JPH0130898B2 - - Google Patents

Info

Publication number
JPH0130898B2
JPH0130898B2 JP60213386A JP21338685A JPH0130898B2 JP H0130898 B2 JPH0130898 B2 JP H0130898B2 JP 60213386 A JP60213386 A JP 60213386A JP 21338685 A JP21338685 A JP 21338685A JP H0130898 B2 JPH0130898 B2 JP H0130898B2
Authority
JP
Japan
Prior art keywords
powder
weight
treatment
temperature
intermetallic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60213386A
Other languages
Japanese (ja)
Other versions
JPS6270531A (en
Inventor
Kazuhisa Shibue
Shigenori Yamauchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP60213386A priority Critical patent/JPS6270531A/en
Publication of JPS6270531A publication Critical patent/JPS6270531A/en
Publication of JPH0130898B2 publication Critical patent/JPH0130898B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、粉末冶金法によるTi−Al系金属間
化合物部材の成形法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for forming a Ti-Al intermetallic compound member using a powder metallurgy method.

[従来の技術および発明が解決しようとする問題
点] 従来、Ti−Al系金属間化合物(Ti−Al、
Ti3Al)は、優れた高温強度および耐酸化性を有
することが知られている。しかし、この部材は、
常温および高温で展延性に乏しいので、従来の加
工技術では成形加工することが困難であり、実用
材料に供することができないという問題点があつ
た。
[Problems to be solved by conventional technology and invention] Conventionally, Ti-Al based intermetallic compounds (Ti-Al,
Ti3Al ) is known to have excellent high temperature strength and oxidation resistance. However, this member
Since it has poor malleability at room temperature and high temperature, it is difficult to mold it using conventional processing techniques, and there is a problem that it cannot be used as a practical material.

これを解決する手段として、たとえば、Ti−
37%(以下、%は重量%を示す。)Al合金部材を
側圧付加押出法等の特別な押出加工方法により実
現しようとする試みがなされているが、実用化に
至つていない。
As a means to solve this problem, for example, Ti-
Attempts have been made to realize 37% (hereinafter % indicates weight %) Al alloy members using special extrusion processing methods such as lateral pressure extrusion methods, but they have not been put to practical use.

[問題点を解決するための手段および作用] 上記問題点を解決するためになされた本発明
は、粉末冶金法に着目して、Ti−Al系金属間化
合物を形成することを特徴とするものである。
[Means and effects for solving the problems] The present invention, which has been made to solve the above problems, is characterized in that a Ti-Al based intermetallic compound is formed by focusing on a powder metallurgy method. It is.

(Ti粉末の製造工程) 第1図に示すように、Ti粉末は、常法の粉末
製造法や、鋳塊等の切削で製作されたものを用い
ることができ、その粒度を1μm〜1000μmに調整
したものを用いる。
(Manufacturing process of Ti powder) As shown in Figure 1, Ti powder can be produced by the conventional powder manufacturing method or by cutting an ingot, etc., and the particle size is 1 μm to 1000 μm. Use the adjusted one.

この場合、必要に応じて、Tiと、Al、V、
Mn、Nb、Bなどの合金粉末を用いてもよい。
In this case, Ti, Al, V,
Alloy powders such as Mn, Nb, and B may also be used.

(Al粉末の製造工程) Al粉末は、常法の粉末製造法により作られ、
望ましくは、価格の点からガスアトマイズ法がよ
い。粒度は1μm〜1000μmに調整し、必要に応じ
て、Aiと、V、Mn、Nb、Bなどの合金粉末を
用いてもよい。
(Manufacturing process of Al powder) Al powder is made by the conventional powder manufacturing method.
Preferably, the gas atomization method is preferred from the viewpoint of cost. The particle size is adjusted to 1 μm to 1000 μm, and if necessary, alloy powders of Ai and V, Mn, Nb, B, etc. may be used.

