JPS6043423B2 - Method for manufacturing tool alloy with composite structure - Google Patents

Method for manufacturing tool alloy with composite structure

Info

Publication number
JPS6043423B2
JPS6043423B2 JP52007677A JP767777A JPS6043423B2 JP S6043423 B2 JPS6043423 B2 JP S6043423B2 JP 52007677 A JP52007677 A JP 52007677A JP 767777 A JP767777 A JP 767777A JP S6043423 B2 JPS6043423 B2 JP S6043423B2
Authority
JP
Japan
Prior art keywords
powder
particle size
composite structure
tool alloy
main component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52007677A
Other languages
Japanese (ja)
Other versions
JPS5393106A (en
Inventor
久祐 竹内
裕介 井寄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP52007677A priority Critical patent/JPS6043423B2/en
Publication of JPS5393106A publication Critical patent/JPS5393106A/en
Publication of JPS6043423B2 publication Critical patent/JPS6043423B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は2種以上の合金相より成る複合焼結工具合金
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a composite sintered tool alloy comprising two or more alloy phases.

従来、2種類以上の粉末を混合して複合焼結体を作製
し、各単独成分のもつ特長を兼備した材料、例えばWC
−Co超硬合金等を造る試みが数多くなされている。
Conventionally, a composite sintered body is produced by mixing two or more types of powder, and a material that combines the characteristics of each individual component, such as WC, is produced.
Many attempts have been made to produce -Co cemented carbide and the like.

し力士ながら、工具材料の分野においては、上記粉末混
合体の焼結という方法、これまで充分な成果を得ていな
い。これは例えばWC−Co超合金の場合にはWCとC
oとでは融点が異なるため、作製した複合焼結体におい
てCoは結合層として存在する。したがつてこの場合に
は混合すべき粉末の親和性を考慮するのみで良い。これ
に対し、溶融合金を粉末化したものを原料として工具材
料を作る場合にはFe基、Co基、その他の基合金てそ
れ自体が単独で工具用合金であるような合金を、特性改
良の為他の合金粉末と混合焼結しようとしても、それら
の融点がほぼ同じであるため、拡散により2種以上の成
分の中間的な組成の合金層が多量に形成されるという問
題がある。また、工具材料としての製造過程で塑性加工
を施す場合においては、焼結体中に比較的巨大な空隙が
存在していると、加工後も空孔が残留し、これが実用上
不都合なノッチの作用を示し靭性を損ねるという問題が
ある。 本発明の目的は上記問題点を解消し、構成成分
の特長点を最高度に発揮せしめた工具材料を堤供するこ
とにある。
Although he is a sumo wrestler, in the field of tool materials, the method of sintering the powder mixture described above has not achieved sufficient results so far. For example, in the case of WC-Co superalloy, WC and C
Since Co has a different melting point from Co and Co, Co exists as a bonding layer in the produced composite sintered body. Therefore, in this case, it is only necessary to consider the compatibility of the powders to be mixed. On the other hand, when making tool materials from powdered molten alloys, alloys such as Fe-based, Co-based, and other base alloys, which are themselves tool alloys, are used to improve their properties. Therefore, even if an attempt is made to mix and sinter the powder with other alloy powders, since their melting points are almost the same, there is a problem in that a large amount of alloy layer with an intermediate composition between the two or more components is formed due to diffusion. In addition, when plastic working is performed during the manufacturing process for tool materials, if relatively large voids exist in the sintered body, the voids will remain even after processing, and this will cause the formation of notches, which is a practical disadvantage. There is a problem in that it shows action and impairs toughness. An object of the present invention is to solve the above-mentioned problems and provide a tool material that maximizes the advantages of its constituent components.

