JPH04323307A - Production of tungsten heavy metal product - Google Patents
Production of tungsten heavy metal productInfo
- Publication number
- JPH04323307A JPH04323307A JP11928691A JP11928691A JPH04323307A JP H04323307 A JPH04323307 A JP H04323307A JP 11928691 A JP11928691 A JP 11928691A JP 11928691 A JP11928691 A JP 11928691A JP H04323307 A JPH04323307 A JP H04323307A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- tungsten
- molded body
- mixed
- binder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 title claims abstract description 38
- 229910052721 tungsten Inorganic materials 0.000 title claims abstract description 32
- 239000010937 tungsten Substances 0.000 title claims abstract description 30
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 229910001385 heavy metal Inorganic materials 0.000 title abstract 2
- 239000000843 powder Substances 0.000 claims abstract description 44
- 239000011230 binding agent Substances 0.000 claims abstract description 32
- 239000011812 mixed powder Substances 0.000 claims abstract description 18
- 239000000203 mixture Substances 0.000 claims abstract description 18
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000007789 gas Substances 0.000 claims abstract description 4
- 239000000956 alloy Substances 0.000 claims description 29
- 229910045601 alloy Inorganic materials 0.000 claims description 29
- 238000000034 method Methods 0.000 claims description 20
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 18
- 238000005245 sintering Methods 0.000 claims description 16
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 10
- 238000010438 heat treatment Methods 0.000 claims description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 6
- 238000002347 injection Methods 0.000 claims description 4
- 239000007924 injection Substances 0.000 claims description 4
- 230000001590 oxidative effect Effects 0.000 claims description 4
- 238000001746 injection moulding Methods 0.000 abstract description 15
- 229910052742 iron Inorganic materials 0.000 abstract description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 7
- 229910052799 carbon Inorganic materials 0.000 abstract description 7
- 229910052802 copper Inorganic materials 0.000 abstract description 6
- 238000004663 powder metallurgy Methods 0.000 abstract description 6
- 229910052759 nickel Inorganic materials 0.000 abstract description 4
- 239000000047 product Substances 0.000 description 20
- 239000010949 copper Substances 0.000 description 7
- 239000002994 raw material Substances 0.000 description 7
- -1 for example Substances 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 4
- 230000005484 gravity Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 239000012467 final product Substances 0.000 description 3
- 238000004898 kneading Methods 0.000 description 3
- 239000012188 paraffin wax Substances 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 239000001993 wax Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 239000000941 radioactive substance Substances 0.000 description 2
- 229910017827 Cu—Fe Inorganic materials 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229910003271 Ni-Fe Inorganic materials 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 235000013871 bee wax Nutrition 0.000 description 1
- 239000012166 beeswax Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、タングステン重合金の
原料粉末を有機バインダーと混練し、射出成形した成形
体を焼結することによって、複雑形状で且つ高強度のタ
ングステン重合金製品を製造する方法に関する。[Industrial Application Field] The present invention manufactures tungsten heavy alloy products with complex shapes and high strength by kneading raw material powder of tungsten heavy alloy with an organic binder and sintering the injection molded compact. Regarding the method.
【0002】0002
【従来の技術】タングステン重合金は約80重量%以上
のタングステンと、ニッケル、鉄又は銅とからなり、特
にタングステン含有量が約90重量%を越えるものはタ
ングステン超重合金と呼ばれ、小さくても大きな重量を
要する自動車のフライウエート、コンピューターHDD
用ウエイト、VTRヘッド等の用途の外、クイル、シャ
ンク、ボーリングバー等の機械的強度を必要とする用途
に使用されつつある。[Prior Art] Tungsten heavy alloys consist of about 80% by weight or more of tungsten and nickel, iron, or copper. Particularly, those with a tungsten content of more than about 90% by weight are called tungsten superheavy alloys. Automobile flyweights and computer HDDs that require a large amount of weight
In addition to applications such as commercial weights and VTR heads, it is also being used in applications requiring mechanical strength such as quills, shanks, and boring bars.
