 B1 JP6106323 B1 JP 6106323B1
Authority
JP
Japan
Prior art keywords
powder
mass
sintered
based alloy
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016135455A
Other languages
Japanese (ja)
Other versions
JP2018003135A (en
Inventor
星明 寺尾
星明 寺尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Precision Corp
Original Assignee
JFE Precision Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Precision Corp filed Critical JFE Precision Corp
Priority to JP2016135455A priority Critical patent/JP6106323B1/en
Application granted granted Critical
Publication of JP6106323B1 publication Critical patent/JP6106323B1/en
Publication of JP2018003135A publication Critical patent/JP2018003135A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

【課題】延性が高く且つ高精度な焼結タングステン基合金及びその製造方法を提供する。【解決手段】Wを90.0質量%以上含有し、残部がCu、Fe及びMoの中から選ばれる1種以上、Ni及び不可避不純物からなり、炭素含有量が12質量ppm以下、引張伸びが9%以上であり、好ましくは、断面組織での空孔の面積率が1%未満である。この焼結体は、粒径の粗いW粉末を用い、このW粉末とNi粉末などの副原料からなる原料粉末に、有機バインダーを添加せず、少量の固形潤滑剤のみを添加した上で、造粒することなく機械的に混合し、この混合粉体を比較的高い成形圧で所定の成形密度の成形体に成形し、この成形体を脱脂した後、焼結することにより得られる。【選択図】図1A highly ductile and highly accurate sintered tungsten-based alloy and a method for producing the same are provided. SOLUTION: W is contained in 90.0% by mass or more, the balance is one or more selected from Cu, Fe and Mo, Ni and inevitable impurities, the carbon content is 12 mass ppm or less, and the tensile elongation is It is 9% or more, and preferably the area ratio of vacancies in the cross-sectional structure is less than 1%. This sintered body uses W powder having a coarse particle diameter, and after adding only a small amount of solid lubricant to the raw material powder made of auxiliary materials such as W powder and Ni powder, without adding an organic binder, It is obtained by mechanically mixing without granulation, forming the mixed powder into a molded body having a predetermined molding density with a relatively high molding pressure, degreasing the molded body, and then sintering. [Selection] Figure 1

Description

本発明は、延性が高く且つ高精度な焼結タングステン基合金(粉末焼結体)とその製造方法に関するものである。   The present invention relates to a sintered tungsten-based alloy (powder sintered body) having high ductility and high accuracy, and a method for producing the same.

焼結タングステン基合金の部品は、硬さがHv250以上あることから切削が容易ではなく、このため粉末焼結体をできるだけ高精度に製造することが求められる。焼結タングステン基合金の一般的な製造法では、粒径2〜4μm程度のW粉末と副原料(Ni粉末などの結合相形成成分)からなる原料粉末に有機バインダーを添加して混練した後、MIMで成型するか、流動性や成形性を確保するためスプレードライヤーなどで造粒した上でプレス成形する。このプレス成形では、成形密度が高すぎると脱脂しにくくなるので、成形圧を2t/cm以下とし、成形密度を10g/cm以下とするのが通常である。 A sintered tungsten-based alloy part has a hardness of Hv250 or more, and therefore is not easily cut. Therefore, it is required to produce a powder sintered body with as high accuracy as possible. In a general manufacturing method of a sintered tungsten-based alloy, after adding and kneading an organic binder to a raw material powder composed of W powder having a particle size of about 2 to 4 μm and an auxiliary raw material (a binder phase forming component such as Ni powder), Molded with MIM, or granulated with a spray dryer to ensure fluidity and moldability and then press molded. In this press molding, if the molding density is too high, it is difficult to degrease, so that the molding pressure is usually 2 t / cm 2 or less and the molding density is 10 g / cm 3 or less.

特許文献1には、Wを98質量%以上含有し、密度が18.6g/cm以上の高密度材料(焼結タングステン基合金)の製造方法として、平均粒径4μmのW粉末が98質量%、残部が平均粒径2〜5μmのNi粉末、Fe粉末及びCu粉末からなる原料粉末に有機バインダーを添加して混合した後、スプレードライヤーで造粒し、その造粒粉を1t/cmの圧力でプレス成形し、この成形体を脱脂処理した上で焼結することが示されている。 In Patent Document 1, as a method for producing a high-density material (sintered tungsten-based alloy) containing 98 mass% or more of W and having a density of 18.6 g / cm 3 or more, 98 mass of W powder having an average particle diameter of 4 μm is used. %, The balance is Ni powder having an average particle diameter of 2 to 5 μm, Fe powder and Cu powder, and an organic binder is added and mixed, then granulated with a spray dryer, and the granulated powder is 1 t / cm 2. It is shown that the molded body is press-molded at a pressure of, and the molded body is degreased and then sintered.

特開2004−149813号公報JP 2004-149813 A

焼結タングステン基合金は、W含有量が多いほど焼結時の液相が少ないため、延性がでにくいという問題がある。このため従来の製造法では、焼結後に延性を改善するための熱処理を施す場合もある。
また、従来、焼結タングステン基合金を製造するには、焼結組織の均一性を確保するために、粒径が細かいW粉末(2〜4μm程度)を用いる必要があると考えられている。しかし、このような粒径が細かいW粉末は、成形する際の流動性が悪く、しかも圧縮性が低くなることにより成形性も悪くなるため、そのままでは原料粉末として用いることができない。そこで、特許文献1に示されるように、W粉末を主体とする原料粉末に有機バインダーを添加して混合・造粒し、原料粉末の流動性と成形性を確保した上で成形を行っており、このバインダー成分は成形後の脱脂処理により分解除去するようにしている。ここで、原料粉末の成形圧(成形密度)を高くすると、脱脂処理中にバインダー成分が分解したガスの放散が生じにくくなるため、バインダー成分の除去が不十分となり、未分解のバインダー成分が残留してしまう。このため、従来の製造方法では、成形圧(成形密度)を高くできず、その結果、焼結時の収縮量が大きくなり、高精密な焼結体が得られないという問題があった。
A sintered tungsten-based alloy has a problem that ductility is less likely because the liquid content during sintering is smaller as the W content is higher. For this reason, in the conventional manufacturing method, the heat processing for improving ductility may be performed after sintering.
Conventionally, in order to produce a sintered tungsten-based alloy, it is considered that it is necessary to use W powder (about 2 to 4 μm) having a small particle size in order to ensure the uniformity of the sintered structure. However, such a W powder having a small particle size has poor fluidity during molding, and also has poor moldability due to low compressibility, and thus cannot be used as a raw material powder as it is. Therefore, as shown in Patent Document 1, an organic binder is added to a raw material powder mainly composed of W powder, mixed and granulated, and molding is performed after ensuring the fluidity and formability of the raw material powder. The binder component is decomposed and removed by degreasing after molding. Here, if the molding pressure (molding density) of the raw material powder is increased, it becomes difficult for gas decomposed during the degreasing process to be emitted, so that removal of the binder component becomes insufficient and undecomposed binder component remains. Resulting in. For this reason, the conventional manufacturing method cannot increase the molding pressure (molding density). As a result, there is a problem that the amount of shrinkage during sintering becomes large and a highly precise sintered body cannot be obtained.

また、焼結タングステン基合金が適用されるような部品のなかには、一部又は全体の厚さ(肉厚)が0.5mm未満であるような薄物もあるが、従来の粉末成形焼結法では、原料粉末に有機バインダーを添加して混合・造粒するため、平均粒径が数十から100μm近くまで大きくなり、このため0.5mm未満の厚さを有するような薄物の成形は困難である。また、上述したように成形密度が小さいため、ハンドリング可能な薄物の成形体を作ること自体も難しい。また、MIMの場合は、薄物の成形は可能であるが、収縮率が大きく、平面度などの精度もでにくいため、実際上の適用は難しい。したがって、従来の製造方法では、高精度な薄物の焼結体を得ることは難しかった。   In addition, some of the parts to which sintered tungsten-based alloys are applied include thin parts having a partial or total thickness (wall thickness) of less than 0.5 mm. In addition, since an organic binder is added to the raw material powder and mixed and granulated, the average particle size increases from several tens to nearly 100 μm, and thus it is difficult to form a thin material having a thickness of less than 0.5 mm. . Moreover, since the molding density is small as described above, it is difficult to produce a thin molded body that can be handled. In addition, in the case of MIM, it is possible to mold a thin object, but practical application is difficult because the shrinkage rate is large and accuracy such as flatness is difficult. Therefore, it has been difficult to obtain a highly accurate thin sintered body by the conventional manufacturing method.

したがって本発明の目的は、以上のような従来技術の課題を解決し、延性が高く且つ高精度であって、薄肉化も可能な焼結タングステン基合金とその製造方法を提供することにある。   Accordingly, an object of the present invention is to solve the above-described problems of the prior art, and to provide a sintered tungsten-based alloy that has high ductility, high accuracy, and can be thinned, and a method for manufacturing the same.

