JP2898475B2 - Manufacturing method of oxide dispersion strengthened heat-resistant alloy sintered body - Google Patents

Manufacturing method of oxide dispersion strengthened heat-resistant alloy sintered body

Info

Publication number
JP2898475B2
JP2898475B2 JP4193551A JP19355192A JP2898475B2 JP 2898475 B2 JP2898475 B2 JP 2898475B2 JP 4193551 A JP4193551 A JP 4193551A JP 19355192 A JP19355192 A JP 19355192A JP 2898475 B2 JP2898475 B2 JP 2898475B2
Authority
JP
Japan
Prior art keywords
powder
sintered body
less
weight
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4193551A
Other languages
Japanese (ja)
Other versions
JPH0633166A (en
Inventor
俊明 森近
勉 清水
裕史 山本
貴宏 北川
隆 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP4193551A priority Critical patent/JP2898475B2/en
Publication of JPH0633166A publication Critical patent/JPH0633166A/en
Application granted granted Critical
Publication of JP2898475B2 publication Critical patent/JP2898475B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、酸化物分散耐熱合金粒
子からなる粉末の焼結に関し、特に複雑形状焼結体の製
造に好適な粉末焼結方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for sintering powder comprising oxide-dispersed heat-resistant alloy particles, and more particularly to a powder sintering method suitable for producing a sintered body having a complicated shape.

【0002】[0002]

【従来技術及び問題点】出願人は、以前に、高温におけ
る強度及び耐酸化性にすぐれた酸化物分散強化耐熱焼結
合金を提案した(特願平3−97000)。
2. Description of the Related Art The applicant has previously proposed an oxide dispersion strengthened heat resistant sintered alloy having excellent strength and oxidation resistance at high temperatures (Japanese Patent Application No. Hei 3-97000).

【0003】この焼結合金は、実質的にCrからなる金
属又はCrを主体とする金属のマトリックス中に、平均
粒径0.1μm以下のY23を0.2〜2.0重量%微細分散させ
た原料粉末をメカニカルアロイング法によって調製し、
該原料粉末を適当な金属カプセルに充填した後、脱気密
封し、約1000〜1300℃の温度にて、約1000〜2000kgf/cm
2の圧力下で熱間静水圧処理(HIP)される。これは、
いわゆるカプセルHIP焼結法といわれるもので、この
カプセルHIP焼結によって、略完全に緻密な焼結品を
製造することができる。
[0003] This sintered alloy is a raw material obtained by finely dispersing 0.2 to 2.0% by weight of Y 2 O 3 having an average particle size of 0.1 μm or less in a matrix of a metal substantially composed of Cr or a metal mainly composed of Cr. Prepare powder by mechanical alloying method,
After filling the raw material powder in a suitable metal capsule, it is degassed and sealed, and at a temperature of about 1000 to 1300 ° C., about 1000 to 2000 kgf / cm
Hot isostatic pressure treatment (HIP) under pressure of 2 . this is,
This is a so-called capsule HIP sintering method. By this capsule HIP sintering, an almost completely dense sintered product can be manufactured.

【0004】ウォーキングビーム式加熱炉用スキッドボ
タンの如きブロック形状の焼結品は、一般に、このカプ
セルHIP焼結によって製造されている。
[0004] A block-shaped sintered product such as a skid button for a walking beam type heating furnace is generally manufactured by capsule HIP sintering.

【0005】しかし、例えばタービンブレードの如く、
複雑形状の製品を作る場合も、一旦HIPによって緻密
な焼結体ブロックを作製した後、機械加工によって所望
形状に切り出していた。このため、複雑形状の焼結品
は、材料歩留りが非常に悪く、製品コストが高くなる問
題があった。
However, for example, like a turbine blade,
Even when a product having a complicated shape is produced, a dense sintered body block is once produced by HIP and then cut into a desired shape by machining. For this reason, there is a problem that a sintered product having a complicated shape has a very low material yield and a high product cost.