(混合工程) つぎに、上記Ti粉末とAl粉末とを、Al18〜50
%、Ti50〜82%の割合にて混合機で混合する。
この割合は、望ましくは、Al25.5〜43%、Ti57
〜74.5%で、特に望ましくはAl34.5〜43%、Ti57
〜65.5%である。
(Mixing process) Next, the above Ti powder and Al powder are mixed with Al18~50.
%, Ti mixed in a mixer at a ratio of 50 to 82%.
This proportion is preferably Al25.5-43%, Ti57
~74.5%, especially preferably Al34.5~43%, Ti57
~65.5%.

(脱気工程) つぎに、混合物を容器に収納して真空ポンプ等
により脱気処理を行なう。これは、粉末表面の吸
着ガス、吸着水を除去するとともに、後工程にお
ける酸化を防止することにある。この脱気後の状
態は、後の高温、高圧処理工程まで保持する必
要がある。
(Deaeration process) Next, the mixture is stored in a container and deaeration treatment is performed using a vacuum pump or the like. This is to remove adsorbed gas and adsorbed water on the powder surface and to prevent oxidation in subsequent steps. This state after degassing needs to be maintained until the subsequent high temperature and high pressure treatment step.

(緻密化処理) 脱気工程後の混合体または圧縮体を常法の押
出加工やホツトプレスにて緻密化処理してほぼ
100%の密度にする。このとき、Ti−Al系金属間
化合物が形成されないような低温(例えば、400
℃程度)にて処理する。この緻密化処理を施す
のは、Ti粉末とAl粉末とを未着させて、後述の
高温・高圧処理時における合金化反応を容易に
し、かつ緻密な部材を得るためである。製品形状
が押出加工やホツトプレスで成形できる形状、例
えば、棒状、管状、直方体またはそれらに近い形
状の場合には、緻密化処理時にそれらの形状に成
形する(緻密体) (高温、高圧処理工程) 緻密体を高温、高圧下にて熱処理を行なう。す
なわち、Ti中にAlを拡散させることによりTi−
Al系金属間化合物を形成する。このとき、カー
ケンドル効果、つまりAlの拡散により多数の空
孔が発生し、空洞となるが、これらの空洞は高圧
処理によりつぶされる。
(Densification treatment) After the degassing process, the mixture or compressed body is densified by conventional extrusion processing or hot pressing to approximately
Make it 100% density. At this time, a low temperature (for example, 400
℃). The purpose of performing this densification treatment is to prevent the Ti powder and Al powder from adhering to each other, to facilitate the alloying reaction during the high-temperature/high-pressure treatment described below, and to obtain a densified member. If the product shape can be formed by extrusion processing or hot pressing, for example, a rod, a tube, a rectangular parallelepiped, or a shape similar to these, it is formed into that shape during densification treatment (dense body) (high temperature, high pressure treatment process) The dense body is heat treated at high temperature and high pressure. In other words, by diffusing Al into Ti, Ti−
Forms Al-based intermetallic compounds. At this time, many pores are generated due to the Kirkendall effect, that is, diffusion of Al, forming cavities, but these cavities are crushed by high pressure treatment.

この処理は、たとえば、HIP(熱間静水圧圧縮)
処理にて行なわれる。HIP処理の温度は、400℃
〜1400℃の範囲で行なう。これは、400℃以下で
あると、TiとAlの金属間化合物化が進行せず、
一方、1400℃以上では材料が溶解するからであ
る。また、400℃〜1400℃では、TiとAlとの反応
が急激に進むので多数の空洞が生じ、多孔体とな
るので、空洞をつぶすために、混合体をカプセル
封入して圧力を加えることが必要である。
This process is, for example, HIP (Hot Isostatic Pressing)
This is done in processing. The temperature of HIP treatment is 400℃
Perform in the range of ~1400℃. This is because if the temperature is below 400℃, the formation of intermetallic compounds between Ti and Al will not proceed.
On the other hand, this is because the material melts at temperatures above 1400°C. Furthermore, at temperatures between 400°C and 1400°C, the reaction between Ti and Al proceeds rapidly, creating many cavities and creating a porous body. Therefore, it is necessary to encapsulate the mixture and apply pressure to collapse the cavities. is necessary.