本発明者らは、焼結タングステン基合金について、上記課題を解決するために検討を重ねた結果、以下のような知見を得た。
(i) 焼結タングステン基合金は、ヘビーアロイメカニズム(The Heavy Alloy Mechanism)と呼ばれる液相焼結により緻密化される。この液相焼結中は、W粉末がWとNi,Feなどの添加成分で構成される液相の中に固溶し、再析出を繰り返すことによりW粒成長をして緻密化する。W粒は高純度のWとなり、炭素などの不純物は液相中に残るが、焼結後、その不純物はW粒の周辺に偏析する傾向にあり、これらの不純物のなかの炭素の残留量が延性に大きな影響を与えること、すなわち炭素の残留量が多いとW粒子間或いはW粒子と旧液相部である合金部との界面の接着が不十分となり、焼結体の延性が低下することが判った。さらに、炭素の残留量が多いと液相焼結時の濡れ性が悪くなって空孔を生じやすくなり、高密度化が阻害されることが判った。したがって、延性が高い焼結タングステン基合金を得るには、焼結後の炭素の残留量を十分に低減させる必要があることが判った。また、高W含有量の高密度焼結タングステン基合金は、焼結時の液相が少ないために特に延性がでにくいため、炭素の残留量を低減させて延性改善を図ることが特に有効であることが判った。
As a result of repeated studies on the sintered tungsten-based alloy to solve the above problems, the present inventors have obtained the following knowledge.
(I) The sintered tungsten-based alloy is densified by liquid phase sintering called the heavy alloy mechanism. During this liquid phase sintering, the W powder is solid-dissolved in the liquid phase composed of W and additive components such as Ni, Fe, etc., and by reprecipitation, W grains grow and become dense. The W grains become highly pure W, and impurities such as carbon remain in the liquid phase, but after sintering, the impurities tend to segregate around the W grains, and the residual amount of carbon in these impurities is Having a large effect on ductility, that is, if there is a large amount of residual carbon, the adhesion between the W particles or the interface between the W particles and the alloy part which is the old liquid phase part becomes insufficient, and the ductility of the sintered body decreases. I understood. Furthermore, it has been found that if the amount of carbon remaining is large, the wettability during liquid phase sintering deteriorates and pores are easily formed, and the densification is hindered. Therefore, it has been found that in order to obtain a sintered tungsten-based alloy having high ductility, it is necessary to sufficiently reduce the residual amount of carbon after sintering. Also, high-density sintered tungsten-based alloys with high W content are particularly difficult to ductile because of the low liquid phase during sintering, so it is particularly effective to reduce the residual amount of carbon and improve ductility. It turns out that there is.

(ii) 焼結体に残留している炭素の多くは、脱脂処理で分解除去できずに残留したバインダー成分に由来していることが判った。従来法では原料粉末の成形圧(成形密度)を低めに抑え、脱脂処理でバインダー成分が適切に分解除去されるようにしているが、上述したように焼結時の収縮量が大きくなり、高精密な焼結体が得られない。さらに、原料粉末の成形圧(成形密度)を低めに抑えたとしても、脱脂処理で分解しきれないバインダー成分(炭素)が残留し、焼結体の延性を低下させ、さらには高密度化も阻害していることが判った。 (Ii) It has been found that most of the carbon remaining in the sintered body is derived from the binder component remaining without being decomposed and removed by the degreasing treatment. In the conventional method, the molding pressure (molding density) of the raw material powder is kept low, and the binder component is appropriately decomposed and removed by the degreasing treatment. A precise sintered body cannot be obtained. Furthermore, even if the molding pressure (molding density) of the raw material powder is kept low, binder components (carbon) that cannot be decomposed by the degreasing process remain, reducing the ductility of the sintered body and further increasing the density. It turns out that it is inhibiting.

(iii) そこで、有機バインダーを用いない粉末成形焼結法について検討した結果、従来技術では細かい粒径(2〜4μm程度)のW粉末を用いるのが半ば常識化しているのに対して、敢えて粗い粒径(7μm以上)のW粉末を用い、このW粉末とNi粉末などの副原料からなる原料粉末に少量の固形潤滑剤のみを添加した(有機バインダーは添加しない)上で、造粒することなく機械的に混合し、この混合粉体を従来法に較べて高い成形密度を有する成形体に成形し、この成形体を脱脂、焼結することにより、延性が高く且つ高精度な焼結タングステン基合金が得られることが判った。しかも、このような製造法によれば、一部又は全体の厚さ(肉厚)が0.5mm未満であるような薄物の焼結体についても容易に製造できることが判った。 (Iii) Therefore, as a result of studying a powder molding sintering method that does not use an organic binder, the conventional technique has become common sense to use W powder having a fine particle size (about 2 to 4 μm), whereas dare to do so. Using a W powder with a coarse particle size (7 μm or more), granulate after adding only a small amount of solid lubricant (without adding an organic binder) to the raw material powder consisting of this W powder and auxiliary materials such as Ni powder. Without mixing mechanically, this mixed powder is formed into a molded body having a higher molding density than the conventional method, and this molded body is degreased and sintered to achieve high ductility and high accuracy. It has been found that a tungsten-based alloy can be obtained. Moreover, according to such a manufacturing method, it was found that a thin sintered body having a partial or total thickness (wall thickness) of less than 0.5 mm can be easily manufactured.

本発明は、以上のような知見に基づきなされたもので、以下を要旨とするものである。
[1]Wを90.0質量%以上含有し、残部がCu、Fe及びMoの中から選ばれる1種以上、Ni及び不可避不純物からなり、炭素含有量が12質量ppm以下、引張伸びが9%以上であることを特徴とする焼結タングステン基合金。
[2]上記[1]の焼結タングステン基合金において、Niを0.2〜9.5質量%、Cu、Fe及びMoの中から選ばれる1種以上を合計で0.2〜9.5質量%含有することを特徴とする焼結タングステン基合金。
[3]上記[1]の焼結タングステン基合金において、Wを96.0質量%以上含有し、残部がCu、Fe及びMoの中から選ばれる1種以上、Ni及び不可避不純物からなり、密度が18.4g/cm以上であることを特徴とする焼結タングステン基合金。
The present invention has been made on the basis of the above-described findings and has the following gist.
[1] Containing 90.0% by mass or more of W, with the balance being one or more selected from Cu, Fe and Mo, Ni and inevitable impurities, a carbon content of 12 mass ppm or less, and a tensile elongation of 9 %. A sintered tungsten-based alloy characterized by being at least%.
[2] In the sintered tungsten-based alloy of the above [1], 0.2 to 9.5% by mass of Ni and at least one selected from Cu, Fe and Mo are 0.2 to 9.5 in total. A sintered tungsten-based alloy characterized by containing a mass%.
[3] The sintered tungsten-based alloy according to [1] above, containing 96.0% by mass or more of W, with the balance being one or more selected from Cu, Fe and Mo, Ni and inevitable impurities, Is a sintered tungsten-based alloy, characterized in that it is 18.4 g / cm 3 or more.

[4]上記[3]の焼結タングステン基合金において、Niを0.2〜3.5質量%、Cu、Fe及びMoの中から選ばれる1種以上を合計で0.2〜3.5質量%含有することを特徴とする焼結タングステン基合金。
[5]上記[1]〜[4]のいずれかの焼結タングステン基合金において、断面組織での空孔の面積率が1%未満であることを特徴とする焼結タングステン基合金。
[6]上記[1]〜[5]のいずれかの焼結タングステン基合金において、炭素含有量が5質量ppm未満、引張伸びが15%以上であることを特徴とする焼結タングステン基合金。
[7]上記[1]〜[6]のいずれかの焼結タングステン基合金において、少なくとも一部の部位が0.15mm以上0.50mm未満の肉厚を有することを特徴とする焼結タングステン基合金。
[4] In the sintered tungsten-based alloy of the above [3], 0.2 to 3.5% by mass of Ni and one or more selected from Cu, Fe and Mo in total 0.2 to 3.5 A sintered tungsten-based alloy characterized by containing a mass%.
[5] The sintered tungsten-based alloy according to any one of the above [1] to [4], wherein the area ratio of pores in the cross-sectional structure is less than 1%.
[6] A sintered tungsten-based alloy according to any one of the above [1] to [5], wherein the carbon content is less than 5 ppm by mass and the tensile elongation is 15% or more.
[7] The sintered tungsten base alloy according to any one of the above [1] to [6], wherein at least a part has a thickness of 0.15 mm or more and less than 0.50 mm. alloy.

[8]FSSS平均粒径が7.0μm以上のW粉末の割合が90.0質量%以上で、残部がCu粉末、Fe粉末及びMo粉末の中から選ばれる1種以上とNi粉末である原料粉末に、原料粉末と固形潤滑剤の合計量中での割合で0.1〜0.5質量%の固形潤滑剤を添加して(但し、有機バインダーは添加しない)機械的に混合した後、成形密度が13g/cm以上となる成形圧で成形し、この成形体を還元性ガス雰囲気中又は不活性ガス雰囲気中で脱脂処理した後、還元性ガス雰囲気中又は不活性ガス雰囲気中で焼結することを特徴とする焼結タングステン基合金の製造方法。 [8] A raw material in which the proportion of W powder having an FSSS average particle size of 7.0 μm or more is 90.0% by mass or more, and the balance is one or more selected from Cu powder, Fe powder and Mo powder and Ni powder After adding 0.1 to 0.5 mass% solid lubricant in the ratio in the total amount of a raw material powder and a solid lubricant to a powder (however, an organic binder is not added), Molding is performed at a molding pressure at which the molding density is 13 g / cm 3 or more, and the compact is degreased in a reducing gas atmosphere or an inert gas atmosphere, and then fired in a reducing gas atmosphere or an inert gas atmosphere. A method for producing a sintered tungsten-based alloy, comprising: bonding.