上記目的を達成するために、本発明は主成分粉末とし
て粒子径100μ以上の工具合金粉末を用い、副成分粉
末として平均粒径において主成分粉末粒径の115以下
の粒子径の粉末を用い、これらを混合して金属容器に充
填し、次いで熱間圧密化することを特徴とする方法てあ
る。
In order to achieve the above object, the present invention uses a tool alloy powder with a particle size of 100μ or more as the main component powder, uses a powder with an average particle size of 115 or less of the main component powder particle size as the subsidiary component powder, There is a method characterized by mixing these materials and filling them into a metal container, followed by hot consolidation.

本発明において、上記主成分粉末のみの粒子径を10
0μ以上としたのは、100μ未満では加熱中に生じた
相互拡散の影響が大きくなるためである。
In the present invention, the particle size of the main component powder alone is 10
The reason why it is set to 0μ or more is because if it is less than 100μ, the influence of mutual diffusion that occurs during heating becomes large.

たとえば主成分をSKH−57のガスアトマイズ粉、副
成分をSUS53のガスアトマイズ粉とし、重量比85
115で混合後、焼結体を製造し、その後熱処理したと
きの主成分の粒径と材料の硬さの相関を第1図に示す。
ただし、混合時の両粉末の粒径比は5ハである。第1図
から明らかなように、100μ以下では硬さが急激に低
下する。
For example, if the main component is SKH-57 gas atomized powder and the subcomponent is SUS53 gas atomized powder, the weight ratio is 85.
FIG. 1 shows the correlation between the particle size of the main components and the hardness of the material when a sintered body was produced after mixing at step 115 and then heat treated.
However, the particle size ratio of both powders at the time of mixing is 5. As is clear from FIG. 1, the hardness decreases rapidly below 100 μm.

また、副成分粉末の粒子径をその平均粒径において主成
分粉末粒径の115以下としたのは、主成分の特長を減
じることなく副成分の特長を付加し、かつ最密充填を達
成するためである。
In addition, the particle size of the subcomponent powder is set to be 115 or less of the main component powder particle size in terms of its average particle size, in order to add the characteristics of the subcomponent without reducing the characteristics of the main component and to achieve close packing. It's for a reason.

また、本発明において、第三の成分を添加する場合、主
成分および第二成分と第三成分との間で拡散が起こらな
い物質とては酸化物、窒化物あるいは潤滑性を有する化
合物などが考えられるが、必ずしも他の成分相と反応や
拡散をしないものという限定はない。本質的に他成分の
機能を維持し、そして空隙の消滅粒子の結合の強化に役
立成分であればよい。例えば酸素の多い第一成分、第二
成分の表面層などと反応して清浄化作用をする水素化化
物粉、炭素粉などの添加も考えられる。その場合は、熱
間圧密化前の脱気操作において加熱脱気行なつて脱窒素
の目的が達せられるのである。このような第三成分は全
体に対して5%以下の少量を配合するとともに第二成分
よりさらに微細粉であることが望ましい。以下本発明を
実施例に基き詳細に説明する。
In addition, in the present invention, when adding a third component, the substance that does not cause diffusion between the main component, the second component, and the third component is an oxide, nitride, or a compound having lubricating properties. Although it is possible, it is not necessarily limited to not reacting or diffusing with other component phases. Any component may be used as long as it essentially maintains the functions of other components and is useful for strengthening the bonding of particles that eliminate voids. For example, it is possible to add hydride powder, carbon powder, etc. that react with the oxygen-rich surface layers of the first component and second component to have a cleaning effect. In that case, the purpose of denitrification can be achieved by heating and degassing in the degassing operation before hot consolidation. It is desirable that such a third component is blended in a small amount of 5% or less of the total amount and that it is a finer powder than the second component. The present invention will be explained in detail below based on examples.

実施例1主成分粉末としてJISSKH−57相当のガ
スア.トマイズ球状粉末(600〜850μ)を85%
、副成分として低炭素ステンレス鋼SUS53の水アト
マイズ粉末(44〜104μ)を15%混合した。
Example 1 As the main component powder, a gas powder equivalent to JISSKH-57 was used. 85% Tomized spherical powder (600-850μ)
, 15% of water atomized powder (44 to 104μ) of low carbon stainless steel SUS53 was mixed as a subcomponent.