この処理により、TiAlおよびTi3Alの金属間化
合物が形成されるが、このとき、Tiの割合が大
きい場合に、Ti3AlをマトリクスとしてTiAlが分
散状態になり、一方、Tiの割合が少ない場合に
逆になる。
This treatment forms intermetallic compounds of TiAl and Ti 3 Al. At this time, when the proportion of Ti is large, TiAl becomes dispersed with Ti 3 Al as a matrix, while when the proportion of Ti is small The case is reversed.

本発明の主たる工程は以上であるが、必要に応
じて、第2図に示す処理を加えてもよい。
The main steps of the present invention have been described above, but the processing shown in FIG. 2 may be added if necessary.

(他の金属、合金の粉末製造工程) Ti−Al系金属間化合物部材に必要な添加元素、
たとえば、延性改良に効果があるとされている、
V、Mn、Nb、Bなどを単体または合金粉末とし
てTi−Al粉末と同時に混合する。このとき、各
元素の添加量はV0.1〜5%、Mn0.1〜5%、
Nb0.1〜5%、B0.05〜3%であり、いずれの元
素においても下限値以下では延性改良の効果がみ
られず、上限値以上では、延性改良の効果がほぼ
飽和し、強度特性も低下する。
(Powder manufacturing process for other metals and alloys) Additional elements necessary for Ti-Al intermetallic compound parts,
For example, it is said to be effective in improving ductility.
V, Mn, Nb, B, etc. are mixed together with the Ti-Al powder either alone or as an alloy powder. At this time, the amount of each element added is V0.1~5%, Mn0.1~5%,
Nb0.1-5% and B0.05-3%. Below the lower limit of any element, no effect of improving ductility is observed, and above the upper limit, the effect of improving ductility is almost saturated, and the strength properties also decreases.

(圧縮工程) 混合工程の混合体を冷間静水圧プレスや一軸
プレスを行ない、真密度の60〜95%にする。この
とき、密度が60%以下では圧縮後に、圧縮体とし
ての形状が保てなく、また、95%以上では、脱気
処理の実効を得られない。
(Compression step) The mixture in the mixing step is subjected to cold isostatic pressing or uniaxial pressing to achieve a true density of 60 to 95%. At this time, if the density is less than 60%, the shape of the compressed body cannot be maintained after compression, and if the density is more than 95%, the degassing treatment cannot be effective.

(Near Net Shape成形工程) 緻密化工程を経た圧縮体を所望の部品形状ま
たはそれに近い形状に、冷間または熱間鍛造や機
械加工にて成形する(緻密成形体)。この工程は
製品形状が押出加工やホツトプレスでは成形でき
ない複雑な形状のときに適用される。Near Net
Shape成形を施すのは、Ti−Al系金属間化合物
は、非常に硬いために、これが一旦形成される
と、以降成形加工を施すことが極めて困難であ
り、したがつて、高温・高圧処理前に所望の製
品形状に近い形状に成形加工するのである。
(Near Net Shape forming process) The compressed body that has undergone the densification process is formed into the desired part shape or a shape close to it by cold or hot forging or machining (density formed body). This process is applied when the product shape is complex and cannot be formed by extrusion or hot pressing. Near Net
Shape forming is performed because Ti-Al intermetallic compounds are extremely hard, so once they are formed, it is extremely difficult to further shape them. It is then molded into a shape close to the desired product shape.

この処理は、脱気工程後に、粉末鍛造等で
Near Net Shapeしてもよい場合がある。
This treatment is performed by powder forging etc. after the degassing process.
Near Net Shape may also be acceptable.

(仕上り成形工程) 高温・高圧処理工程後に、機械加工等により
最終製品の形状に仕上げる。
(Final molding process) After the high temperature and high pressure treatment process, the final product is shaped by machining etc.

[発明の効果] 以上説明したように、本発明によれば、金属間
化合物に焼結形成する前に、低温で緻密化処理を
することにより、Ti−Al系金属間化合物部材の
優れた高温強度および耐酸化性を活かすととも
に、粉末冶金法により所望の製品形状に容易に成
形することができる。
[Effects of the Invention] As explained above, according to the present invention, by performing a densification treatment at a low temperature before sintering the intermetallic compound, the Ti-Al intermetallic compound member has excellent high-temperature properties. In addition to taking advantage of its strength and oxidation resistance, it can be easily molded into the desired product shape using powder metallurgy.