【0006】複雑形状の焼結品も、このように焼結体ブ
ロックを形成してから切削等の機械加工を行なうのは、
カプセルHIP焼結の場合、複雑形状のカプセルを製作
することが非常に困難だからである。また、多大の工数
をかけて複雑形状のカプセルを製作しても、カプセル内
の全ての場所で均一密度になるように原料粉末を充填す
ることはできない。特にカプセルの隅部は、充填密度が
小さくなるため、HIP後の収縮量も多くなる。このた
め、カプセルの隅部については、その後の機械加工のた
めの加工しろを十分に考慮してカプセル設計せねばなら
ず、焼結体ブロックから切り出すのと実質的に変わらな
くなってしまう。
[0006] Even for a sintered product having a complicated shape, machining such as cutting after forming a sintered body block in this manner is difficult.
This is because in the case of capsule HIP sintering, it is very difficult to produce a capsule having a complicated shape. Further, even if a capsule having a complicated shape is manufactured with a large number of man-hours, the raw material powder cannot be filled so as to have a uniform density in all places in the capsule. In particular, since the filling density is low at the corners of the capsule, the amount of shrinkage after HIP also increases. For this reason, the corners of the capsule must be designed with sufficient consideration of the working margin for subsequent machining, which is substantially the same as cutting out from a sintered block.

【0007】一方、この酸化物分散強化耐熱合金粒子か
らなる粉末の焼結をカプセルを使用せずに、プレス、鋳
込み、射出成形、冷間静水圧加圧(CIP)等によって所
望形状のグリーンコンパクトに形成した後、該コンパク
トを高温で焼結すると次のような問題があった。
On the other hand, sintering of the powder composed of the oxide dispersion strengthened heat-resistant alloy particles is performed without using a capsule by pressing, casting, injection molding, cold isostatic pressing (CIP), etc. to obtain a green compact having a desired shape. Then, when the compact is sintered at a high temperature, there are the following problems.

【0008】上記焼結合金はCrを約70%以上含んでい
るから、融点は約1700℃以上もの高温になる。また、そ
の融点はCrの含有量が多くなるほど高くなる。緻密な
焼結体を得るには、原則として原料成分の融点近傍の温
度で焼結せねばならないが、このような高温で焼結する
と、金属マトリックス中に微細分散していた酸化物が金
属結晶の粒界に凝集し、強度が著しく低下する不都合が
あった。これでは、酸化物を均一に微細分散させて高温
圧縮強度を向上させる意味がない。
[0008] Since the sintered alloy contains about 70% or more of Cr, the melting point becomes as high as about 1700 ° C or more. Further, the melting point increases as the Cr content increases. In order to obtain a dense sintered body, in principle, sintering must be performed at a temperature near the melting point of the raw material components. However, when sintering at such a high temperature, oxides that have been finely dispersed in the metal matrix become And the strength was significantly reduced. In this case, there is no point in improving the high-temperature compressive strength by uniformly and finely dispersing the oxide.

【0009】一方、Crを約70%以上含むグリーンコン
パクトを、酸化物の凝集を起こさない温度条件(約1500
℃以下)で焼結すると、焼結品の密度は完全緻密体の約7
5%程度にまでしか達しないため、所望の高温強度が得
られず、実用に供することはできない。焼結品の気孔を
消失させて、より緻密な構造とするためには、更に熱間
静水圧加圧(HIP)を行なえばよいが、HIP前の焼結
品の密度が完全緻密体の約94%以上なければ、HIPを
行なっても圧力がかからず、HIPによる密度向上効果
は殆んど期待できない。
On the other hand, green compacts containing about 70% or more of Cr are subjected to temperature conditions (about 1500
Sintering), the density of the sintered product is about 7
Since it reaches only about 5%, the desired high-temperature strength cannot be obtained, and it cannot be put to practical use. In order to eliminate the pores of the sintered product and obtain a denser structure, hot isostatic pressing (HIP) may be further performed. However, the density of the sintered product before HIP is about the same as that of the perfect dense body. If it is not more than 94%, pressure is not applied even when HIP is performed, and the effect of improving the density by HIP can hardly be expected.

【0010】[0010]

【発明が解決しようとする課題】本発明は、酸化物分散
耐熱合金粒子からなる粉末の焼結において、金属カプセ
ルを使用せず、かつ約1500℃よりも高温に加熱せずに緻
密な焼結品が得られる焼結法を提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention relates to a method of sintering a powder comprising oxide-dispersed heat-resistant alloy particles without using a metal capsule and without heating the powder to a temperature higher than about 1500 ° C. It is an object of the present invention to provide a sintering method by which a product can be obtained.