これらを充分混合した後、充填率62.7%を得たが圧
粉成形に不可能であつたので軟鋼容器内にタップ充填し
、500℃て加熱脱気したのち、熱間静水圧ブレスによ
り1150゜Cで圧密化した。このとき、充分高い密度
が得られたが、更に鍛造を行ない、加工比10を以つて
丸棒を作製した。断面組織を調べると球状粉の1個1個
が長く伸びてステンレス鋼につま1れた繊維状の組織を
していた。変態温度の差異があるにもかかわらず、ワレ
その他の異常はみられず工具鋼として良好なものである
。実施例2 実施例1と同様JISSKH−5′7@当のガスアトマ
イズ粉状粉末を用い、その250μ以上850μ以下の
粒子を90%と、44μ以下の純鉄粉末10%とを混合
した。
After thoroughly mixing these, a filling rate of 62.7% was obtained, but since it was impossible to compact the powder, the mixture was tap-filled into a mild steel container, heated at 500°C, degassed, and then subjected to hot isostatic pressing. Consolidation was carried out at 1150°C. At this time, a sufficiently high density was obtained, but further forging was performed to produce a round bar with a working ratio of 10. When examining the cross-sectional structure, it was found that each spherical powder had a long, fibrous structure wrapped around stainless steel. Despite the difference in transformation temperature, there are no cracks or other abnormalities and the steel is good as a tool steel. Example 2 As in Example 1, JISSKH-5'7@ gas atomized powder was used, and 90% of the particles with a size of 250 μm or more and 850 μm or less were mixed with 10% of pure iron powder with a size of 44 μm or less.

純鉄粉末は熱伝導度が高いのて切削寿命を向上すると考
えられ、かつ熱処理に対し鈍感であり、靭性維持に効果
があると考えられる。上記配合物を空隙率35%の状態
にタップ充填し軟鋼容器に密に詰め脱気後粉末押出法に
より緻密化すると同時に加工比15を与えた。この結果
空孔)のないファイバー複合組織を得たので工具鋼の標
準熱処理を施し、工具性能テストを行なつたところ極め
て良好であつた。実施例3 WC−W2C系溶融合金を粉砕した多角形粒子を門主成
分としこれに低炭素ステンレス鋼粉を20%添加した。
Pure iron powder has high thermal conductivity and is thought to improve cutting life, and is insensitive to heat treatment and is thought to be effective in maintaining toughness. The above blend was tap-filled to a porosity of 35%, tightly packed in a mild steel container, deaerated, and then densified by powder extrusion, at the same time giving a processing ratio of 15. As a result, a fiber composite structure with no pores was obtained, which was subjected to standard heat treatment for tool steel, and a tool performance test was performed, which showed extremely good results. Example 3 Polygonal particles obtained by crushing a WC-W2C molten alloy were used as the main component, and 20% of low carbon stainless steel powder was added thereto.

前者は粒径100〜300pであり後者は20〜60μ
であつた。混合後冷圧成型が困難なため、タップ充填に
より空隙率40%にした。この粉末を軟鋼容器に詰め溶
接封緘後熱間押出法により棒状に・加工した。加工比は
9.5であつた。得られた材料は空隙率0.1%程度と
なつており、本材料を研削加工し耐磨機部品としたとこ
ろ良好な結果が得られた。実施例4 水アトマイズ法よによる工具鋼粉末(JISSKH57
相当)を主成分とし、Niベース18Cr一18C0−
φ拓系耐熱合金のガスアトマイズ粉末を副成分とした。
The former has a particle size of 100 to 300p, and the latter has a particle size of 20 to 60μ.
It was hot. Since it is difficult to cold-press the mixture after mixing, the porosity was set to 40% by tap filling. This powder was packed in a mild steel container, sealed by welding, and then processed into a rod shape by hot extrusion. The processing ratio was 9.5. The obtained material had a porosity of about 0.1%, and good results were obtained when this material was ground into wear-resistant machine parts. Example 4 Tool steel powder (JISSKH57
Ni-based 18Cr-18C0-
Gas atomized powder of φ-based heat-resistant alloy was used as a subcomponent.