[実施例] 以下、本発明の一実施例について説明する。[Example] An embodiment of the present invention will be described below.

まず、48メツシユ以下のスポンジTiと、48メ
ツシユ以下のガスアトマイズ法によるAl粉末と
を製造し、これらの粉末を重量分率で64:36の割
合で、V型混合機によつて混合した。この混合粉
末を一軸プレスにて圧縮成形し、その真密度を80
%にした。
First, a Ti sponge of 48 meshes or less and Al powder of 48 meshes or less by gas atomization were produced, and these powders were mixed in a weight fraction of 64:36 using a V-type mixer. This mixed powder is compression molded using a uniaxial press, and its true density is 80.
%.

つぎに、第3図に示すように、圧縮成形体10
をアルミニウム製の直径68mmの缶11に嵌合し、
缶端部11aに脱気用パイプ12を溶接した。こ
の後、該パイプ12に真空ポンプ(図示省略)を
接続し、500℃で1時間加熱した状態にて、
10-3Torr以下の真空度まで脱気処理を行なつた。
Next, as shown in FIG.
is fitted into an aluminum can 11 with a diameter of 68 mm,
A deaeration pipe 12 was welded to the can end 11a. After that, a vacuum pump (not shown) was connected to the pipe 12, and heated at 500°C for 1 hour.
Degassing was performed to a vacuum level of 10 -3 Torr or less.

つぎに、上記脱気用パイプ12を圧着すること
により圧縮成形体10を缶11内で真空封入し
た。この封入後の圧縮成形体10を押出温度400
℃、押出比15で押出加工を行ない、直径18mmの
押出部材を得た。この押出部材は、第4図の写真
(倍率100倍)に示すように、Ti(黒色部)とAl
(白色部)とは混合状態にあり、Ti−Alの金属間
化合物相がほとんどみあたらず、また、組織中に
空洞は観察されなかつた。
Next, the compression molded body 10 was vacuum-sealed in the can 11 by compressing the deaeration pipe 12 . This encapsulated compression molded body 10 is extruded at a temperature of 400.
Extrusion processing was carried out at 15° C. and an extrusion ratio of 15 to obtain an extruded member with a diameter of 18 mm. As shown in the photograph in Figure 4 (100x magnification), this extruded member has Ti (black part) and Al
(white part), almost no Ti-Al intermetallic compound phase was observed, and no cavities were observed in the structure.

つぎに、押出部材の外周部を被覆しているアル
ミニウム部材を切削除去した後に、冷却鍛造によ
り完成品に近い形状への成形(Near Net
Shape)を行なつた。
Next, after cutting and removing the aluminum member covering the outer periphery of the extruded member, it is cooled and forged into a shape close to the finished product (Near Net
Shape).

つぎに、鍛造部材を鉄製カプセルに真空封入
し、このカプセルとともに鍛造部材をHIP処理し
た。このときのHIP処理条件として、1300Kgf/
cm2の加圧下において、1250℃で2時間を採用し
た。この処理により、TiとAlとは金属間化合物
を形成し、化合物形成によるカーケンドル効果に
よつて生じた空洞は、加圧により押しつぶされて
観察されなかつた。このようなHIP処理をした加
工部材の組織写真(倍率100倍)を第5図に示す。
空洞は観察されず、緻密な組織となつていた。
Next, the forged member was vacuum-sealed into an iron capsule, and the forged member and the capsule were subjected to HIP treatment. The HIP processing conditions at this time were 1300Kgf/
A temperature of 1250° C. for 2 hours was employed under a pressure of cm 2 . Through this treatment, Ti and Al formed an intermetallic compound, and the cavities created by the Kirkendall effect due to the compound formation were crushed by the pressure and were not observed. Fig. 5 shows a photograph (100x magnification) of the structure of a processed member subjected to such HIP treatment.
No cavities were observed, and the structure was dense.

上記処理により得られた製品について検査した
結果、高温強度では、900℃にて、40Kgf/mm2
引張強さが得られた。
As a result of testing the product obtained by the above treatment, it was found that a tensile strength of 40 Kgf/mm 2 was obtained at 900°C.