【0003】かかるタングステン超重合金を含めたタン
グステン重合金は、高融点のタングステンを含むので、
従来から粉末冶金法により製造されている。また最近で
は、所定の組成の混合粉末をプレス成形又はCIP成形
等の通常の加圧成形法により成形したのでは、製造でき
る製品の形状が限られ又寸法精度に限度があるため、混
合粉末に有機バインダーを混練し、射出成形により所望
とする最終製品と相似形の成形体を得た後、この成形体
を焼結する方法が検討されている。この射出成形により
得た成形体を焼結する方法では、複雑な三次元形状にも
対応でき且つ高い寸法精度が得られるので、機械加工な
しで最終製品が得られる利点がある。[0003] Since tungsten heavy alloys including such tungsten superheavy alloys contain tungsten with a high melting point,
Conventionally, it has been manufactured by powder metallurgy. In addition, recently, when mixed powder with a predetermined composition is molded using normal pressure molding methods such as press molding or CIP molding, the shape of the product that can be manufactured is limited and the dimensional accuracy is limited. A method of kneading an organic binder, obtaining a molded body similar to the desired final product by injection molding, and then sintering this molded body has been studied. This method of sintering a molded body obtained by injection molding can accommodate complex three-dimensional shapes and achieves high dimensional accuracy, so it has the advantage that a final product can be obtained without machining.
【0004】一般的に射出成形により得た成形体を焼結
する技術については、特公昭63−42682号公報や
特開昭62−250102号公報等に開示されるように
、既に良く知られている。又、粉末に混練する有機バイ
ンダーについても、例えば特公昭51−29170号公
報に記載されたアタクチックポリプロピレン、ワックス
、パラフィン等の潤滑剤、或は特開昭57−26105
号公報に記載されたポリエチレン、ポリスチレン、蜜ロ
ウ等、各種のものが知られている。更に、射出成形によ
り得た成形体は有機バインダーを含むので焼結前に加熱
して脱バインダー処理を行う必要があるが、その際の成
形体の変形を防ぐための方法として、成形体表面を若干
酸化させて強度を高める方法、成形体をアルミナ粉末中
に埋め込んだ状態で脱バインダー処理する方法等が従来
行われていた。[0004] In general, the technology for sintering molded bodies obtained by injection molding is already well known, as disclosed in Japanese Patent Publication No. 42682/1982 and Japanese Patent Application Laid-open No. 250102/1982. There is. Regarding the organic binder to be kneaded into the powder, for example, lubricants such as atactic polypropylene, wax, and paraffin described in Japanese Patent Publication No. 51-29170, or Japanese Patent Application Laid-Open No. 57-26105
Various types of materials are known, such as polyethylene, polystyrene, and beeswax described in the above publication. Furthermore, since the molded body obtained by injection molding contains an organic binder, it is necessary to heat the molded body to remove the binder before sintering. Conventionally, methods include increasing the strength by slightly oxidizing the material, and removing the binder from the molded product while it is embedded in alumina powder.
【0005】しかし、かかる射出成形を用いた粉末冶金
技術をタングステン重合金にそのまま適用することは困
難であった。即ち、タングステン重合金の成分系をなす
粉末は比重が大きいため、射出成形により得た成形体を
焼結前に加熱する脱バインダー処理において、成形体自
体の自重により成形体が変形すると言う問題があり、従
来行われていたアルミナ粉末中に成形体を埋め込む方法
によっても、完全に変形を抑えることは出来なかった。However, it has been difficult to directly apply powder metallurgy technology using injection molding to tungsten heavy alloys. In other words, since the powder that makes up the component system of tungsten heavy alloy has a high specific gravity, there is a problem that the molded body deforms due to its own weight during the debinding treatment in which the molded body obtained by injection molding is heated before sintering. Even with the conventional method of embedding a molded body in alumina powder, it was not possible to completely suppress the deformation.