【0011】[0011]

【課題を解決するための手段】本発明は、実質的にCr
からなる金属又はCrを主体とする金属のマトリックス
中に、平均粒径0.1μm以下のY23を0.2〜2.0重量%微
細分散させた原料粉末の焼結において、グリーンコンパ
クトを約1500℃以下の温度で焼結することによって、完
全緻密体の約94%以上の密度を有する焼結体を形成でき
るようにしたもので、この焼結体をさらにHIPするこ
とによって非常に緻密な焼結品が得られるようにしたも
のである。
SUMMARY OF THE INVENTION The present invention provides substantially Cr
The metal in the matrix composed mainly of metal or Cr consisting, in the sintering of the raw material powder was average particle diameter 0.1μm or less of Y 2 O 3 0.2 to 2.0 wt% finely dispersed, about 1500 ° C. or less green compact By sintering at a temperature of above, it is possible to form a sintered body having a density of about 94% or more of the perfect dense body. Is obtained.

【0012】本発明の焼結法は、実質的にCrからなる
金属又はCrを主体とする金属のマトリックス中に、平
均粒径0.1μm以下のY23を0.2〜2.0重量%微細分散さ
せた原料粉末100重量部に対して、Fe粉末、Ni粉末
及びCo粉末からなる群から選択された少なくとも1種
以上の粉末1〜5重量部(合計量)を混合する工程、得ら
れた混合物を所定形状のグリーンコンパクトに形成する
工程、該コンパクトを焼結する工程、及び、得られた焼
結体を熱間静水圧加圧する工程を有している。
In the sintering method of the present invention, 0.2 to 2.0% by weight of Y 2 O 3 having an average particle size of 0.1 μm or less is finely dispersed in a matrix of a metal substantially composed of Cr or a metal mainly composed of Cr. Mixing 1 to 5 parts by weight (total amount) of at least one kind of powder selected from the group consisting of Fe powder, Ni powder and Co powder with respect to 100 parts by weight of the raw material powder obtained, The method includes a step of forming a green compact having a predetermined shape, a step of sintering the compact, and a step of hot isostatic pressing of the obtained sintered body.

【0013】なお、前記混合工程では、実質的にCrか
らなる金属又はCrを主体とする金属の粉末と0.2〜2.0
重量%のY23を混合した原料粉末100重量部に対し
て、Fe粉末、Ni粉末及びCo粉末からなる群から選
択された少なくとも1種以上の粉末1〜5重量部(合計
量)をメカニカルアロイング処理することにより、金属
のマトリックス中に平均粒径0.1μm以下のY23を微細
分散させた酸化物分散強化合金粉末の調製と、前記1種
以上の粉末との混合を同時に行なうこともできる。
[0013] In the mixing step, a powder of a metal substantially composed of Cr or a metal mainly composed of Cr is mixed with a powder of 0.2 to 2.0.
The weight% of Y 2 O 3 were mixed raw material powder 100 parts by weight, Fe powder, at least one or more kinds of powder 1 to 5 parts by weight is selected from the group consisting of Ni powder and Co powder (total amount) Simultaneous preparation of an oxide dispersion-strengthened alloy powder in which Y 2 O 3 having an average particle size of 0.1 μm or less is finely dispersed in a metal matrix by mechanical alloying treatment, and mixing with the one or more powders simultaneously You can do it.

【0014】なお、グリーンコンパクトの焼結体は、完
全緻密体の約94%以上の密度を具備できるようにする。
その後のHIPによって、ほぼ完全に緻密な焼結体が得
られるようにするためである。
The green compact sintered body should have a density of about 94% or more of the perfect dense body.
This is for the purpose of obtaining a nearly completely dense sintered body by the subsequent HIP.

【0015】金属は、実質的にCrからなる金属、又は
Fe20%以下を含み、残部実質的にCrからなる金属、
又はAl、Mo、W、Nb、Ta、Hf及びAl−Ti
から構成される群の中から選択される少なくとも一種を
合計量で10%以下含み、残部実質的にCrからなる金
属、又はAl、Mo、W、Nb、Ta、Hf及びAl−
Tiから構成される群の中から選択される少なくとも一
種を合計量で10%以下並びにFe20%以下を含み、残部
実質的にCrからなる金属である。なお、Al−Tiは
金属間化合物である。これら金属のマトリックスに、平
均粒径0.1μm以下のY23を0.2〜2.0重量%微細分散さ
せることにより、焼結製品として、1300℃を超える温度
域で使用した場合、高い圧縮変形抵抗性を有し、また酸
化性雰囲気において安定した酸化抵抗性を確保できる。
The metal is a metal substantially composed of Cr or a metal substantially containing 20% or less of Fe and the balance substantially composed of Cr.
Or Al, Mo, W, Nb, Ta, Hf and Al-Ti
At least one selected from the group consisting of: a metal consisting essentially of Cr or Al, Mo, W, Nb, Ta, Hf and Al-
It is a metal containing at least one selected from the group consisting of Ti in a total amount of 10% or less and Fe of 20% or less, and the balance substantially consisting of Cr. Note that Al-Ti is an intermetallic compound. By finely dispersing 0.2 to 2.0% by weight of Y 2 O 3 having an average particle diameter of 0.1 μm or less in the matrix of these metals, when used as a sintered product in a temperature range exceeding 1300 ° C., high compression deformation resistance is obtained. And stable oxidation resistance can be ensured in an oxidizing atmosphere.