【図面の簡単な説明】[Brief explanation of drawings]

1図は本発明の成形法を示す工程図、第2図は
第1図の変形例を示す工程図、第3図は本発明の
一実施例による工程を説明する説明図、第4図は
同実施例による金属組織を示す写真、第5図は同
実施例による金属組織を示す写真である。
FIG. 1 is a process diagram showing the molding method of the present invention, FIG. 2 is a process diagram showing a modification of FIG. 1, FIG. 3 is an explanatory diagram explaining the process according to an embodiment of the present invention, and FIG. FIG. 5 is a photograph showing the metal structure according to the same example. FIG. 5 is a photograph showing the metal structure according to the same example.

Claims (1)

【特許請求の範囲】 1 Al18〜50重量%、Ti50〜82重量%の割合で、
AlおよびTiの粉末を混合し、この混合物を密閉
容器に収納して脱気し、Ti−Al系金属間化合物
を形成しない温度でほぼ100%の密度に緻密化処
理を施した後に、Ti−Al系金属間化合物を形成
する圧力および温度条件にて緻密体を高温・高圧
処理することを特徴とするTi−Al系金属間化合
物部材の成形法。 2 Al粉末またはTi粉末がV、Nb、Mn、Bの
うち1種以上を含むか、あるいは、Al粉末とTi
粉末とV、Nb、Mn、Bの粉末の1種以上とを含
み形成されるTi−Al系金属間化合物が、V0.1〜
5重量%、Nb0.1〜5重量%、Mn0.1〜5重量
%、B0.05〜3重量%のうち1種以上を含む特許
請求の範囲第1項記載のTi−Al系金属間化合物
部材の成形法。
[Claims] 1 Al: 18 to 50% by weight, Ti: 50 to 82% by weight,
Al and Ti powders are mixed, this mixture is stored in a sealed container, degassed, and densified to almost 100% density at a temperature that does not form Ti-Al intermetallic compounds. A method for forming a Ti-Al intermetallic compound member, characterized by subjecting a dense body to high temperature and high pressure treatment under pressure and temperature conditions that form an Al intermetallic compound. 2 Al powder or Ti powder contains one or more of V, Nb, Mn, and B, or Al powder and Ti powder
The Ti-Al intermetallic compound formed by containing the powder and one or more of the powders of V, Nb, Mn, and B is V0.1~
5% by weight, Nb0.1-5% by weight, Mn0.1-5% by weight, and B0.05-3% by weight. Method of forming parts.
JP60213386A 1985-09-24 1985-09-24 Formation of ti-al intermetallic compound member Granted JPS6270531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60213386A JPS6270531A (en) 1985-09-24 1985-09-24 Formation of ti-al intermetallic compound member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60213386A JPS6270531A (en) 1985-09-24 1985-09-24 Formation of ti-al intermetallic compound member

Publications (2)

Publication Number Publication Date
JPS6270531A JPS6270531A (en) 1987-04-01
JPH0130898B2 true JPH0130898B2 (en) 1989-06-22

Family

ID=16638340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60213386A Granted JPS6270531A (en) 1985-09-24 1985-09-24 Formation of ti-al intermetallic compound member

Country Status (1)