【0006】又、タングステン重合金では脱バインダー
処理によってもカーボンが残留しやすく、このため通常
は焼結後の製品中に約0.1重量%のカーボンが残留す
る。この残留カーボンのため製品の強度や靭性が著しく
低下し、加圧成形法を用いた通常の粉末冶金法により製
造した製品より強度及び靭性等が劣る製品しか得られな
かった。しかも、従来の脱バインダー処理においては、
成形体にクラックの発生や変形が起こることを防止する
ために、通常20℃/時間以下の極めて遅い昇温速度し
かとれず、従って全体の脱バインダー処理に30〜40
時間と極めて長時間が必要であった。[0006] Furthermore, carbon tends to remain in tungsten heavy alloys even after binder removal treatment, and for this reason, about 0.1% by weight of carbon usually remains in the product after sintering. This residual carbon significantly reduced the strength and toughness of the product, resulting in a product that was inferior in strength and toughness to products manufactured by the usual powder metallurgy method using pressure molding. Moreover, in the conventional debinding process,
In order to prevent the formation of cracks and deformation in the molded product, only an extremely slow heating rate of 20°C/hour or less can be achieved, and therefore the entire debinding process takes 30 to 40°C.
It took a lot of time and a very long time.
【0007】[0007]
【発明が解決しようとする課題】本発明はかかる従来の
事情に鑑み、射出成形後の脱バインダー処理を改良する
ことにより、高い寸法精度で複雑な形状を有し、残留カ
ーボンが少なく強度に優れたタングステン重合金製品を
、生産性良く製造する方法を提供することを目的とする
。[Problems to be Solved by the Invention] In view of the above-mentioned conventional circumstances, the present invention improves the binder removal treatment after injection molding, thereby achieving a complex shape with high dimensional accuracy, low residual carbon, and excellent strength. The purpose of the present invention is to provide a method for manufacturing tungsten heavy alloy products with high productivity.
【0008】[0008]
【課題を解決するための手段】上記目的を達成するため
、本発明のタングステン重合金製品の製造方法において
は、タングステン粉末と、ニッケル粉末、鉄粉末又は銅
粉末とを所定の組成に混合し、この混合粉末に有機バイ
ンダーを混練して所定の形状に射出成形した後、成形体
をタングステン粉末中又は前記混合粉末と同一組成か若
しくは該組成に近い組成で少なくともタングステン粉末
を含む粉末中に埋め込み、非酸化性ガス中において最終
温度600〜750℃まで加熱して成形体から有機バイ
ンダーを除去し、次に粉末中から取り出した成形体を水
素ガス中において焼結することを特徴とする。[Means for Solving the Problems] In order to achieve the above object, in the method for manufacturing a tungsten heavy alloy product of the present invention, tungsten powder and nickel powder, iron powder or copper powder are mixed to a predetermined composition, After kneading an organic binder into this mixed powder and injection molding it into a predetermined shape, embedding the molded body in tungsten powder or in a powder containing at least tungsten powder with the same composition as the mixed powder or a composition close to the mixed powder, It is characterized in that the organic binder is removed from the molded body by heating it to a final temperature of 600 to 750°C in a non-oxidizing gas, and then the molded body taken out from the powder is sintered in hydrogen gas.
【0009】[0009]
【作用】本発明方法は、射出成形を利用した粉末冶金法
によりタングステン重合金製品を製造するものであって
、タングステン重合金とは80重量%以上のWとNi、
Fe又はCuとからなる合金で、W含有量90重量%以
上のタングステン超重合金を含めたものである。原料粉
末はW粉末と、Ni粉末、Fe粉末及びCu粉末の少な
くとも1種であり、これらをボールミルやアトライター
等を用いてアルコール等と共に混合すると同時に粉砕し
て混合粉末とする。これら原料粉末は良好な焼結性を得
るために20μm以下の粒径が好ましく、特に混合及び
粉砕が不十分であると焼結性が阻害され真密度に近い焼
結体が得られないので、混合粉砕後の混合粉末の粒径は
5μm以下であることが望ましい。[Operation] The method of the present invention is to manufacture tungsten heavy alloy products by a powder metallurgy method using injection molding, and tungsten heavy alloy products include 80% by weight or more of W and Ni.