[9]上記[8]の製造方法において、Cu粉末、Fe粉末及びMo粉末の中から選ばれる1種以上とNi粉末のFSSS平均粒径が20μm以下であり、原料粉末中のNi粉末の割合が0.2〜9.5質量%、Cu粉末、Fe粉末及びMo粉末の中から選ばれる1種以上の合計の割合が0.2〜9.5質量%であることを特徴とする焼結タングステン基合金の製造方法。
[10]上記[8]の製造方法において、原料粉末は、FSSS平均粒径が7.0μm以上のW粉末の割合が96.0質量%以上で、残部がCu粉末、Fe粉末及びMo粉末の中から選ばれる1種以上とNi粉末であることを特徴とする焼結タングステン基合金の製造方法。
[9] In the production method of [8] above, the FSSS average particle size of one or more selected from Cu powder, Fe powder and Mo powder and Ni powder is 20 μm or less, and the ratio of Ni powder in the raw material powder 0.2 to 9.5% by mass, and the total ratio of one or more selected from Cu powder, Fe powder and Mo powder is 0.2 to 9.5% by mass. A method for producing a tungsten-based alloy.
[10] In the production method of [8] above, the raw material powder has a ratio of W powder having an FSSS average particle size of 7.0 μm or more of 96.0% by mass or more, and the balance is Cu powder, Fe powder and Mo powder. A method for producing a sintered tungsten-based alloy, comprising at least one selected from the group consisting of Ni powder and Ni powder.

[11]上記[10]の製造方法において、Cu粉末、Fe粉末及びMo粉末の中から選ばれる1種以上とNi粉末のFSSS平均粒径が20μm以下であり、原料粉末中のNi粉末の割合が0.2〜3.5質量%、Cu粉末、Fe粉末及びMo粉末の中から選ばれる1種以上の合計の割合が0.2〜3.5質量%であることを特徴とする焼結タングステン基合金の製造方法。
[12]上記[8]〜[11]のいずれかの製造方法において、焼結時の線収縮率が11%以下であることを特徴とする焼結タングステン基合金の製造方法。
[13]上記[8]〜[12]のいずれかの製造方法において、成形体を600〜1000℃で脱脂処理した後、1450〜1550℃で焼結することを特徴とする焼結タングステン基合金の製造方法。
[14]上記[8]〜[13]のいずれかの製造方法において、少なくとも一部の部位が0.15mm以上0.50mm未満の肉厚を有する焼結体を得ることを特徴とする焼結タングステン基合金の製造方法。
[11] In the production method of [10], the FSSS average particle size of at least one selected from Cu powder, Fe powder and Mo powder and Ni powder is 20 μm or less, and the ratio of Ni powder in the raw material powder Is characterized in that the total proportion of one or more selected from the group consisting of 0.2 to 3.5 mass%, Cu powder, Fe powder and Mo powder is 0.2 to 3.5 mass% A method for producing a tungsten-based alloy.
[12] The method for producing a sintered tungsten-based alloy according to any one of the above [8] to [11], wherein a linear shrinkage rate during sintering is 11% or less.
[13] A sintered tungsten-based alloy according to any one of the above [8] to [12], wherein the compact is degreased at 600 to 1000 ° C. and then sintered at 1450 to 1550 ° C. Manufacturing method.
[14] In the production method according to any one of [8] to [13], a sintered body is obtained, wherein a sintered body having a thickness of at least a part of 0.15 mm or more and less than 0.50 mm is obtained. A method for producing a tungsten-based alloy.

本発明の焼結タングステン基合金は、延性が高く且つ高精度であるという優れた品質性能を有する。また、特に高W含有量とした場合には、高密度でありながら、延性が高く且つ高精度であるという優れた品質性能を有する。
また、本発明の製造方法によれば、そのような優れた品質性能を有する焼結タングステン基合金を安定して製造することができるとともに、薄物の焼結タングステン基合金も容易に製造することができる。さらに、従来法のような混練、造粒工程が不要であり、しかも脱脂時間も短くて済むため、製造コストを低減できる利点がある。
The sintered tungsten-based alloy of the present invention has excellent quality performance of high ductility and high accuracy. In particular, when the W content is high, it has an excellent quality performance of high density, high ductility and high accuracy.
Further, according to the manufacturing method of the present invention, a sintered tungsten-based alloy having such excellent quality performance can be stably manufactured, and a thin sintered tungsten-based alloy can be easily manufactured. it can. Further, there is an advantage that the manufacturing cost can be reduced because the kneading and granulating steps as in the conventional method are unnecessary and the degreasing time is short.

実施例において製造された発明例と比較例の焼結タングステン基合金の断面SEM画像と、比較例の引張破面のSEM画像Cross-sectional SEM images of sintered tungsten-based alloys of inventive examples and comparative examples manufactured in Examples, and SEM images of tensile fracture surfaces of comparative examples 高密度焼結タングステン基合金を製造するために、粗い粒径(FSSS平均粒径7.0μm以上)のW粉末を主体とする原料粉末に少量の固形潤滑剤のみを添加した(有機バインダーは添加しない)上で、造粒することなく機械的に混合し、この混合粉体を成形した際において、その成形圧と成形体の成形密度との関係を示すグラフIn order to produce a high-density sintered tungsten-based alloy, only a small amount of solid lubricant was added to a raw material powder mainly composed of W powder having a coarse particle size (FSSS average particle size of 7.0 μm or more) (organic binder added) Graph) showing the relationship between the molding pressure and the molding density of the compact when it is mechanically mixed without granulation and this mixed powder is molded. 実施例(本発明例)で製造された焼結体について、一部の部位を撮像したSEM画像SEM image of a part of the sintered body produced in the example (invention example) 図3の焼結体について、図3と同じ部位を平面的に撮像したSEM画像About the sintered body of FIG. 3, the SEM image which imaged the same site | part as FIG. 3 planarly 実施例(本発明例)で製造された他の焼結体を撮像したSEM画像SEM image of another sintered body produced in the example (example of the present invention) 実施例(本発明例)で製造された他の焼結体を撮像したSEM画像SEM image of another sintered body produced in the example (example of the present invention)

本発明の焼結タングステン基合金(以下、単に「焼結体」という場合がある)は、Wを90.0質量%以上含有し、残部がCu、Fe及びMoの中から選ばれる1種以上、Ni及び不可避不純物からなり、炭素含有量を12質量ppm以下、引張伸びを9%以上とする。
Wが90.0質量%未満では、錘等に必要とされる密度を確保できない。また、特に高密度の焼結タングステン基合金とする場合、好ましいW含有量は96.0質量%以上であり、より好ましいW含有量は96.5質量%以上であり、特に好ましいW含有量は97.0質量%以上である。Wが96.0質量%未満では、錘等として必要な18.4g/cm以上の高密度が得られない。
The sintered tungsten-based alloy of the present invention (hereinafter sometimes referred to simply as “sintered body”) contains 90.0% by mass or more of W, and the balance is one or more selected from Cu, Fe and Mo. , Ni and inevitable impurities, the carbon content is 12 mass ppm or less, and the tensile elongation is 9% or more.
If W is less than 90.0% by mass, the density required for the weight or the like cannot be ensured. In addition, when a high-density sintered tungsten-based alloy is used, a preferable W content is 96.0% by mass or more, a more preferable W content is 96.5% by mass or more, and a particularly preferable W content is It is 97.0 mass% or more. When W is less than 96.0% by mass, a high density of 18.4 g / cm 3 or more necessary as a weight or the like cannot be obtained.

Ni、Cu、Fe、Moは、Wと合金化してより低温で液相となって結合相を生成させる成分であるが、本発明ではNiを含有し、さらにCu、Fe及びMoの中から選ばれる1種以上を含有する組成とする。ここで、Niは液相生成のための主要成分であり、Cu,Fe,Moは焼結温度を低くするために液相化温度を調整(低減)する成分である。   Ni, Cu, Fe, and Mo are components that are alloyed with W to form a liquid phase at a lower temperature to form a binder phase. In the present invention, Ni is contained, and further selected from Cu, Fe, and Mo. It is set as the composition containing 1 or more types. Here, Ni is a main component for generating a liquid phase, and Cu, Fe, and Mo are components for adjusting (reducing) the liquid phase temperature in order to lower the sintering temperature.