前者は150μ〜250μ径、後者は4μ以下である。
さらに水素化ジルコニウム0.5%を添加した(粒度は
約10μ)。これをボールミルで混合したのちラバープ
レスを用いて常圧成型した。成形体の空隙率は35%で
あつた。これを軟鋼容器に充填後脱気管を通じて排気同
時に試料を1000℃まで加熱した。その途中の真空度
の変化と質量分析から主成分および副成分粉末の表面に
存在して酸化物がかなり還元されていることが知られた
。つぎに本容器を密封し、熱間静水圧焼結法により12
0(代)、15叩気圧、1時間で得られたインゴットは
熱間で鍛造し加工比12を与え、空隙のない工具鋼とし
て適した複合体を得た。上記実施例1〜4に記した如く
、本発明においては空隙率を40%以下とした状態で金
属容器に充填し、次にこの粉体を容器ごと熱間圧密化し
たのち、加工比10以上の塑性変形を与えるとより望ま
しい結果が得られる。
The former has a diameter of 150μ to 250μ, and the latter has a diameter of 4μ or less.
Additionally, 0.5% zirconium hydride was added (particle size approximately 10μ). This was mixed in a ball mill and then molded under normal pressure using a rubber press. The porosity of the molded body was 35%. After filling this into a mild steel container, the sample was heated to 1000° C. while being evacuated through a degassing pipe. From changes in the degree of vacuum during the process and mass spectroscopy, it was found that the oxides present on the surfaces of the main component and subcomponent powders were considerably reduced. Next, the container was sealed and heated for 12 hours by hot isostatic sintering.
The ingots obtained at 0 (generations) and 15 tapping pressures for 1 hour were hot forged to give a working ratio of 12, and a composite suitable as a void-free tool steel was obtained. As described in Examples 1 to 4 above, in the present invention, a metal container is filled with a porosity of 40% or less, and then this powder is hot consolidated together with the container, and then the processing ratio is 10 or more. More desirable results can be obtained by applying plastic deformation of .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、粉末粒径と硬さの相関図てある。 FIG. 1 shows the correlation between powder particle size and hardness.

Claims (1)

【特許請求の範囲】 1 工具合金粉末を主成分粉末とし、これに副成分粉末
を添加混合して金属容器に充填した後、該混合粉末を容
器ごと熱間圧密化して工具合金を得る方法において、上
記主成分粉末の粒子径を100μ以上とちるとともに、
副成分粉末の粒子径を平均粒径において主成分粉末粒子
径の1/5以下としてことを特徴とする複合組織を有す
る工具合金の製造方法。 2 特許請求の範囲第1項記載の方方法において、上記
混合粉末が空隙率40%以下であることを特徴とする複
合組織を有する工具合金の製造方法。 3 特許請求の範囲第1項または第2項記載の方法にお
いて、上記熱間圧密化した後、加工比10以上の塑性変
形を与えることを特徴とする複合組織を有する工具合金
の製造方法。
[Claims] 1. A method of obtaining a tool alloy by using a tool alloy powder as a main component powder, adding and mixing sub-component powders thereto, filling the mixture into a metal container, and then hot-consolidating the mixed powder together with the container. , the particle size of the main component powder is 100μ or more, and
A method for producing a tool alloy having a composite structure, characterized in that the average particle size of the subsidiary component powder is 1/5 or less of the particle size of the main component powder. 2. A method for manufacturing a tool alloy having a composite structure, characterized in that the mixed powder has a porosity of 40% or less in the method according to claim 1. 3. A method for manufacturing a tool alloy having a composite structure, characterized in that, in the method according to claim 1 or 2, after the hot consolidation, plastic deformation is applied at a working ratio of 10 or more.
JP52007677A 1977-01-28 1977-01-28 Method for manufacturing tool alloy with composite structure Expired JPS6043423B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52007677A JPS6043423B2 (en) 1977-01-28 1977-01-28 Method for manufacturing tool alloy with composite structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52007677A JPS6043423B2 (en) 1977-01-28 1977-01-28 Method for manufacturing tool alloy with composite structure