It is an alloy consisting of Fe or Cu, and includes a tungsten super-heavy alloy with a W content of 90% by weight or more. The raw material powder is at least one of W powder, Ni powder, Fe powder, and Cu powder, and these are mixed with alcohol and the like using a ball mill, attritor, etc., and simultaneously pulverized to obtain a mixed powder. These raw material powders preferably have a particle size of 20 μm or less in order to obtain good sinterability. In particular, if mixing and pulverization are insufficient, sinterability will be inhibited and a sintered body with close to true density will not be obtained. The particle size of the mixed powder after mixing and pulverization is preferably 5 μm or less.
【0010】上記混合粉末は有機バインダーと混練した
後、通常のごとく射出成形により最終製品と相似形の成
形体に成形し、次に成形体の脱バインダー処理を行う。
本発明者らは脱バインダー処理中の成形体の変形防止に
ついて検討した結果、従来から一般に行われていたアル
ミナ粉末中に成形体を埋め込む方法では、タングステン
重合金に比べてアルミナの比重が軽すぎるためタングス
テン重合金粉末の成形体に変形が起こると判断し、鉄や
銅などの比重の大きい粉末中に成形体を埋め込むことを
考えた。しかし、鉄や銅などの粉末は成形体の成分と高
温下で反応しやすかったり、又成形体表面に付着した鉄
粉末が焼結工程に影響を及ぼしたりするので、正常なタ
ングステン重合金を得ることが困難であった。[0010] After the mixed powder is kneaded with an organic binder, it is molded into a molded body similar to the final product by injection molding as usual, and then the molded body is subjected to a binder removal treatment. The present inventors investigated how to prevent the deformation of the compact during the binder removal process, and found that the conventional method of embedding the compact in alumina powder is too light compared to tungsten heavy alloy. Therefore, it was determined that deformation would occur in the tungsten heavy alloy powder compact, and the idea was to embed the compact in powder with a high specific gravity such as iron or copper. However, powders such as iron and copper easily react with the components of the compact at high temperatures, and iron powder adhering to the surface of the compact may affect the sintering process, making it difficult to obtain a normal tungsten heavy alloy. It was difficult.
【0011】これらの点から、脱バインダー処理時に成
形体を埋め込む粉末としては、成形体を構成する各原料
粉末の混合粉末と比重がほぼ等しく、成形体と反応しに
くく且つ焼結に影響を与えない粉末が適当であることが
判り、種々検討のすえ、タングステン粉末、又は成形体
をなす混合粉末と同一組成の粉末、若しくはその混合粉
末に近い組成を有し少なくともタングステン粉末を含む
粉末を用いることにより成形体の変形を防止出来ること
が判った。又、処理雰囲気は成形体の酸化を抑えること
が出来ればよく、従って水素ガス、窒素ガス、或はアル
ゴン等の不活性ガスのような非酸化性ガス中で行うもの
とする。尚、有機バインダーについては従来から一般に
使用されていたもので良く、例えばパラフィン、ポリエ
チレン、ワックス等を単独で又は混合して用いることが
出来る。[0011] From these points of view, the powder used to embed the molded body during the binder removal process should have approximately the same specific gravity as the mixed powder of each raw material powder constituting the molded body, and should not easily react with the molded body and affect sintering. After various studies, we decided to use tungsten powder, a powder with the same composition as the mixed powder forming the compact, or a powder with a composition close to that of the mixed powder and containing at least tungsten powder. It was found that deformation of the molded body can be prevented by this method. Further, the treatment atmosphere is sufficient as long as it can suppress oxidation of the compact, and therefore the treatment is carried out in a non-oxidizing gas such as hydrogen gas, nitrogen gas, or an inert gas such as argon. Note that the organic binder may be one that has been commonly used in the past, and for example, paraffin, polyethylene, wax, etc. can be used alone or in combination.