これら結合相生成成分の含有量は特に限定しないが、Niを0.2〜9.5質量%、Cu、Fe及びMoの中から選ばれる1種以上を合計で0.2〜9.5質量%含有することが好ましい。Ni含有量が0.2質量%未満では、Niを添加することによる上述の効果が十分に得られず、一方、9.5質量%を超えると、所望の密度とするのに必要なW量が確保できなくなる。また、Cu、Fe及びMoの中から選ばれる1種以上についても、その含有量が0.2質量%未満では、それらの1種以上を添加することによる上述の効果が十分に得られず、一方、9.5質量%を超えると、所望の密度とするのに必要なW量が確保できなくなる。ただし、延性を考慮すると、質量比でNi/(Fe+Cu+Mo)を7/1〜3/7とすることが好ましい。   The content of these binder phase generation components is not particularly limited, but Ni is 0.2 to 9.5% by mass, and one or more selected from Cu, Fe and Mo is 0.2 to 9.5% in total. % Content is preferable. If the Ni content is less than 0.2% by mass, the above-mentioned effects due to the addition of Ni cannot be sufficiently obtained. Cannot be secured. Moreover, also about 1 or more types chosen from Cu, Fe and Mo, if the content is less than 0.2% by mass, the above-described effects by adding one or more of them cannot be sufficiently obtained, On the other hand, if it exceeds 9.5% by mass, the amount of W necessary to obtain a desired density cannot be secured. However, considering ductility, it is preferable that Ni / (Fe + Cu + Mo) is 7/1 to 3/7 in terms of mass ratio.

また、特に高密度の焼結タングステン基合金とするために、Wを96.0質量%以上含有する場合には、Niを0.2〜3.5質量%、Cu、Fe及びMoの中から選ばれる1種以上を合計で0.2〜3.5質量%含有することが好ましく、また、Wを96.5質量%以上含有する場合には、Niを0.2〜3.0質量%、Cu、Fe及びMoの中から選ばれる1種以上を合計で0.2〜3.0質量%含有することが好ましく、また、Wを97.0質量%以上含有する場合には、Niを0.2〜2.5質量%、Cu、Fe及びMoの中から選ばれる1種以上を合計で0.2〜2.5質量%含有することが好ましい。これらの理由も上記と同様である。   Further, in order to obtain a particularly high-density sintered tungsten-based alloy, when W is contained in an amount of 96.0% by mass or more, Ni is 0.2 to 3.5% by mass, Cu, Fe, and Mo. It is preferable to contain at least one selected from 0.2 to 3.5% by mass, and when W is contained at 96.5% by mass or more, Ni is from 0.2 to 3.0% by mass. , Cu, Fe and Mo are preferably contained in a total of 0.2 to 3.0% by mass, and when W is contained in an amount of 97.0% by mass or more, Ni is added. It is preferable to contain 0.2 to 2.5 mass% in total of at least one selected from 0.2 to 2.5 mass%, Cu, Fe and Mo. These reasons are the same as above.

不可避不純物である炭素は、W粒の周辺に偏析して焼結体の延性を低下させるため、焼結体の炭素含有量を12質量ppm以下とする。すなわち、炭素含有量が12質量ppmを超えると焼結体の延性が低下する。また、延性をより高めるには、炭素量は8質量ppm以下が好ましく、5質量ppm未満が特に好ましい。例えば、Wが96.0〜97.0質量%の場合、炭素量を5質量ppm未満とすると、引張伸びを15%以上とすることができる。   Carbon, which is an inevitable impurity, segregates around the W grains and lowers the ductility of the sintered body, so the carbon content of the sintered body is set to 12 mass ppm or less. That is, when the carbon content exceeds 12 mass ppm, the ductility of the sintered body is lowered. In order to further improve the ductility, the carbon content is preferably 8 ppm by mass or less, particularly preferably less than 5 ppm by mass. For example, when W is 96.0 to 97.0% by mass, the tensile elongation can be 15% or more when the carbon content is less than 5 ppm by mass.

有機バインダーを使用する従来法では脱脂に長時間を要するが、有機バインダーは分解しにくい性質であることから完全に除去することは難しい。このため従来法で製造される焼結体では、有機バインダーの一部が脱脂処理で分解除去されることなく不純物(炭素)として比較的高い濃度で焼結体に残留していたものである。本発明の焼結体は、そのような有機バインダー由来の不純物(炭素)が残留しないようにするため、有機バインダーを使用せず、その代わりに一般の鉄系粉末冶金の製造に使用されている固体潤滑剤を少量使用するだけで製造される。固体潤滑剤は脱脂処理で分解しやすく(脱脂時間も短時間で済む)、しかも少量添加であるため、炭素の残留を最小限に抑えることができる。したがって、本発明の焼結体に微量に含まれる炭素は、主に原料粉末と固体潤滑剤に由来するものである。例えば、W粉末には数ppm程度の炭素が含まれ、また、副原料として使用されることがあるカーボニルNiやカーボニル鉄には、数百ppm程度の炭素が含まれている。
以上のように本発明では、粉末成形焼結法において有機バインダーを使用せず、その代わりに少量の固体潤滑剤を使用し、且つ成形体に対して所定の脱脂処理を行うことにより、焼結体の炭素量を12質量ppm以下(好ましくは8質量ppm以下、さらに好ましくは5質量ppm未満)とすることができる。
In the conventional method using an organic binder, it takes a long time to degrease, but it is difficult to completely remove the organic binder because it is difficult to decompose. For this reason, in the sintered body manufactured by the conventional method, a part of the organic binder remains in the sintered body at a relatively high concentration as impurities (carbon) without being decomposed and removed by the degreasing treatment. The sintered body of the present invention does not use an organic binder so that impurities (carbon) derived from such an organic binder do not remain, and is used instead for the production of general iron-based powder metallurgy. Manufactured with only a small amount of solid lubricant. The solid lubricant is easily decomposed by the degreasing process (the degreasing time is short), and since it is added in a small amount, the carbon residue can be minimized. Accordingly, the carbon contained in a trace amount in the sintered body of the present invention is mainly derived from the raw material powder and the solid lubricant. For example, W powder contains about several ppm of carbon, and carbonyl Ni and carbonyl iron, which are sometimes used as auxiliary materials, contain about several hundred ppm of carbon.
As described above, in the present invention, an organic binder is not used in the powder molding sintering method. Instead, a small amount of a solid lubricant is used, and a predetermined degreasing treatment is performed on the molded body, thereby sintering. The carbon content of the body can be 12 mass ppm or less (preferably 8 mass ppm or less, more preferably less than 5 mass ppm).

本発明の焼結体は、引張伸びが9%以上の延性を有する。引張伸びが低いと延性不足でサイジングで割れが生じやすくなる。引張伸びが9%以上であれば、様々な形状の部品のサイジングが可能となる。また、この観点からより好ましい引張伸びは15%以上である。
本発明の焼結タングステン基合金は、密度を高めるために、焼結体の断面組織での空孔の面積率が1%未満であることが好ましい。この空孔の面積率は、次のようにして求める。すなわち、焼結体の任意の断面組織を撮像した10個の400倍SEM画像をImage-Proによる画像解析により二値化処理して、視野に含まれる空孔の面積率を求め、10個のSEM画像の平均値を空孔の面積率とする。
The sintered body of the present invention has a ductility with a tensile elongation of 9% or more. If the tensile elongation is low, cracking is likely to occur due to sizing due to insufficient ductility. If the tensile elongation is 9% or more, it is possible to size parts having various shapes. Further, from this viewpoint, more preferable tensile elongation is 15% or more.
In the sintered tungsten-based alloy of the present invention, the area ratio of pores in the cross-sectional structure of the sintered body is preferably less than 1% in order to increase the density. The area ratio of the holes is obtained as follows. That is, ten 400-times SEM images obtained by imaging an arbitrary cross-sectional structure of the sintered body are binarized by image analysis using Image-Pro to obtain the area ratio of holes included in the field of view. The average value of the SEM images is defined as the area ratio of the holes.

図1は、後述する実施例において製造された発明例(実施例No.3)と比較例(実施例No.10)の焼結体の断面SEM画像(左側、右上側のSEM画像)と、同じ比較例(実施例No.10)の引張破面のSEM画像(右下側のSEM画像)である。なお、この引張破面のSEM画像は、空孔形成部分以外の部分の引張破面を撮像したものである。
比較例(実施例No.10)の焼結体は、炭素含有量が高いため顕著な空孔を生じており、延性も劣っている。また、引張破面で伸びの悪い比較例の試料では、合金部(旧液相部)にディンプル(微小凹み)が観察されず、W粒子表面にCが観察されており、このCの残留が延性の低下に大きく影響しているものと考えられる。
FIG. 1 is a cross-sectional SEM image (left and upper right SEM images) of sintered bodies of invention examples (Example No. 3) and comparative examples (Example No. 10) manufactured in Examples described later, It is a SEM image (SEM image of the lower right side) of the tensile fracture surface of the same comparative example (Example No. 10). The SEM image of the tensile fracture surface is an image of the tensile fracture surface of a portion other than the hole forming portion.
Since the sintered body of the comparative example (Example No. 10) has a high carbon content, it produces remarkable voids and is inferior in ductility. Further, in the sample of the comparative example having a poor elongation due to the tensile fracture surface, no dimples (micro-dents) are observed in the alloy part (old liquid phase part), and C is observed on the surface of the W particles. This is thought to have a significant effect on the reduction in ductility.