【0016】酸化物分散強化耐熱合金粒子からなる原料
粉末と、Fe、Ni、Co粉末の少なくとも1種とを略
均一に混合する。原料粉末の粒子間にFe等の微細粒子
を介在させることにより、これら微細粒子が焼結の橋渡
し的役割を発揮し、原料粉末の焼結性を向上させること
ができる。Fe、Ni、Co粉末の添加量が、原料粉末
100重量部に対して1重量部に満たないと、原料粉末の
焼結性向上効果は期待できない。一方、添加量が5重量
部を超えると、焼結時に添加粉末粒子が母合金に十分固
溶されずに粒子界面に残存し、酸化物分散強化耐熱合金
粒子が本来的に備える特性が損なわれ、高温における強
度が低下する。かかる理由から、添加混合するFe、N
i、Coの粉末は、酸化物分散強化耐熱合金100重量部
に対して1〜5重量部とする。
A raw material powder comprising oxide dispersion strengthened heat-resistant alloy particles and at least one of Fe, Ni and Co powders are substantially uniformly mixed. By interposing fine particles such as Fe between the particles of the raw material powder, these fine particles exert a bridging role of sintering, and the sinterability of the raw material powder can be improved. The amount of Fe, Ni, Co powder added is
If the amount is less than 1 part by weight per 100 parts by weight, the effect of improving the sinterability of the raw material powder cannot be expected. On the other hand, when the addition amount exceeds 5 parts by weight, the added powder particles are not sufficiently dissolved in the mother alloy at the time of sintering and remain at the particle interface, thereby impairing the inherent characteristics of the oxide dispersion strengthened heat-resistant alloy particles. And the strength at high temperatures decreases. For this reason, Fe, N
i, Co powder is 1 to 5 parts by weight based on 100 parts by weight of the oxide dispersion strengthened heat resistant alloy.

【0017】添加するFe、Ni、Co粉末の粒径は微
細であることが望ましく、少なくとも原料粉末よりも粒
径を小さくする必要がある。望ましい粒径サイズは、約
10μm以下である。
It is desirable that the Fe, Ni, and Co powders to be added have a fine particle size, and it is necessary that the particle size be at least smaller than that of the raw material powder. Desirable particle size is about
10 μm or less.

【0018】[0018]

【作用】原料粉末の合金粒子間に、Fe、Ni、Coの
1種又は2種以上の微細粒子が介在するから、原料粉末
の粒子界面で拡散が起こり易くなり、融点よりも低温で
相互拡散が起こり、焼結緻密化するものと考えられる。
従って、Crを70%以上含有し、融点が約1700℃を超え
る原料粉末であっても、約1500℃以下の温度での焼結に
よって、完全緻密体の約94%以上の密度を備えた焼結体
を得ることができる。
[Function] Since one or more fine particles of Fe, Ni, and Co are interposed between alloy particles of the raw material powder, diffusion tends to occur at the particle interface of the raw material powder, and mutual diffusion is performed at a temperature lower than the melting point. It is considered that sintering and densification occur.
Therefore, even if the raw material powder contains 70% or more of Cr and has a melting point of more than about 1700 ° C., it is sintered at a temperature of about 1500 ° C. or less to obtain a sintered compact having a density of about 94% or more of a completely dense body. You can get union.

【0019】この焼結体をHIPすることによって、気
孔は取り除かれ、ほぼ完全に緻密な構造に生成される。
By subjecting the sintered body to HIP, pores are removed, and a substantially dense structure is formed.

【0020】[0020]

【実施例】Fe14%、Cr85%及びY231%の合金粒
子からなる供試原料粉末Aと、Fe4%、Cr95%及び
231%の合金粒子からなる供試原料粉末Bについ
て、Fe、Co、Ni粉末の添加による焼結性向上効果
を調べた。
EXAMPLES FE14%, and subjected trial original material powder A consisting of Cr85% and Y 2 O 3 1% of the alloy particles, Fe4%, consisting of Cr95% and Y 2 O 3 1% of the alloy particles subjected trial original material powder B The effect of improving the sinterability by adding Fe, Co, and Ni powders was examined.