【0012】本発明方法により、上記粉末中に成形体を
埋め込んで脱バインダー処理を行えば、成形体は殆ど変
形せず射出成形時の形状をほぼ完全に維持することがで
き、しかも成形体の変形が起こらないので加熱による昇
温速度を20〜50℃/時間と従来のほぼ倍に速めるこ
とが可能であり、従って全体の脱バインダー処理時間も
10〜30時間と著しく短縮することが出来る。又、上
記バインダー処理により成形体中の残留カーボン量も0
.02重量%以下となるので、焼結により高強度で特性
の優れたタングステン重合金製品が得られる。According to the method of the present invention, if a molded body is embedded in the powder and subjected to binder removal treatment, the molded body will hardly deform and will almost completely maintain its shape during injection molding, and moreover, the shape of the molded body will be maintained almost completely. Since no deformation occurs, it is possible to increase the temperature increase rate by heating to 20 to 50° C./hour, which is almost double that of the conventional method, and therefore, the entire debinding treatment time can be significantly shortened to 10 to 30 hours. In addition, the amount of residual carbon in the molded product is reduced to 0 due to the binder treatment described above.
.. Since the amount is 0.2% by weight or less, a tungsten heavy alloy product with high strength and excellent properties can be obtained by sintering.
【0013】上記脱バインダー処理において、加熱によ
る最終温度は600〜750℃に制御する必要がある。
最終温度が600℃未満では成形体強度が弱く取り扱い
困難であり、又750℃を越えると成形体を埋め込んだ
粉末が成形体と反応を開始しやすく、後に成形体と粉末
の分離が困難になるからである。[0013] In the above-described binder removal treatment, the final temperature by heating must be controlled to 600 to 750°C. If the final temperature is less than 600°C, the strength of the compact will be weak and it will be difficult to handle, and if it exceeds 750°C, the powder embedded in the compact will tend to start reacting with the compact, making it difficult to separate the compact and powder later. It is from.
【0014】脱バインダー処理した成形体は、その後水
素ガス中において焼結する。焼結温度は通常はニッケル
、鉄又は銅の結合相の融点から+50℃までの範囲の温
度、好ましくは融点の+30℃〜+40℃の温度である
。結合相の融点未満で焼結しても緻密化し得るが、タン
グステン粒の成長が少なく十分な靭性が得られない。逆
に結合相の融点の+50℃を越えると重力によるタング
ステン重合金の変形が激しくなるため、寸法精度の優れ
た製品が得られなくなる。[0014] The molded body subjected to the binder removal treatment is then sintered in hydrogen gas. The sintering temperature usually ranges from the melting point of the nickel, iron or copper binder phase to +50°C, preferably from +30°C to +40°C above the melting point. Although sintering at a temperature below the melting point of the binder phase can result in densification, the growth of tungsten grains is small and sufficient toughness cannot be obtained. On the other hand, if the melting point of the binder phase exceeds +50°C, the tungsten heavy alloy will be severely deformed by gravity, making it impossible to obtain a product with excellent dimensional accuracy.
【0015】本発明方法により製造されるタングステン
重合金は、最終的な残留カーボン量が極めて少ないので
通常の粉末冶金法で製造したものと同等の強度など優れ
た特性を有し、しかも通常の粉末冶金法では達成出来な
かった優れた寸法精度を備えているので、焼結後に切削
等の機械加工を施さずそのまま各種製品として使用でき
る。特に最近では、医療分野において半減期の短い放射
性物質を人体に注射することによる患部の検査や放射線
治療が行なわれているが、タングステン重合金は放射線
遮蔽効果にも優れているので、USP第4,062,3
53号明細書に記載されるような放射性物質用注射器の
外周に装着して医師や看護婦を放射線被曝から保護する
ための放射線遮蔽カバーとして用いることも出来る。The tungsten heavy alloy produced by the method of the present invention has excellent properties such as strength equivalent to that produced by ordinary powder metallurgy because the final amount of residual carbon is extremely small. Because it has excellent dimensional accuracy that could not be achieved with metallurgical methods, it can be used as a variety of products without any machining such as cutting after sintering. Particularly recently, in the medical field, radioactive substances with short half-lives are injected into the human body for examination of affected areas and radiation therapy, but tungsten heavy alloys also have excellent radiation shielding effects, so ,062,3
It can also be used as a radiation shielding cover for protecting doctors and nurses from radiation exposure by being attached to the outer periphery of a radioactive substance syringe as described in the specification of No. 53.