Country Link
JP (1) JPS6270531A (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62250139A (en) * 1986-04-24 1987-10-31 Sumitomo Metal Ind Ltd Titanium alloy for high temperature service excellent in hot workability
JPS63125634A (en) * 1986-11-12 1988-05-28 Kawasaki Heavy Ind Ltd Ti-al alloy
JP2588889B2 (en) * 1987-04-02 1997-03-12 住友軽金属工業株式会社 Forming method of Ti-Al based intermetallic compound member
JP2588890B2 (en) * 1987-04-03 1997-03-12 住友軽金属工業株式会社 Forming method of Ti-Al based intermetallic compound member
JPS63250429A (en) * 1987-04-06 1988-10-18 Seiko Instr & Electronics Ltd Production of ytterbium-transition metal alloy
JPS63255331A (en) * 1987-04-10 1988-10-21 Sumitomo Light Metal Ind Ltd Formation of ti-al intermetallic-compound member
JPH076008B2 (en) * 1987-09-16 1995-01-25 本田技研工業株式会社 Aluminum alloy powder molding method
JP2679109B2 (en) * 1988-05-27 1997-11-19 住友金属工業株式会社 Intermetallic compound TiA-based light-weight heat-resistant alloy
JPH0261017A (en) * 1988-08-27 1990-03-01 Yakichirou Shiozaki Titanium-aluminum alloy
JPH02101134A (en) * 1988-10-05 1990-04-12 Daido Steel Co Ltd Heat-resistant coated material
JPH0730418B2 (en) * 1989-01-30 1995-04-05 住友軽金属工業株式会社 Forming method of Ti-Al intermetallic compound member
JPH02259029A (en) * 1989-03-31 1990-10-19 Sumitomo Light Metal Ind Ltd Manufacture of aluminide
JPH0791609B2 (en) * 1991-05-01 1995-10-04 科学技術庁金属材料技術研究所長 Ti / Al-based intermetallic compound material for electrolytic processing and its manufacturing method and processing method
JP3673136B2 (en) * 1999-04-01 2005-07-20 株式会社デンソー Heat treatment method for cold and warm processed products of high carbon-high alloy steel
CN102443796B (en) * 2011-12-02 2014-01-22 九江学院 Porous Fe-Al intermetallic compound coating and its preparation method
JP6641223B2 (en) 2016-04-05 2020-02-05 三菱重工航空エンジン株式会社 Method for producing TiAl-based intermetallic compound sintered body

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5244287A (en) * 1975-10-03 1977-04-07 Wakamoto Pharmaceut Co Ltd Method of producing beta-galactosidase
JPS5641344A (en) * 1979-07-25 1981-04-18 United Technologies Corp Titaniummaluminum alloy
JPS59581A (en) * 1982-06-24 1984-01-05 Mitsubishi Electric Corp Apparatus for detecting idling of pump

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5244287A (en) * 1975-10-03 1977-04-07 Wakamoto Pharmaceut Co Ltd Method of producing beta-galactosidase
JPS5641344A (en) * 1979-07-25 1981-04-18 United Technologies Corp Titaniummaluminum alloy
JPS59581A (en) * 1982-06-24 1984-01-05 Mitsubishi Electric Corp Apparatus for detecting idling of pump

Also Published As

Publication number Publication date
JPS6270531A (en) 1987-04-01

Similar Documents

Publication Publication Date Title
US5561829A (en) Method of producing structural metal matrix composite products from a blend of powders
JPH0130898B2 (en)
US4104061A (en) Powder metallurgy
US4460541A (en) Aluminum powder metallurgy
JPH0475299B2 (en)
US11219949B2 (en) Method for promoting densification of metal body by utilizing metal expansion induced by hydrogen absorption
US4534808A (en) Method for refining microstructures of prealloyed powder metallurgy titanium articles
US4410488A (en) Powder metallurgical process for producing a copper-based shape-memory alloy
US4536234A (en) Method for refining microstructures of blended elemental powder metallurgy titanium articles
JP2588889B2 (en) Forming method of Ti-Al based intermetallic compound member
JPH02200743A (en) Method for compacting ti-al series intermetallic compound member
JPS63255331A (en) Formation of ti-al intermetallic-compound member
JP2588890B2 (en) Forming method of Ti-Al based intermetallic compound member
JPS6043423B2 (en) Method for manufacturing tool alloy with composite structure
JP2549116B2 (en) Method for forming Ti-A (1) type alloy electrode member
JPS62278240A (en) Compacting method for ti-al intermetallic compound member
JPS63140049A (en) Forming method for ti-al intermetallic compound member
JPH0273952A (en) Production of alloy phase from prowdery ductile component
JPS62199703A (en) Hot hydrostatic compression molding method for al-si powder alloy
JPH0428833A (en) Method for compacting fe-al series intermetallic compound member
JPS6360265A (en) Production of aluminum alloy member
JP3252481B2 (en) Tungsten alloy having fine crystal grains and method for producing the same
JPS63243234A (en) Molding method for member of ti-al intermetallic compound
JPS59157201A (en) Manufacture of molded body of zinc-aluminum alloy powder
JPH03173705A (en) Production of high density sintered body