Publications (2)

Publication Number Publication Date
JPS5393106A JPS5393106A (en) 1978-08-15
JPS6043423B2 true JPS6043423B2 (en) 1985-09-27

Family

ID=11672412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52007677A Expired JPS6043423B2 (en) 1977-01-28 1977-01-28 Method for manufacturing tool alloy with composite structure

Country Status (1)

Country Link
JP (1) JPS6043423B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH029175B2 (en) * 1985-02-18 1990-02-28 Honda Motor Co Ltd

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5782438A (en) * 1980-11-13 1982-05-22 Hitachi Metals Ltd Heat and wear resistant alloy having microcomposite structure by powder metallurgy and its manufacture
JPS57158357A (en) * 1981-03-25 1982-09-30 Hitachi Metals Ltd Composite hot working tool material with wear and heat resistance
JPS57164944A (en) * 1981-04-02 1982-10-09 Hitachi Metals Ltd Alloy with high toughness and high electric resistance
JPS57169061A (en) * 1981-04-09 1982-10-18 Hitachi Metals Ltd High abrasion resistant and heat resistant hot working composite tool material
JPS57169032A (en) * 1981-04-09 1982-10-18 Hitachi Metals Ltd High abrasion resistant and heat resistant composite hot working tool material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH029175B2 (en) * 1985-02-18 1990-02-28 Honda Motor Co Ltd

Also Published As

Publication number Publication date
JPS5393106A (en) 1978-08-15

Similar Documents

Publication Publication Date Title
US5561829A (en) Method of producing structural metal matrix composite products from a blend of powders
JPS62238344A (en) Mechanical alloying method
JPH0130898B2 (en)
EP1044286A1 (en) Dispersion hardening alloy and method for the production of the alloy
JPS6043423B2 (en) Method for manufacturing tool alloy with composite structure
EP0202886B1 (en) Canless method for hot working gas atomized powders
US5765096A (en) Method for producing nickel-aluminum intermetallic compounds containing dopant elements
JP3113144B2 (en) Method for producing high density sintered titanium alloy
JPH0625386B2 (en) Method for producing aluminum alloy powder and sintered body thereof
JPH02200743A (en) Method for compacting ti-al series intermetallic compound member
JP2588889B2 (en) Forming method of Ti-Al based intermetallic compound member
JPS5857502B2 (en) Sintered material with toughness and wear resistance
JP2588890B2 (en) Forming method of Ti-Al based intermetallic compound member
JPS63255331A (en) Formation of ti-al intermetallic-compound member
JPH0368724A (en) Manufacture of aluminide-base composite material
JPH07238302A (en) Sintered titanium filter and production thereof
JPH0322458B2 (en)
JPS59563B2 (en) Manufacturing method of diamond sintered body
JPH1046208A (en) Production of ti-ni base alloy sintered body
JPS62278240A (en) Compacting method for ti-al intermetallic compound member
JPS63140049A (en) Forming method for ti-al intermetallic compound member
JPH0633165A (en) Manufacture of sintered titanium alloy
JPS63243234A (en) Molding method for member of ti-al intermetallic compound
JP3054703B2 (en) Manufacturing method of iron-chromium alloy with excellent strength
JP3135555B2 (en) High speed tool steel sintered body