【0016】[0016]
【実施例1】原料粉末としてW粉末、カーボニルNi粉
末、カーボニルFe粉末及び電解Cu粉末(いずれも粒
径2〜3μm)を用意し、各粉末を組成が重量比で95
.0%W−3.0%Cu−1.6%Ni−0.4%Fe
となるように混合し、アトライターで6時間粉砕混合し
、150メッシュの篩で篩分けした。篩を通過した混合
粉末30kgに有機バインダーとして300gのポリエ
チレンと600gのワックスを添加し、ニーダで3時間
混練した。この混練物を20tonの型締力を持つ射出
成形機を用い、縦20mm×横10mm×高さ5mmの
製品2ケ取りの金型を温度40℃に保持し、射出成形を
行った。得られた成形体をW粉末中に埋め込み、窒素ガ
ス中において昇温速度30℃/時間で300℃まで加熱
してその温度に5時間保持し、次に昇温速度50℃/時
間で700℃まで加熱して脱バインダー処理した。その
後、脱バインダー処理した成形体を水素ガス雰囲気中で
1400℃で焼結した。[Example 1] W powder, carbonyl Ni powder, carbonyl Fe powder, and electrolytic Cu powder (all particle sizes 2 to 3 μm) were prepared as raw material powders, and each powder had a composition of 95% by weight.
.. 0%W-3.0%Cu-1.6%Ni-0.4%Fe
The mixture was pulverized and mixed using an attritor for 6 hours, and then sieved through a 150 mesh sieve. 300 g of polyethylene and 600 g of wax were added as an organic binder to 30 kg of the mixed powder that had passed through the sieve, and the mixture was kneaded in a kneader for 3 hours. This kneaded product was injection molded using an injection molding machine with a mold clamping force of 20 tons, with a mold for two products measuring 20 mm long x 10 mm wide x 5 mm high maintained at a temperature of 40°C. The obtained compact was embedded in W powder, heated in nitrogen gas to 300°C at a heating rate of 30°C/hour, held at that temperature for 5 hours, and then heated to 700°C at a heating rate of 50°C/hour. The binder was removed by heating to . Thereafter, the binder-removed molded body was sintered at 1400° C. in a hydrogen gas atmosphere.
【0017】得られた焼結体は、密度が18.10g/
cm3で、通常のプレス成形後に焼結したものと同様の
組織を有し、100倍の光学顕微鏡による観察でも巣や
パッチは存在せず、正常なW−Ni−Cu−Fe系超重
合金であることが確認された。又、このW超重合金の硬
度はHVで310であり、引張強度は60kg/mm2
であることから、通常のプレス成形後に焼結したものと
比較して同レベルの機械的特性を有することが判った。
更に、成形体の脱バインダー時の歪みについても、得ら
れた焼結体の寸法測定から0.05mm以下の歪みに抑
えられていることが判った。The obtained sintered body has a density of 18.10 g/
cm3, it has a structure similar to that of one sintered after normal press forming, and there are no cavities or patches even when observed under a 100x optical microscope, indicating that it is a normal W-Ni-Cu-Fe based super-heavy alloy. This was confirmed. In addition, the hardness of this W super-heavy alloy is HV 310, and the tensile strength is 60 kg/mm2.
Therefore, it was found that the material had mechanical properties on the same level as those obtained by sintering after normal press forming. Furthermore, it was found from the dimensional measurements of the obtained sintered body that the distortion during debinding of the molded body was suppressed to 0.05 mm or less.
【0018】[0018]
【実施例2】原料粉末としてW粉末、カーボニルNi粉
末及びカーボニルFe粉末(いずれも粒径2〜3μm)
を用意し、各粉末を組成が重量比で97.0%W−2.
0%Ni−1.0%Feとなるように混合し、アトライ
ターで6時間粉砕混合し、150メッシュの篩で篩分け
した。篩を通過した混合粉末30kgに有機バインダー
として1000gのパラフィンを添加し、ニーダで2時
間混練した。この混練物を実施例1と同じ射出成形機を
用いて、直径15mm×長さ60mm×厚さ1.5mm
のパイプ状製品1ケ取りの金型を温度40℃に保持し、
射出成形した。得られた成形体を原料として用いた上記
混合粉末と同一組成(97.0%W−2.0%Ni−1
.0%Fe)の粉末中に埋め込み、0.1atmの窒素
ガス中において昇温速度30℃/時間で700℃まで加
熱して脱バインダー処理を行った。次に、脱バインダー
処理した成形体を水素ガス雰囲気中で1450℃で焼結
した。[Example 2] Raw material powders include W powder, carbonyl Ni powder, and carbonyl Fe powder (all particle sizes 2 to 3 μm)
were prepared, and the composition of each powder was 97.0% W-2.