また、本発明の焼結タングステン基合金を錘などのような特に高密度が要求される用途に適用する場合には、上述したようにW含有量を96.0質量%以上(より好ましくは96.5質量%以上、特に好ましくは97.0質量%以上)とし、密度(焼結体密度)を18.4g/cm以上とすることが好ましい。密度(焼結体密度)が18.4g/cm未満では、特に自動巻き時計の回転重錘などのような重錘には適さない。また、高密度焼結タングステン基合金として、特に好ましい密度(焼結体密度)は18.6g/cm以上である。 In addition, when the sintered tungsten-based alloy of the present invention is applied to an application requiring a particularly high density such as a weight, the W content is 96.0% by mass or more (more preferably 96% as described above). 0.5 mass% or more, particularly preferably 97.0 mass% or more), and the density (sintered body density) is preferably 18.4 g / cm 3 or more. If the density (sintered body density) is less than 18.4 g / cm 3, it is not particularly suitable for a weight such as a rotating weight of an automatic watch. Further, a particularly preferable density (sintered body density) as the high-density sintered tungsten-based alloy is 18.6 g / cm 3 or more.

次に、本発明の焼結タングステン基合金の製造方法について説明する。
この製造方法は、(i)粒径の粗いW粉末を用いる、(ii)このW粉末とNi粉末などの副原料からなる原料粉末に、有機バインダーを添加せず、少量の固形潤滑剤のみを添加した上で、造粒することなく機械的に混合する、(iii)この混合粉体を比較的高い成形圧で所定の成形密度の成形体に成形し、この成形体を脱脂した後、焼結する、ことを特徴とする。ここで、上記(ii)、(iii)の基本は、バインダー造粒法(有機バインダーを添加して混合造粒する方法)を経ない粉末成形焼結法を行うということである。
Next, the manufacturing method of the sintered tungsten base alloy of this invention is demonstrated.
In this manufacturing method, (i) a coarse W powder is used, (ii) an organic binder is not added to the raw material powder composed of auxiliary materials such as this W powder and Ni powder, and only a small amount of solid lubricant is added. (Iii) The mixed powder is molded into a molded body having a predetermined molding density with a relatively high molding pressure, degreased, and then sintered. It is characterized by that. Here, the basis of the above (ii) and (iii) is to perform a powder molding sintering method that does not go through a binder granulation method (a method of adding and granulating an organic binder).

本発明の製造方法では、FSSS平均粒径(フィッシャー法による平均粒径)が7.0μm以上のW粉末の割合が90.0質量%以上で、残部がCu粉末、Fe粉末及びMo粉末の中から選ばれる1種以上とNi粉末である原料粉末に、原料粉末と固形潤滑剤の合計量中での割合で0.1〜0.5質量%の固形潤滑剤を添加して(但し、有機バインダーは添加しない)機械的に混合した後、成形密度が13g/cm以上となる成形圧で成形し、この成形体を還元性ガス雰囲気中又は不活性ガス雰囲気中で脱脂処理した後、還元性ガス雰囲気中又は不活性ガス雰囲気中で焼結し、焼結体を得る。 In the production method of the present invention, the proportion of W powder having an FSSS average particle size (Fischer method average particle size) of 7.0 μm or more is 90.0% by mass or more, and the balance is Cu powder, Fe powder and Mo powder. 0.1 to 0.5% by mass of a solid lubricant is added to the raw material powder that is one or more selected from the above and Ni powder in the total amount of the raw material powder and the solid lubricant (however, organic (Binder is not added) After mechanically mixing, molding is performed at a molding pressure at which the molding density is 13 g / cm 3 or more, and the compact is degreased in a reducing gas atmosphere or an inert gas atmosphere, and then reduced. Sintering is performed in an inert gas atmosphere or an inert gas atmosphere to obtain a sintered body.

原料粉末は、W粉末の割合が90.0質量%以上で、残部がCu粉末、Fe粉末及びMo粉末の中から選ばれる1種以上とNi粉末からなり、また、原料粉末中のNi粉末の割合は0.2〜9.5質量%、Cu粉末、Fe粉末及びMo粉末の中から選ばれる1種以上の合計の割合は0.2〜9.5質量%であることが好ましい。これらの理由はさきに述べた通りである。   The raw material powder has a W powder ratio of 90.0% by mass or more, and the balance consists of one or more selected from Cu powder, Fe powder and Mo powder and Ni powder. The proportion is preferably 0.2 to 9.5 mass%, and the total proportion of one or more selected from Cu powder, Fe powder and Mo powder is preferably 0.2 to 9.5 mass%. These reasons are as described above.

また、高密度の焼結体を得るという観点からは、W粉末の割合は96.0質量%以上が好ましく、96.5質量%以上がより好ましく、97.0質量%以上が特に好ましい。また、W粉末の割合を96.0質量%以上とする場合には、Ni粉末の割合を0.2〜3.5質量%、Cu粉末、Fe粉末及びMo粉末の中から選ばれる1種以上の合計の割合を0.2〜3.5質量%とすることが好ましい。また、W粉末の割合を96.5質量%以上とする場合には、Ni粉末の割合を0.2〜3.0質量%、Cu粉末、Fe粉末及びMo粉末の中から選ばれる1種以上の合計の割合を0.2〜3.0質量%とすることが好ましい。また、W粉末の割合を97.0質量%以上とする場合には、Ni粉末の割合を0.2〜2.5質量%、Cu粉末、Fe粉末及びMo粉末の中から選ばれる1種以上の合計の割合を0.2〜2.5質量%とすることが好ましい。これらの理由も上記と同様である。   Further, from the viewpoint of obtaining a high-density sintered body, the proportion of the W powder is preferably 96.0% by mass or more, more preferably 96.5% by mass or more, and particularly preferably 97.0% by mass or more. When the proportion of the W powder is 96.0% by mass or more, the proportion of the Ni powder is 0.2 to 3.5% by mass, one or more selected from Cu powder, Fe powder and Mo powder. The total ratio of is preferably 0.2 to 3.5% by mass. When the proportion of W powder is 96.5% by mass or more, the proportion of Ni powder is 0.2 to 3.0% by mass, one or more selected from Cu powder, Fe powder and Mo powder. It is preferable to make the ratio of the total of 0.2-3.0 mass%. When the proportion of the W powder is 97.0% by mass or more, the proportion of the Ni powder is 0.2 to 2.5% by mass, one or more selected from Cu powder, Fe powder and Mo powder. The total ratio of is preferably 0.2 to 2.5% by mass. These reasons are the same as above.

W粉末のFSSS平均粒径は7.0μm以上とする。W粉末のFSSS平均粒径が7.0μm未満では、バインダー造粒法を経ない粉末成形焼結法において、金型に粉末を充填する際の流動性を確保できず、連続した成形ができない。
表1は、FSSS平均粒径が異なるW粉末の流動性を示している。この流動性の測定は、JIS Z2502(2012)金属粉−流動測定法に準拠したが、漏斗径はφ5mmを使用し、かつ棚釣りを起こしやすい粉末であることから、バイブレーターにより若干の上下振動を与えながら測定した。
The FSSS average particle diameter of W powder shall be 7.0 micrometers or more. When the FSSS average particle size of the W powder is less than 7.0 μm, in the powder molding and sintering method that does not pass through the binder granulation method, the fluidity when filling the powder into the mold cannot be secured, and continuous molding cannot be performed.
Table 1 shows the fluidity of W powders with different FSSS average particle sizes. This fluidity measurement was in accordance with JIS Z2502 (2012) metal powder-flow measurement method, but the diameter of the funnel was 5mm, and it was a powder that would easily cause shelf fishing. Measured while giving.

表1によれば、W粉末のFSSS平均粒径が7.0μm以上であれば、流動度6sec/50g以下であり、バインダー造粒法を経ない粉末成形焼結法でも、必要な流動性及び成形性を確保することできる。また、この流動性及び成形性の観点から、より好ましいW粉末のFSSS平均粒径は8.0μm以上であり、さらに好ましくは8.5μm以上である。なお、W粉末の粒径が大きすぎると焼結密度を高めにくくなるので、W粉末のFSSS平均粒径は20μm程度を上限とすることが好ましい。   According to Table 1, if the FSSS average particle diameter of W powder is 7.0 μm or more, the fluidity is 6 sec / 50 g or less, and the required fluidity and Formability can be ensured. Further, from the viewpoint of fluidity and moldability, the FSSS average particle size of the W powder is more preferably 8.0 μm or more, and even more preferably 8.5 μm or more. In addition, since it will become difficult to raise a sintered density if the particle size of W powder is too large, it is preferable that the FSSS average particle diameter of W powder sets about 20 micrometers as an upper limit.

また、Cu粉末、Fe粉末及びMo粉末の中から選ばれる1種以上とNi粉末のFSSS平均粒径は20μm以下が好ましく、10μm以下が特に好ましい。これら副原料のFSSS平均粒径が20μmを超えると焼結組織が不均一になりやすい。また、これら副原料のFSSS平均粒径の下限は特にないが、通常、1μm程度が下限となる。これら副原料の粒径については、従来法で使用されるものと基本的に変わらない。   Further, the FSSS average particle size of at least one selected from Cu powder, Fe powder and Mo powder and Ni powder is preferably 20 μm or less, and particularly preferably 10 μm or less. If the FSSS average particle size of these auxiliary materials exceeds 20 μm, the sintered structure tends to be non-uniform. In addition, there is no particular lower limit on the FSSS average particle size of these auxiliary materials, but usually about 1 μm is the lower limit. The particle size of these auxiliary materials is basically the same as that used in the conventional method.