【0021】原料粉末は、金属粉末とY23粉末をアト
ライター等の高エネルギーボールミルを用いることによ
り、十分にメカニカルアロイング処理を施したもので、
平均粒径10μm以下の酸化物分散強化合金粒子を得た。
The raw material powder is obtained by subjecting a metal powder and a Y 2 O 3 powder to mechanical alloying treatment sufficiently by using a high energy ball mill such as an attritor.
Oxide dispersion strengthened alloy particles having an average particle size of 10 μm or less were obtained.

【0022】原料粉末に、Fe、Ni、Coの粉末少な
くとも1種を加えて略均一に混合する。添加粉末は、粒
子径サイズ約2μm以下の純Fe、純Ni、純Co粉末
を用いた。
At least one of Fe, Ni and Co powders is added to the raw material powder and mixed substantially uniformly. As the additive powder, pure Fe, pure Ni, or pure Co powder having a particle size of about 2 μm or less was used.

【0023】混合の一例として、ポリプロピレン製広口
瓶に、酸化物分散強化耐熱合金粉末(例えば、500g)、及
びFe、Ni、Coの粉末少なくとも1種を入れ、更に
大小2種類のWCボール(例えば、直径19.2mm、6.8mm)
を入れて密封した後、ボールミル(例えば、24時間)を行
なうことができる。
As an example of mixing, a polypropylene wide-mouth bottle is charged with an oxide dispersion-strengthened heat-resistant alloy powder (eg, 500 g) and at least one of Fe, Ni, and Co powders. , Diameter 19.2mm, 6.8mm)
And then sealed, followed by ball milling (eg, 24 hours).

【0024】或はまた、酸化物分散強化耐熱合金粉末
(例えば、1800g)と、Fe、Ni、Coの粉末少なくと
も1種とを、アトライター等の高エネルギーボールミル
によって混練(例えば、5時間)してもよい。なお、Cr
合金粉末(例えば、1800g)とY23(例えば、9g)の混合
粉末を、アトライター等の高エネルギーボールミルによ
って十分な時間(例えば65時間以上)混練してメカニカル
アロイング効果を得た後、同じボールミルの中にFe、
Ni、Coの粉末少なくとも1種を投入して混練を行な
ってもよい。
Alternatively, an oxide dispersion strengthened heat-resistant alloy powder
(For example, 1800 g) and at least one of Fe, Ni, and Co powders may be kneaded (for example, for 5 hours) by a high energy ball mill such as an attritor. In addition, Cr
After obtaining a mechanical alloying effect by kneading a mixed powder of alloy powder (for example, 1800 g) and Y 2 O 3 (for example, 9 g) for a sufficient time (for example, 65 hours or more) by a high energy ball mill such as an attritor, etc. , Fe in the same ball mill,
Kneading may be performed by charging at least one kind of Ni and Co powders.

【0025】供試原料粉末A又はBと、Fe、Ni、C
oの粉末少なくとも1種添加して混合した種々の実施例
を表1に示す。供試No.1〜No.5は供試原料粉末Aと混
合したもので、供試No.6〜No.8は供試原料粉末Bと混
合したものである。なお、表1において、添加粉末の量
は、供試原料粉末を100重量部としたときの重量部を示
している。
Sample powder A or B, Fe, Ni, C
Table 1 shows various examples in which at least one powder of o was added and mixed. Test Nos. 1 to 5 were mixed with test raw material powder A, and Test Nos. 6 to 8 were mixed with test raw material powder B. In addition, in Table 1, the amount of the added powder is shown by weight based on 100 parts by weight of the test raw material powder.

【0026】供試材No.1〜No.8を、夫々、ゴム筒に充
填し、冷間静水圧加圧(CIP)に付し、加圧力1500kgf/
cm2、加圧時間1分の条件で成形し、グリーンコンパク
ト(直径30mm×長さ30mm)を作製した。
Each of the test materials No. 1 to No. 8 was filled in a rubber cylinder and subjected to cold isostatic pressurization (CIP) to apply a pressing force of 1500 kgf /
The green compact (diameter 30 mm x length 30 mm) was formed under the conditions of cm 2 and a pressing time of 1 minute.