The mixture was mixed to become 0% Ni-1.0% Fe, pulverized and mixed with an attritor for 6 hours, and sieved with a 150 mesh sieve. 1000 g of paraffin was added as an organic binder to 30 kg of the mixed powder that had passed through the sieve, and the mixture was kneaded in a kneader for 2 hours. Using the same injection molding machine as in Example 1, this kneaded material was molded into 15 mm diameter x 60 mm length x 1.5 mm thickness.
The mold for one pipe-shaped product is maintained at a temperature of 40℃,
Injection molded. The obtained molded body had the same composition as the above mixed powder (97.0%W-2.0%Ni-1) as a raw material.
.. 0% Fe) powder and heated to 700° C. at a heating rate of 30° C./hour in 0.1 atm nitrogen gas to perform binder removal treatment. Next, the binder-removed molded body was sintered at 1450° C. in a hydrogen gas atmosphere.
【0019】得られた焼結体は、密度が18.50g/
cm3で、通常のプレス成形後に焼結したものと同様の
組織を有し、100倍の光学顕微鏡による観察でも巣や
パッチは存在せず、正常なW−Ni−Fe系超重合金で
あることが確認された。又、このW超重合金の硬度はH
Vで330であり、引張強度は65kg/mm2である
ことから、通常のプレス成形後に焼結したものと比較し
て同レベルの機械的特性を有することが判った。成形体
の脱バインダー時の歪みについても、得られた焼結体の
寸法測定から0.1mm以下の歪みに抑えられているこ
とが判った。The obtained sintered body has a density of 18.50 g/
cm3, it has a structure similar to that of one sintered after normal press forming, and there are no cavities or patches even when observed under a 100x optical microscope, indicating that it is a normal W-Ni-Fe based super-heavy alloy. confirmed. Moreover, the hardness of this W super-heavy alloy is H
Since the V was 330 and the tensile strength was 65 kg/mm2, it was found that it had mechanical properties at the same level as those obtained by sintering after normal press forming. It was also found from the dimensional measurements of the obtained sintered body that the distortion during debinding of the molded body was suppressed to 0.1 mm or less.
【0020】[0020]
【発明の効果】本発明によれば、射出成形法による成形
体の脱バインダー処理を改善することにより、成形体の
変形を抑えながら、有機バインダーを短時間でほぼ完全
に除去できるので、高い寸法精度で複雑な形状を有し同
時に強度に優れたタングステン重合金製品を生産性良く
安価に製造することが出来る。[Effects of the Invention] According to the present invention, by improving the binder removal treatment of a molded article by injection molding, it is possible to almost completely remove the organic binder in a short time while suppressing the deformation of the molded article. It is possible to manufacture tungsten heavy alloy products with high precision and complex shapes and excellent strength at low cost and with good productivity.
Claims (2)
粉末又は銅粉末とを所定の組成に混合し、この混合粉末
に有機バインダーを混練して所定の形状に射出成形した
後、成形体をタングステン粉末中又は前記混合粉末と同
一組成か若しくは該組成に近い組成で少なくともタング
ステン粉末を含む粉末中に埋め込み、非酸化性ガス中に
おいて最終温度600〜750℃まで加熱して成形体か
ら有機バインダーを除去し、次に粉末中から取り出した
成形体を水素ガス中において焼結することを特徴とする
タングステン重合金製品の製造方法。Claim 1: Mix tungsten powder and nickel powder, iron powder, or copper powder to a predetermined composition, knead an organic binder to this mixed powder, injection mold it into a predetermined shape, and then mold the molded body into tungsten powder. The organic binder is removed from the molded body by embedding it in a powder containing at least tungsten powder with the same composition as the mixed powder or a composition close to the mixed powder, and heating it to a final temperature of 600 to 750°C in a non-oxidizing gas. A method for manufacturing a tungsten heavy alloy product, which comprises: sintering the compact taken out of the powder in hydrogen gas.