原料粉末に固形潤滑剤を添加して機械的に混合(例えば、Vブレンダーによる混合)した後、この混合粉末を金型を用いて所定の成形圧で成形し、成形密度が13g/cm以上の成形体とする。
固形潤滑剤としては、鉄系粉末冶金に一般的に使用されるものを用いることができる。例えば、ステアリン酸亜鉛などの金属石鹸、エチレンビスステアリン酸アミド、ケノルーブ、アクラワックスなどが挙げられ、これらの1種以上を用いることができる。
固形潤滑剤も添加量が多すぎると、脱脂処理後に未分解の炭素が残留しやすいので、固形潤滑剤の添加量は、原料粉末と固形潤滑剤の合計量中での割合で0.1〜0.5質量%とする。この添加量であれば、必要な型潤滑性が得られる一方で、高い成形密度でも脱脂処理時に分解ガスが容易に成形体外に排出され、炭素の残留が抑えられる。
After adding a solid lubricant to the raw material powder and mechanically mixing (for example, mixing with a V blender), this mixed powder is molded at a predetermined molding pressure using a mold, and the molding density is 13 g / cm 3 or more. A molded body of
As the solid lubricant, those generally used in iron-based powder metallurgy can be used. For example, metal soaps such as zinc stearate, ethylene bis-stearic acid amide, kenolube, and accra wax can be used, and one or more of these can be used.
If the solid lubricant is added too much, undecomposed carbon is likely to remain after the degreasing treatment, so the amount of solid lubricant added is 0.1 to 0.1 in terms of the total amount of raw material powder and solid lubricant. 0.5% by mass. With this added amount, the necessary mold lubricity can be obtained, while cracking gas can be easily discharged out of the molded body during degreasing even at a high molding density, and carbon residue can be suppressed.

また、本発明では有機バインダーを使用しないため、成形体の成形密度が13g/cm未満では成形体の強度が小さく、ハンドリングができない。また、焼結時の収縮率が大きくなり、高精密の焼結体が得られない。なお、金型の強度や寿命の面から17g/cm程度が成形密度の実質的な上限となる。
成形体の成形密度を13g/cm以上とするためには、成形圧を4.0t/cm以上とすることが好ましい。図2は、高密度焼結タングステン基合金を製造するために、粗い粒径(FSSS平均粒径7.0μm以上)のW粉末を主体とする原料粉末に少量の固形潤滑剤のみを添加した(有機バインダーは添加しない)上で、造粒することなく機械的に混合し、この混合粉体を成形した際において、その成形圧と成形体の成形密度との関係を調べた結果を示している。この試験では、FSSS平均粒径が10〜12μmのW粉末と副原料(Ni,Fe)からなる原料粉末に0.3〜0.5質量%(外掛け量)の固形潤滑剤(ステアリング酸亜鉛)を添加した。図2によれば、成形圧を4.0t/cm以上とすれば、概ね成形体の成形密度を13g/cm以上にできることが判る。
Moreover, since an organic binder is not used in the present invention, if the molding density of the compact is less than 13 g / cm 3 , the strength of the compact is small and handling is not possible. In addition, the shrinkage rate during sintering increases, and a highly precise sintered body cannot be obtained. From the standpoint of mold strength and life, about 17 g / cm 3 is the substantial upper limit of the molding density.
In order to set the molding density of the molded body to 13 g / cm 3 or more, it is preferable to set the molding pressure to 4.0 t / cm 2 or more. FIG. 2 shows that in order to produce a high-density sintered tungsten-based alloy, only a small amount of a solid lubricant was added to a raw material powder mainly composed of W powder having a coarse particle size (FSSS average particle size of 7.0 μm or more) ( This shows the result of investigating the relationship between the molding pressure and the molding density when this mixed powder was molded by mechanical mixing without granulation. . In this test, 0.3 to 0.5% by mass (outer coating amount) of a solid lubricant (zinc steering acid) was added to a raw material powder composed of W powder having an FSSS average particle size of 10 to 12 μm and auxiliary raw materials (Ni, Fe). ) Was added. According to FIG. 2, it can be seen that if the molding pressure is 4.0 t / cm 2 or more, the molding density of the molded body can be generally 13 g / cm 3 or more.

成形体の脱脂処理は、還元性ガス雰囲気中又は不活性ガス雰囲気中で行われるが、特に水素雰囲気又は水素−窒素雰囲気中において600〜1000℃で行うことが好ましい。また、成形体の焼結は、還元性ガス雰囲気中又は不活性ガス雰囲気中で行われるが、特に水素雰囲気中において1450〜1550℃で行うことが好ましい。
本発明の製造方法では、有機バインダーを使用せず、その代わりに脱脂で分解しやすい固体潤滑剤を使用し、しかも少量添加であるため、脱脂処理後の炭素の残留を最小限に抑えることができる。また、脱脂時間についても、有機バインダーを使用する従来法(プレス成形法)では5〜6時間を要するのに対して、本発明法ではごく短時間(30分〜1時間程度)で済む利点がある。
The degreasing treatment of the molded body is performed in a reducing gas atmosphere or an inert gas atmosphere, and it is particularly preferable to perform the degreasing treatment at 600 to 1000 ° C. in a hydrogen atmosphere or a hydrogen-nitrogen atmosphere. Moreover, although sintering of a molded object is performed in a reducing gas atmosphere or an inert gas atmosphere, it is preferable to carry out at 1450-1550 degreeC especially in a hydrogen atmosphere.
In the production method of the present invention, an organic binder is not used, instead a solid lubricant that is easily decomposed by degreasing is used, and a small amount is added, so that carbon residue after degreasing can be minimized. it can. In addition, the degreasing time is 5 to 6 hours in the conventional method using an organic binder (press molding method), whereas the method of the present invention has an advantage that only a very short time (about 30 minutes to 1 hour) is required. is there.

本発明の製造方法では、成形体の成形密度が13g/cm以上であるため、焼結時の線収縮率を小さくすることができ、高精度の焼結体を製造できるが、特に焼結時の線収縮率が11%以下であることが好ましい。成形焼結時の線収縮率が11%以下であれば、例えば、自動巻き時計の回転重錘のようなリング状の製品でも大きな歪みが生じることなく製造が可能となる。高精度の点においては、線収縮率は小さいほど好ましいことから、なるべく成形密度は高いほうが好ましいが、それに比例して成形圧を高くする必要があり、形状によっては高い成形圧が金型の寿命に影響を与える可能性もある。一般的には、成形圧を7t/cm以上とし、線収縮率を9%以下とすることがより好ましい。 In the manufacturing method of the present invention, since the molding density of the molded body is 13 g / cm 3 or more, the linear shrinkage rate during sintering can be reduced, and a highly accurate sintered body can be manufactured. It is preferable that the linear shrinkage rate is 11% or less. If the linear shrinkage rate during molding and sintering is 11% or less, for example, even a ring-shaped product such as a rotating weight of an automatic timepiece can be manufactured without causing large distortion. In terms of high accuracy, the smaller the linear shrinkage rate, the better. Therefore, it is preferable that the molding density be as high as possible. May also affect In general, it is more preferable that the molding pressure is 7 t / cm 3 or more and the linear shrinkage rate is 9% or less.

得られた焼結体には、形状によって精度向上のため冷間矯正(サイジング)を施してもよい。なお、本発明で得られる焼結体は延性が高いため、延性改善のための熱処理を行う必要はない。
従来法は、W粉末と副原料に有機バインダーを添加して混練し、MIM(混合工程設備が必要で且つ脱脂時間が長くコスト高である)で製造するか、流動性や成形性を確保するためスプレードライヤーなどで造粒した後、プレス成形する。そして、有機バインダーを使用しているため、脱脂時間を十分にとる必要がある。これに対して本発明の製造方法では、従来法のような混練、造粒工程が不要であり、しかも脱脂時間も短くて済むため、製造コストが低減できる利点がある。
The obtained sintered body may be subjected to cold correction (sizing) for improving accuracy depending on the shape. In addition, since the sintered compact obtained by this invention has high ductility, it is not necessary to perform the heat processing for ductility improvement.
In the conventional method, an organic binder is added to the W powder and the auxiliary material and kneaded, and manufactured by MIM (mixing process equipment is required and the degreasing time is long and expensive), or fluidity and moldability are ensured. Therefore, it is granulated with a spray dryer and then press molded. And since the organic binder is used, it is necessary to take sufficient degreasing time. On the other hand, the production method of the present invention does not require kneading and granulation steps as in the conventional method, and has a merit that the production cost can be reduced because the degreasing time can be shortened.

また、本発明の製造方法は、上述した(i)〜(iii)の特徴を有する粉末成形焼結法であり、原料粉末を造粒しないため薄肉化が可能であるとともに、薄物であってもハンドリング可能な成形体に成形でき、しかも液相焼結時の収縮率も小さくできるので、少なくとも一部の部位の肉厚(厚み)が0.50mm未満であるような焼結体も容易に製造することができる。ここで、0.50mm未満の肉厚とは、図5、図6に示すように焼結体全体の肉厚(厚み)が0.50mm未満である場合の他に、例えば、図3及び図4に示すように焼結体の一部の部位の肉厚(厚み)が0.50mm未満である場合を含む。本発明では、肉厚(厚み)0.15mm程度までは製造が可能である。   Further, the production method of the present invention is a powder molding sintering method having the above-mentioned features (i) to (iii), and since the raw material powder is not granulated, it can be thinned, Since it can be formed into a handleable molded body and the shrinkage rate during liquid phase sintering can be reduced, it is easy to manufacture a sintered body with a thickness (thickness) of at least a part of less than 0.50 mm. can do. Here, the thickness of less than 0.50 mm means that the thickness (thickness) of the entire sintered body is less than 0.50 mm as shown in FIGS. 5 and 6, for example, FIG. 3 and FIG. 4 includes a case where the thickness (thickness) of a part of the sintered body is less than 0.50 mm. In the present invention, manufacturing is possible up to a thickness (thickness) of about 0.15 mm.