【0027】次に、これらのグリーンコンパクトを、電
気炉のArとH2の雰囲気ガス中にて、温度1500℃、加
熱時間4時間の条件で焼結した。焼結体の表面に付着し
た酸化被膜を除去した後、アルキメデス法に基づいて密
度測定を行なった。なお、供試原料粉末A、Bとも、完
全緻密体の密度を7.2g/cm3とみなして、相対焼結密度を
算出した。算出結果は、表1中、「HIP前」の欄に示
す。
Next, these green compacts were sintered in an atmosphere of Ar and H 2 in an electric furnace at a temperature of 1500 ° C. and a heating time of 4 hours. After removing the oxide film adhered to the surface of the sintered body, the density was measured based on the Archimedes method. Note that the relative sintering densities of both the test raw material powders A and B were calculated assuming that the density of the completely dense body was 7.2 g / cm 3 . The calculation results are shown in the column “Before HIP” in Table 1.

【0028】得られた各焼結体は、温度1250℃、加圧力
1200kgf/cm2、HIP時間2時間の条件にてHIPを行
なった。HIP後、前記と同じ要領にて密度測定を行な
った。HIP後の相対焼結密度の算出結果を表1に示
す。
Each of the obtained sintered bodies was heated at a temperature of 1250 ° C.
HIP was performed under the conditions of 1200 kgf / cm 2 and HIP time of 2 hours. After HIP, the density was measured in the same manner as described above. Table 1 shows the calculation results of the relative sintered density after HIP.

【0029】比較例として、供試材No.11〜No.15を作製
した。供試材No.11とNo.15は、Fe、Ni、Co粉末の
いずれも含まない比較例、供試材No.12〜No.14は、F
e、Ni、Co粉末の添加量が本発明の規定量に達して
いない比較例である。これら比較例について、前記と同
じ要領にて、グリーンコンパクトを形成し、その後、焼
結及びHIPを行ない、相対焼結密度を調べた。その結
果を表1に示す。
As comparative examples, test materials No. 11 to No. 15 were produced. Specimens No. 11 and No. 15 were comparative examples not containing any of Fe, Ni and Co powders, and Specimens No. 12 to No. 14 were F
This is a comparative example in which the amounts of e, Ni, and Co powders do not reach the specified amounts of the present invention. For these comparative examples, green compacts were formed in the same manner as described above, and thereafter, sintering and HIP were performed, and the relative sintered densities were examined. Table 1 shows the results.

【0030】[0030]

【表1】 [Table 1]

【0031】表1の結果から明らかなように、供試原料
粉末100重量部に対して、Fe、Ni、Co粉末の少な
くとも1種を1〜5重量部添加混合した供試材(No.1〜
No.8)は、HIP前の段階で、既に完全緻密体の93.8〜
95.5%の緻密焼結体が得られており、更にHIPするこ
とによってほぼ完全に緻密な焼結品を得られることがわ
かる。
As is clear from the results shown in Table 1, a test material (No. 1) was prepared by adding and mixing 1 to 5 parts by weight of at least one of Fe, Ni, and Co powders to 100 parts by weight of the test material powder. ~
No. 8) is the stage before HIP, which is already 93.8-
95.5% of a dense sintered body was obtained, and it is understood that a dense sintered product can be obtained almost completely by further HIP.

【0032】これに対し、供試材No.11及びNo.15は、F
e、Ni、Co粉末を添加していないため、HIP前の
段階では、相対密度が約75%程度の焼結体しか得られて
いない。この供試材は更にHIPを行なっても、密度向
上効果は殆んど認められない。また、供試材No.12〜No.
14は、Fe、Ni、Co粉末の添加量が少ないため、約
80%程度の焼結体しか得られない。これらの焼結体に更
にHIPを行なっても、密度向上効果は不十分である。
On the other hand, the test materials No. 11 and No. 15
Since e, Ni, and Co powders were not added, only a sintered body having a relative density of about 75% was obtained before HIP. Even if this test material is further subjected to HIP, the effect of increasing the density is hardly recognized. In addition, test materials No. 12 to No.
No. 14 has a small addition amount of Fe, Ni, and Co powders.
Only about 80% sintered body can be obtained. Even if HIP is further performed on these sintered bodies, the effect of improving the density is insufficient.

【0033】以上の結果から、酸化物分散強化耐熱合金
の原料粉末に、所定量のFe、Ni、Co粉末を少なく
とも1種混合することによって、焼結性が向上し、融点
よりもかなり低い温度で焼結を行なっても、少なくとも
約94%の相対密度を有する焼結体を得られることがわか
る。
From the above results, by mixing at least one of a predetermined amount of Fe, Ni and Co powders with the raw material powder of the oxide dispersion strengthened heat-resistant alloy, the sinterability is improved and the temperature is considerably lower than the melting point. It can be seen that even if sintering is performed, a sintered body having a relative density of at least about 94% can be obtained.

【0034】[0034]

【発明の効果】酸化物分散強化耐熱合金粉末のHIP焼
結を、カプセルを使用せずに行なうことができるから、
焼結すべき製品形状の自由度は大きい。従って、原料粉
末からほぼ任意形状の製品を成形してグリーンコンパク
トを作り、これを通常の焼結及びHIPを行なうだけ
で、非常に緻密な焼結品を得ることができる。高融点の
酸化物分散強化耐熱合金粉末から複雑形状の焼結品を作
る場合でも、カプセルの製作、緻密な焼結体ブロック形
成後の機械加工等は不要となるから、その経済的効果は
極めて大きい。
As described above, HIP sintering of the oxide dispersion strengthened heat-resistant alloy powder can be performed without using a capsule.
The degree of freedom of the product shape to be sintered is large. Therefore, a very compact sintered product can be obtained only by forming a green compact by molding a product of almost any shape from the raw material powder and subjecting it to normal sintering and HIP. Even if a complex shaped sintered product is made from a high melting point oxide dispersion strengthened heat-resistant alloy powder, the production of capsules and machining after the formation of a dense sintered body block are not required. large.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 北川 貴宏 兵庫県尼崎市浜1丁目1番1号 株式会 社クボタ技術開発研究所内 (72)発明者 西 隆 兵庫県尼崎市西向島町64番地 株式会社 クボタ尼崎工場内 (56)参考文献 特開 平4−325651(JP,A) 特開 平6−25712(JP,A) (58)調査した分野(Int.Cl.6,DB名) C22C 1/05,1/10,27/06 B22F 3/00 - 3/26 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Takahiro Kitagawa 1-1-1, Hama, Amagasaki-shi, Hyogo Prefecture Inside Kubota Technology Development Laboratory Co., Ltd. Inside the Amagasaki Plant (56) References JP-A-4-325565 (JP, A) JP-A-6-25712 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C22C 1/05 , 1 / 10,27 / 06 B22F 3/00-3/26

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 金属のマトリックス中に平均粒径0.1μm
以下のY23を0.2〜2.0重量%微細分散させた粒子から
なる原料粉末100重量部に対して、Fe粉末、Ni粉末
及びCo粉末からなる群から選択された少なくとも1種
以上の粉末1〜5重量部(合計量)を混合する工程、得ら
れた混合物を所定形状のグリーンコンパクトに形成する
工程、該コンパクトを1500℃以下の温度で焼結する
工程、及び、得られた焼結体を熱間静水圧加圧する工程
を有しており、前記金属は、実質的にCrからなる金
属、又はFe20%以下を含み、残部実質的にCrからな
る金属、又はAl、Mo、W、Nb、Ta、Hf及びA
l−Tiから構成される群の中から選択される少なくと
も一種を合計量で10%以下含み、残部実質的にCrから
なる金属、又はAl、Mo、W、Nb、Ta、Hf及び
Al−Tiから構成される群の中から選択される少なく
とも一種を合計量で10%以下並びにFe20%以下を含
み、残部実質的にCrからなる金属である、酸化物分散
強化耐熱合金焼結体の製法。
1. An average particle size of 0.1 μm in a metal matrix.
At least one kind of powder 1 selected from the group consisting of Fe powder, Ni powder and Co powder is added to 100 parts by weight of the following raw material powder composed of particles in which 0.2 to 2.0% by weight of Y 2 O 3 is finely dispersed. To 5 parts by weight (total amount), a step of forming the obtained mixture into a green compact having a predetermined shape, a step of sintering the compact at a temperature of 1500 ° C. or lower , and a resultant sintered body. And a step of hot isostatic pressurization, wherein the metal contains substantially Cr or a metal substantially containing 20% or less of Fe, and the remainder substantially consists of Cr, or Al, Mo, W, and Nb. , Ta, Hf and A
At least one selected from the group consisting of l-Ti is included in a total amount of 10% or less, and the balance is substantially composed of Cr, or Al, Mo, W, Nb, Ta, Hf, and Al-Ti A method for producing an oxide dispersion-strengthened heat-resistant alloy sintered body comprising at least one selected from the group consisting of: a total amount of 10% or less and Fe of 20% or less, and a balance substantially consisting of Cr.
JP4193551A 1992-07-21 1992-07-21 Manufacturing method of oxide dispersion strengthened heat-resistant alloy sintered body Expired - Lifetime JP2898475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4193551A JP2898475B2 (en) 1992-07-21 1992-07-21 Manufacturing method of oxide dispersion strengthened heat-resistant alloy sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4193551A JP2898475B2 (en) 1992-07-21 1992-07-21 Manufacturing method of oxide dispersion strengthened heat-resistant alloy sintered body

Publications (2)

Publication Number Publication Date
JPH0633166A JPH0633166A (en) 1994-02-08
JP2898475B2 true JP2898475B2 (en) 1999-06-02

Family

ID=16309938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4193551A Expired - Lifetime JP2898475B2 (en) 1992-07-21 1992-07-21 Manufacturing method of oxide dispersion strengthened heat-resistant alloy sintered body

Country Status (1)

Country Link
JP (1) JP2898475B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103422001A (en) * 2012-05-14 2013-12-04 东睦新材料集团股份有限公司 Chromium-based alloy material and production method thereof
CN103422002A (en) * 2012-05-14 2013-12-04 东睦新材料集团股份有限公司 Chromium-based alloy material and manufacturing method thereof
CN103422000A (en) * 2012-05-14 2013-12-04 东睦新材料集团股份有限公司 Chromium-based alloy material and production method thereof
CN104419857A (en) * 2013-08-20 2015-03-18 东睦新材料集团股份有限公司 Chromium-based alloy and preparation method thereof
CN104419856A (en) * 2013-08-20 2015-03-18 东睦新材料集团股份有限公司 Chromium-based alloy and manufacturing method thereof
CN104419855A (en) * 2013-08-20 2015-03-18 东睦新材料集团股份有限公司 Chromium-based alloy and manufacturing method thereof
CN104419858A (en) * 2013-08-20 2015-03-18 东睦新材料集团股份有限公司 Chromium-based alloy and preparation method thereof
AT14143U1 (en) * 2013-09-02 2015-05-15 Plansee Se Powder metallurgical component

Also Published As

Publication number Publication date
JPH0633166A (en) 1994-02-08

Similar Documents

Publication Publication Date Title
US5778301A (en) Cemented carbide
US7767138B2 (en) Process for the production of a molybdenum alloy
US5561829A (en) Method of producing structural metal matrix composite products from a blend of powders
JP3884618B2 (en) Method of uniaxial compression of agglomerated spherical metal powder
WO1996020902A1 (en) Production of an aluminide-containing ceramic moulding
JPH0747793B2 (en) Oxide dispersion strengthened heat resistant sintered alloy
JP2898475B2 (en) Manufacturing method of oxide dispersion strengthened heat-resistant alloy sintered body
EP0203197B1 (en) Process for producing super-heat-resistant alloy material
AT406349B (en) METHOD FOR PRODUCING A METAL POWDER WITH AN OXYGEN CONTENT LESS THAN 300 PPM, AND METHOD FOR PRODUCING MOLDED POWDER METALURGICAL METAL PRODUCTS FROM THIS METAL POWDER
US7288133B1 (en) Three-phase nanocomposite
JP3113144B2 (en) Method for producing high density sintered titanium alloy
JP2744737B2 (en) Sintering method of Cr-based heat-resistant alloy powder
JPH0633108A (en) Production of oxide dispersion strengthened heat resistant alloy sintered body
JP2730284B2 (en) Manufacturing method of Al-Si alloy sintered forged parts
JP2971720B2 (en) Manufacturing method of oxide dispersion strengthened Cr-based heat resistant sintered alloy
JPS6043423B2 (en) Method for manufacturing tool alloy with composite structure
JPH0633109A (en) Production of oxide dispersion reinforced heat resistant alloy sintered body
JPH0625713A (en) Method for sintering cr-base heat-resistant alloy powder
JPH0813059A (en) Production of sintered compact of cr-based heat resistant alloy strengthened by dispersion of oxide
JPH0813058A (en) Production of sintered compact of oxide dispersion strengthened cr-based heat resistant alloy
JPH0625703A (en) Method for sintering cr-base heat-resistant alloy powder
JP2928821B2 (en) Method for producing high-density chromium-based cermet sintered body
JPH01272730A (en) Manufacture of whisker reinforced metallic sintered member
JP3089701B2 (en) Manufacturing method of tungsten heavy alloy composite products
JPH04323307A (en) Production of tungsten heavy metal product

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990302