場合の昇温速度が20〜50℃/時間であることを特徴
とする、請求項1記載のタングステン重合金製品の製造
方法。2. The method for producing a tungsten heavy alloy product according to claim 1, wherein the heating rate of the compact embedded in the powder is 20 to 50° C./hour.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11928691A JPH04323307A (en) | 1991-04-23 | 1991-04-23 | Production of tungsten heavy metal product |
US07/920,564 US5342573A (en) | 1991-04-23 | 1992-03-31 | Method of producing a tungsten heavy alloy product |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11928691A JPH04323307A (en) | 1991-04-23 | 1991-04-23 | Production of tungsten heavy metal product |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04323307A true JPH04323307A (en) | 1992-11-12 |
Family
ID=14757638
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11928691A Pending JPH04323307A (en) | 1991-04-23 | 1991-04-23 | Production of tungsten heavy metal product |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04323307A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100390173B1 (en) * | 2000-12-28 | 2003-07-10 | 주식회사 래피더스 | Method for manufacturing high ductile tungsten based heavy alloy having an excellent oxidation resistance |
JP6106323B1 (en) * | 2016-07-07 | 2017-03-29 | Jfe精密株式会社 | Sintered tungsten-based alloy and method for producing the same |
-
1991
- 1991-04-23 JP JP11928691A patent/JPH04323307A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100390173B1 (en) * | 2000-12-28 | 2003-07-10 | 주식회사 래피더스 | Method for manufacturing high ductile tungsten based heavy alloy having an excellent oxidation resistance |
JP6106323B1 (en) * | 2016-07-07 | 2017-03-29 | Jfe精密株式会社 | Sintered tungsten-based alloy and method for producing the same |
JP2018003135A (en) * | 2016-07-07 | 2018-01-11 | Jfe精密株式会社 | Sintered tungsten-based alloy and manufacturing method therefor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ye et al. | Fabrication of metal matrix composites by metal injection molding—A review | |
AU2011244998B2 (en) | Method for the manufacture of a shaped body as well as green compact | |
Ebel et al. | Metal injection molding of titanium | |
SE511102C2 (en) | Process for producing diamond impregnated carbide via in-situ conversion of dispersed graphite | |
JP3071118B2 (en) | Method for producing NiAl intermetallic compound to which fine additive element is added | |
JP2898475B2 (en) | Manufacturing method of oxide dispersion strengthened heat-resistant alloy sintered body | |
JPH04323307A (en) | Production of tungsten heavy metal product | |
KR101830697B1 (en) | A method for producing a component of powder injection molding | |
JPH04337040A (en) | Production of tungsten heavy alloy product | |
JPH04323308A (en) | Production of tungsten heavy metal product | |
JPH03232906A (en) | Combined sintered product | |
JPH05140672A (en) | Manufacture of tungsten heavy alloy product | |
JPH07300648A (en) | High strength sintered w-base alloy and its production | |
JPH05222402A (en) | Production of tungsten heavy alloy product | |
JP2004107691A (en) | High strength titanium alloy and its production method | |
JP2001089824A (en) | Manufacture of sintered compact of chromium- molybdenum steel | |
JPH05263164A (en) | Manufacture of tungsten heavy alloy product | |
JPH11181541A (en) | Production of stainless steel sintered body | |
JP2922248B2 (en) | Manufacturing method of sintered alloy with excellent corrosion resistance | |
JPH06172810A (en) | Production of tungsten alloy sintered compact | |
JP3089701B2 (en) | Manufacturing method of tungsten heavy alloy composite products | |
JPH1046208A (en) | Production of ti-ni base alloy sintered body | |
JPH0243330A (en) | Production of super hard sintered compact | |
JPH0734154A (en) | Manufacure of sintered hard alloy by injection molding | |
JPH04298006A (en) | Manufacture of fe-si-al alloy sintered soft magnetic substance |