高精度で高い延性を有する本発明の焼結タングステン基合金は種々の用途に適用でき、特に高密度のものは、例えば、自動巻き時計の回転重錘、放射線遮蔽材、携帯電話の振動呼び出し振動モータの振動子、その他精密機器の錘、ゲーム機の振動発生装置用錘、ゴルフなどのレジャー用錘などのような用途に好適である。   The sintered tungsten-based alloy of the present invention having high accuracy and high ductility can be applied to various applications, and particularly high-density ones such as a rotating weight of a self-winding watch, a radiation shielding material, and a vibration ringing vibration of a mobile phone. It is suitable for applications such as motor vibrators, weights of other precision devices, weights for vibration generators of game machines, and weights for leisure such as golf.

本発明例と比較例の製造条件(使用した原料粉末の粒径及び配合量、固形潤滑剤の種類及び添加量、粉末成形焼結条件)を表2〜表5に示す。
原料粉末(W粉末+Ni粉末などの結合相形成成分)に固形潤滑剤を添加してVブレンダーで機械的に混合した後、成形して所定の成形密度の成形体を得た。この成形体を水素雰囲気中で脱脂処理(600℃×30分間保持した後、1000℃×30分間保持)した後、水素雰囲気中で焼結(1500℃×2時間保持)して焼結体を得た。
Tables 2 to 5 show the production conditions of the inventive examples and comparative examples (particle size and blending amount of raw material powder used, type and addition amount of solid lubricant, powder molding sintering conditions).
A solid lubricant was added to the raw material powder (a binder phase forming component such as W powder + Ni powder) and mechanically mixed with a V blender, and then molded to obtain a molded body having a predetermined molding density. The molded body was degreased in a hydrogen atmosphere (held at 600 ° C. for 30 minutes and then held at 1000 ° C. for 30 minutes), and then sintered in a hydrogen atmosphere (held at 1500 ° C. for 2 hours) to obtain a sintered body. Obtained.

成形体の成形密度、焼結時の線収縮率、焼結体の密度、焼結体の断面SEM画像での空孔の面積率、焼結体の炭素含有量、焼結体の引張伸びを、次のように算出又は測定した。それらの結果を表2〜表5に示す。
成形体の成形密度と焼結体の密度はアルキメデス法で測定した。焼結時の線収縮率は、成形密度と焼結密度の比を線収縮率に換算して求めた。焼結体の断面SEM画像での空孔の面積率は、さきに述べた方法で測定した。焼結体の炭素量は、燃焼−赤外吸収法で測定した。焼結体の引張伸びは、JIS Z2550(2000)機械構造部品用焼結材料に記載の圧粉体作製用押型を使用して試料を作製し、引張速度0.5mm/minにて標点間距離の変化を求めた。
The compact density of the compact, the linear shrinkage ratio during sintering, the density of the sintered compact, the area ratio of pores in the cross-sectional SEM image of the sintered compact, the carbon content of the sintered compact, and the tensile elongation of the sintered compact The calculation or measurement was performed as follows. The results are shown in Tables 2-5.
The molding density of the molded body and the density of the sintered body were measured by Archimedes method. The linear shrinkage rate at the time of sintering was obtained by converting the ratio between the molding density and the sintered density into the linear shrinkage rate. The area ratio of pores in the cross-sectional SEM image of the sintered body was measured by the method described above. The carbon content of the sintered body was measured by a combustion-infrared absorption method. The tensile elongation of the sintered body was measured using a green compact manufacturing die described in JIS Z2550 (2000) Sintered material for machine structural parts, and between the gauge points at a tensile speed of 0.5 mm / min. The change in distance was determined.

表2〜表5の実施例のうちのNo.20(本発明例)と同じ製造条件でリング状でその一部に貫通穴のある電子部品錘となる焼結体を製造した。したがって、この焼結体の組成・物性・性状はNo.20(本発明例)と同等である。図3、図4は、この焼結体の一部の部位を撮像したSEM画像である。画像に写っている貫通穴は成形体として形成されたものであり、その孔が形成された部位の肉厚は0.175mmである。したがって、本発明法により、一部の部位が0.175mmの肉厚を有する焼結体が得られたことになる。   The sintered compact used as the electronic component weight which has a ring shape and the through-hole in the one part was manufactured on the same manufacturing conditions as No. 20 (invention example) of the Example of Table 2-Table 5. FIG. Therefore, the composition, physical properties and properties of this sintered body are the same as No. 20 (example of the present invention). 3 and 4 are SEM images obtained by imaging a part of the sintered body. The through-hole shown in the image is formed as a molded body, and the thickness of the portion where the hole is formed is 0.175 mm. Therefore, according to the method of the present invention, a sintered body having a thickness of 0.175 mm at a part of the part is obtained.

表2〜表5の実施例のうちのNo.24(本発明例)と同じ製造条件で円盤状の電子部品錘となる焼結体を製造した。したがって、この焼結体の組成・物性・性状はNo.24(本発明例)と同等である。図5は、その焼結体を撮像したSEM画像であり、直径1.8mmφ、厚さ0.3mmの円盤状の焼結体である。したがって、本発明法により、全体の厚さが0.3mmの焼結体が得られたことになる。   The sintered compact used as the disk-shaped electronic component weight was manufactured on the same manufacturing conditions as No. 24 (invention example) of the Examples in Tables 2 to 5. Therefore, the composition, physical properties, and properties of this sintered body are the same as No. 24 (example of the present invention). FIG. 5 is an SEM image obtained by imaging the sintered body, which is a disk-shaped sintered body having a diameter of 1.8 mmφ and a thickness of 0.3 mm. Therefore, a sintered body having an overall thickness of 0.3 mm was obtained by the method of the present invention.

表2〜表5の実施例のうちのNo.23(本発明例)と同じ製造条件で円盤状の電子部品錘となる焼結体を製造した。したがって、この焼結体の組成・物性・性状はNo.23(本発明例)と同等である。図6は、その焼結体を撮像したSEM画像であり、直径1.8mmφ、厚さ0.4mmの円盤状の焼結体である。したがって、本発明法により、全体の厚さが0.4mmの焼結体が得られたことになる。   The sintered compact used as the disk-shaped electronic component weight was manufactured on the same manufacturing conditions as No. 23 (example of this invention) of the Example of Table 2-Table 5. FIG. Therefore, the composition, physical properties, and properties of this sintered body are the same as No. 23 (example of the present invention). FIG. 6 is an SEM image obtained by imaging the sintered body, which is a disk-shaped sintered body having a diameter of 1.8 mmφ and a thickness of 0.4 mm. Therefore, a sintered body having a total thickness of 0.4 mm is obtained by the method of the present invention.

Claims (6)

FSSS平均粒径が7.0μm以上20μm以下のW粉末の割合が90.0質量%以上で、残部がCu粉末、Fe粉末及びMo粉末の中から選ばれる1種以上とNi粉末であり、Ni粉末の割合が0.2〜9.5質量%、Cu粉末、Fe粉末及びMo粉末の中から選ばれる1種以上の合計の割合が0.2〜9.5質量%である原料粉末に、原料粉末と固形潤滑剤の合計量中での割合で0.1〜0.5質量%の固形潤滑剤を添加して(但し、有機バインダーは添加しない)機械的に混合した後、成形密度が13g/cm以上となる成形圧で成形し、この成形体を還元性ガス雰囲気中又は不活性ガス雰囲気中で脱脂処理した後、還元性ガス雰囲気中又は不活性ガス雰囲気中で焼結することを特徴とする焼結タングステン基合金の製造方法。 The proportion of W powder having an FSSS average particle size of 7.0 μm or more and 20 μm or less is 90.0% by mass or more, and the balance is one or more selected from Cu powder, Fe powder and Mo powder and Ni powder , Ni In the raw material powder, the proportion of the powder is 0.2 to 9.5 mass%, the total proportion of one or more selected from Cu powder, Fe powder and Mo powder is 0.2 to 9.5 mass% , After adding 0.1 to 0.5% by mass of solid lubricant in the ratio of the total amount of the raw material powder and the solid lubricant (but not adding an organic binder), the molding density is Molding at a molding pressure of 13 g / cm 3 or more, degreasing the molded body in a reducing gas atmosphere or an inert gas atmosphere, and then sintering in a reducing gas atmosphere or an inert gas atmosphere A method for producing a sintered tungsten-based alloy. 原料粉末は、FSSS平均粒径が7.0μm以上20μm以下のW粉末の割合が96.0質量%以上で、残部がCu粉末、Fe粉末及びMo粉末の中から選ばれる1種以上とNi粉末であり、Ni粉末の割合が0.2〜3.5質量%、Cu粉末、Fe粉末及びMo粉末の中から選ばれる1種以上の合計の割合が0.2〜3.5質量%であることを特徴とする請求項に記載の焼結タングステン基合金の製造方法。 The raw material powder has a ratio of W powder having an FSSS average particle size of 7.0 μm or more and 20 μm or less of 96.0% by mass or more, and the balance is one or more selected from Cu powder, Fe powder and Mo powder, and Ni powder The proportion of Ni powder is 0.2 to 3.5 mass%, and the total proportion of one or more selected from Cu powder, Fe powder and Mo powder is 0.2 to 3.5 mass% The method for producing a sintered tungsten-based alloy according to claim 1 . Cu粉末、Fe粉末及びMo粉末の中から選ばれる1種以上とNi粉末のFSSS平均粒径が20μm以下であることを特徴とする請求項1又は2に記載の焼結タングステン基合金の製造方法。 Cu powder, a method of manufacturing a sintered tungsten based alloy according to claim 1 or 2 FSSS average grain size of 1 or more and Ni powder selected from among Fe powder and Mo powder is characterized in that it is 20μm or less . 焼結時の線収縮率が11%以下であることを特徴とする請求項1〜3のいずれかに記載の焼結タングステン基合金の製造方法。 The method for producing a sintered tungsten-based alloy according to any one of claims 1 to 3 , wherein a linear shrinkage rate during sintering is 11% or less. 成形体を600〜1000℃で脱脂処理した後、1450〜1550℃で焼結することを特徴とする請求項1〜4のいずれかに記載の焼結タングステン基合金の製造方法。 The method for producing a sintered tungsten-based alloy according to any one of claims 1 to 4 , wherein the compact is degreased at 600 to 1000 ° C and then sintered at 1450 to 1550 ° C. 少なくとも一部の部位が0.15mm以上0.50mm未満の肉厚を有する焼結体を得ることを特徴とする請求項1〜5のいずれかに記載の焼結タングステン基合金の製造方法。 The method for producing a sintered tungsten-based alloy according to any one of claims 1 to 5 , wherein a sintered body having a thickness of at least a part of 0.15 mm or more and less than 0.50 mm is obtained.
JP2016135455A 2016-07-07 2016-07-07 Sintered tungsten-based alloy and method for producing the same Expired - Fee Related JP6106323B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016135455A JP6106323B1 (en) 2016-07-07 2016-07-07 Sintered tungsten-based alloy and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016135455A JP6106323B1 (en) 2016-07-07 2016-07-07 Sintered tungsten-based alloy and method for producing the same

Publications (2)

Publication Number Publication Date
JP6106323B1 true JP6106323B1 (en) 2017-03-29
JP2018003135A JP2018003135A (en) 2018-01-11

Family

ID=59366133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016135455A Expired - Fee Related JP6106323B1 (en) 2016-07-07 2016-07-07 Sintered tungsten-based alloy and method for producing the same

Country Status (1)

Country Link
JP (1) JP6106323B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110079691A (en) * 2019-06-14 2019-08-02 安泰天龙钨钼科技有限公司 A kind of low molybdenum content molybdenum-copper and preparation method thereof
CN110079690A (en) * 2019-06-14 2019-08-02 安泰天龙钨钼科技有限公司 A kind of high molybdenum content molybdenum-copper and preparation method thereof
CN110093544A (en) * 2019-05-30 2019-08-06 陕西理工大学 The preparation method of multistage strip crystalline substance tungsten alloy material
CN110885957A (en) * 2019-12-20 2020-03-17 西安华山钨制品有限公司 Process for improving density of tungsten-nickel-copper alloy
CN114653948A (en) * 2022-03-29 2022-06-24 西安华山钨制品有限公司 Preparation method of tungsten alloy beads

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7122795B2 (en) 2018-12-25 2022-08-22 関西ペイント株式会社 Antifouling paint composition
JPWO2020217331A1 (en) * 2019-04-24 2021-12-23 住友電工焼結合金株式会社 Sintered body manufacturing system and manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61213338A (en) * 1985-03-15 1986-09-22 Tech Res & Dev Inst Of Japan Def Agency W-ni-fe sintered alloy
JPH0436436A (en) * 1990-05-31 1992-02-06 Nippon Yakin Kogyo Co Ltd High toughness tungsten sintered alloy
JPH04323307A (en) * 1991-04-23 1992-11-12 Sumitomo Electric Ind Ltd Production of tungsten heavy metal product
JP2004149813A (en) * 2002-10-28 2004-05-27 Nippon Tungsten Co Ltd High density material, and production method therefor
WO2007060907A1 (en) * 2005-11-28 2007-05-31 A.L.M.T.Corp. Tungsten alloy particles, machining process with the same, and process for production thereof
JP2008138863A (en) * 2007-05-15 2008-06-19 Allied Material Corp Vibration control mass body

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61213338A (en) * 1985-03-15 1986-09-22 Tech Res & Dev Inst Of Japan Def Agency W-ni-fe sintered alloy
JPH0436436A (en) * 1990-05-31 1992-02-06 Nippon Yakin Kogyo Co Ltd High toughness tungsten sintered alloy
JPH04323307A (en) * 1991-04-23 1992-11-12 Sumitomo Electric Ind Ltd Production of tungsten heavy metal product
JP2004149813A (en) * 2002-10-28 2004-05-27 Nippon Tungsten Co Ltd High density material, and production method therefor
WO2007060907A1 (en) * 2005-11-28 2007-05-31 A.L.M.T.Corp. Tungsten alloy particles, machining process with the same, and process for production thereof
JP2008138863A (en) * 2007-05-15 2008-06-19 Allied Material Corp Vibration control mass body

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110093544A (en) * 2019-05-30 2019-08-06 陕西理工大学 The preparation method of multistage strip crystalline substance tungsten alloy material
CN110079691A (en) * 2019-06-14 2019-08-02 安泰天龙钨钼科技有限公司 A kind of low molybdenum content molybdenum-copper and preparation method thereof
CN110079690A (en) * 2019-06-14 2019-08-02 安泰天龙钨钼科技有限公司 A kind of high molybdenum content molybdenum-copper and preparation method thereof
CN110079691B (en) * 2019-06-14 2020-11-06 安泰天龙钨钼科技有限公司 Molybdenum-copper alloy with low molybdenum content and preparation method thereof
CN110885957A (en) * 2019-12-20 2020-03-17 西安华山钨制品有限公司 Process for improving density of tungsten-nickel-copper alloy
CN114653948A (en) * 2022-03-29 2022-06-24 西安华山钨制品有限公司 Preparation method of tungsten alloy beads
CN114653948B (en) * 2022-03-29 2024-04-05 西安华山钨制品有限公司 Preparation method of tungsten alloy beads

Also Published As

Publication number Publication date
JP2018003135A (en) 2018-01-11

Similar Documents

Publication Publication Date Title
JP6106323B1 (en) Sintered tungsten-based alloy and method for producing the same
CN104889379B (en) Metal powder for powder metallurgy, composite, granulated powder, and sintered body
CN104942278B (en) Metal powder for powder metallurgy, composite, granulated powder, and sintered body
JP6688287B2 (en) Pre-alloyed iron-based powder, iron-based powder mixture containing pre-alloyed iron-based powder, and method of manufacturing press-formed and sintered parts from the iron-based powder mixture
JP5999285B1 (en) Iron-base alloy powder for powder metallurgy and sintered forged parts
JP6376179B2 (en) Metal powder for powder metallurgy, compound, granulated powder and sintered body
JP6668031B2 (en) Iron-based sintered alloy material for sliding members
US10107376B2 (en) Sintered machine part and method of manufacturing the same
JP4376826B2 (en) Co-Cr alloy pellet and method for producing the same
JP6690781B2 (en) Alloy steel powder
CN111432958B (en) Partially diffused alloyed steel powder
JP2007045918A (en) Raw powder for self-lubricating sintered material, method for producing the same and method for producing self-lubricating sintered material
JP7036216B2 (en) Iron-based alloy sintered body and iron-based mixed powder for powder metallurgy
JP2019157168A (en) Metal power for powder metallurgy, compound, granulated powder, and sintered body
JP2016113673A (en) Metal powder for powder metallurgy, compound, granulated powder, and sintered body
JP2016125103A (en) Metal powder for powder metallurgy, compound, granulated powder and sintered body
JP2001294905A (en) Method for producing micromodule gear
JP5786755B2 (en) Method for producing ferrous sintered material
JP2022086865A (en) Iron-based alloy sintered body and its manufacturing method
JP2016056445A (en) Mixed powder for powder metallurgy, sintered metal component using the same, and method for producing the mixed powder for powder metallurgy
CN106392064B (en) Improve the method for high manganese copper-manganese damping alloy sintering character with nickel oxalate
JP2016125102A (en) Metal powder for powder metallurgy, compound, granulated powder and sintered body
JP2813159B2 (en) Manufacturing method of aluminum sintered material
WO2018181107A1 (en) Sintered aluminum alloy material and method for producing same
WO2018232813A1 (en) Mixed powder for use with electric tool and preparation method therefor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170303

R150 Certificate of patent or registration of utility model

Ref document number: 6106323

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees