JPH0428833A - Method for compacting fe-al series intermetallic compound member - Google Patents

Method for compacting fe-al series intermetallic compound member

Info

Publication number
JPH0428833A
JPH0428833A JP2134578A JP13457890A JPH0428833A JP H0428833 A JPH0428833 A JP H0428833A JP 2134578 A JP2134578 A JP 2134578A JP 13457890 A JP13457890 A JP 13457890A JP H0428833 A JPH0428833 A JP H0428833A
Authority
JP
Japan
Prior art keywords
intermetallic compound
mixture
powder
temperature
compound member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2134578A
Other languages
Japanese (ja)
Inventor
Bokujiyun Kin
金 睦淳
Kazuhisa Shibue
渋江 和久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP2134578A priority Critical patent/JPH0428833A/en
Publication of JPH0428833A publication Critical patent/JPH0428833A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To easily compact an Fe-Al series intermetallic compound member by subjecting a powder mixture of Al and Fe having a specified compsn. to heat treatment in a specified temp. range. CONSTITUTION:Al (alloy) powder and Fe (alloy) powder are manufactured. Bath of the above powders are mixed to prepare a mixture in the ratio of 12 to 60wt.% Al and 40 to 88% Fe. This mixture is subjected to heat treatment at a temp. of forming an Fe-Al series-intermetallic compound member or above as well as at the solidus temp. of the compound or above. Or, the above mixture is deaerated in vacuum to prevent the generation of pores and is thereafter densified by a hot press or the like. Next, the mixture is heated and burned in the temp. range of the above heat treatment under >=200 atmospheric pressure.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はFe−Al系金金属間化合物部材成形方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for forming a Fe-Al based gold intermetallic compound member.

[従来の技術] 従来より、正原子価乞もつ金属元素同志で化合物をつく
る金属間化合物の一種であるFe−Al系金金属間化合
物、優れた高温強度及び耐食性を有するため、低価格な
高温用構造材料として注目されている。
[Prior art] Fe-Al based gold intermetallic compounds, which are a type of intermetallic compounds that form compounds with metallic elements with high positive valences, have been used as low-cost high-temperature compounds because they have excellent high-temperature strength and corrosion resistance. It is attracting attention as a structural material for industrial use.

[発明が解決しようとする課題] ところが、Fe−Al系金金属間化合物、常温及び高温
で展延性に乏しいので、成形加工することが難しく、実
用材料に供することが困難であるという問題点があった そこで本発明は、Fe−Al系金金属間化合物部材容易
に成形することができるFe−Al系金金属間化合物部
材成形方法を提供することを目的としてなされた。
[Problems to be Solved by the Invention] However, since the Fe-Al-based gold intermetallic compound has poor malleability at room temperature and high temperature, it is difficult to form and process it, and it is difficult to use it as a practical material. Therefore, the present invention has been made with the object of providing a method for forming a Fe-Al based gold intermetallic compound member, which can easily form an Fe-Al based gold intermetallic compound member.

[課題を解決するための手段] 前記目的を達するためになされた請求項]の発明は、 Al12〜60重量%、Fe40〜88重量%の割合で
、Al又はAΩ合金の粉末とFe又はFe合金の粉末と
を混合し、この混合物をFe−Al系金金属間化合物形
成する温度以上でかつ該化合物の固相線以下の温度で熱
処理することを特徴とするFe−Al系金金属間化合物
部材成形方法を要旨とする。
[Means for Solving the Problems] The invention described in Claims made to achieve the above object is as follows: Al or AΩ alloy powder and Fe or Fe alloy powder in a proportion of 12 to 60% by weight of Al and 40 to 88% by weight of Fe. A Fe-Al-based gold intermetallic compound member, characterized in that the mixture is heat-treated at a temperature above the temperature at which the Fe-Al-based gold intermetallic compound is formed and below the solidus line of the compound. The gist is the molding method.

ここで、Fe−AΩ系金属間化合物とは、例えばFe5
Al、FeAJ  Fe2AΩs、FeALで示される
金属間化合物である。
Here, the Fe-AΩ intermetallic compound is, for example, Fe5
It is an intermetallic compound represented by Al, FeAJ Fe2AΩs, and FeAL.

尚、この熱処理の温度1上 前記温度範囲であればよい
が、混合物の成分組成により最適な熱処理の温度は異な
る。
The temperature of this heat treatment may be within the above-mentioned temperature range, but the optimum temperature of the heat treatment differs depending on the component composition of the mixture.

また、請求項2の発明は、 前記請求項1のFe−Al系金金属間化合物部材成形方
法において、前記混合物を真空脱気し、その後緻密化す
る処理を行い、更に前記熱処理の温度範囲でかつ200
気圧以上で加熱焼成することを特徴とするFe−Al系
金金属間化合物部材成形方法を要旨とする。
Further, the invention of claim 2 provides the method for forming a Fe-Al-based gold intermetallic compound member of claim 1, wherein the mixture is vacuum degassed and then densified, and further within the temperature range of the heat treatment. And 200
The gist of the present invention is a method for forming a Fe-Al based gold intermetallic compound member, which is characterized by heating and firing at a pressure higher than atmospheric pressure.

[作用コ 請求項1の発明(友 まず、Al又はAl合金の粉末を製造し、またFe又は
Fe合金の粉末を製造する。そして、これらの粉末を混
合して、Al12〜60重量%。
[Function] Invention of Claim 1 (First, a powder of Al or an Al alloy is produced, and a powder of Fe or an Fe alloy is also produced. Then, these powders are mixed to produce 12 to 60% by weight of Al.

Fe40〜88重量%の割合の混合物を調製する。A mixture with a proportion of 40-88% by weight of Fe is prepared.

その後、この混合物を特定の温度範囲で、即ち、Fe−
Al系金金属間化合物形成する温度以上でかつ該化合物
の固相線以下の温度で熱処理する。
This mixture is then heated in a specific temperature range, i.e. Fe-
Heat treatment is performed at a temperature higher than the temperature at which an Al-based gold intermetallic compound is formed and lower than the solidus line of the compound.

この様にして、Fe−Al系金金属間化合物部材成形を
行う。
In this manner, the Fe-Al based gold intermetallic compound member is formed.

つまり、本発明は粉末冶金法に着目して、Fe−Al系
金金属間化合物部材成形することを特徴とするものであ
り、前記所定の組成の粉体温合物を、所定の温度範囲で
熱処理することにより、Fe−AD系金金属間化合物部
材容易に成形することが可能となる。
That is, the present invention is characterized by focusing on powder metallurgy to form Fe-Al-based gold intermetallic compound members, and heat-treating the powder composite having the predetermined composition at a predetermined temperature range. By doing so, it becomes possible to easily mold the Fe-AD based gold intermetallic compound member.

また、請求項2の発明は、 まず、前記請求項1と同様な混合物を調製した後に、空
孔の発生を防止するために真空脱気する。
In addition, in the invention according to claim 2, first, a mixture similar to that in claim 1 is prepared and then vacuum degassed in order to prevent the generation of pores.

その後、この混合物を例えばホットプレス等で緻密化す
る処理を行う。次に、前記熱処理の温度範囲で200気
圧以上に加圧して加熱焼成することにより、Fe−Al
系金金属間化合物部材成形を行う。
Thereafter, this mixture is densified by, for example, hot pressing. Next, the Fe-Al
Performs molding of gold-based intermetallic compound parts.

本発明(よ相対密度を一層向上させるために請求項1の
発明の工程に加えて、脱気及び緻密化の処理工程を加え
、更に高温加圧の処理を行うものである。
The present invention (in order to further improve the relative density), in addition to the steps of the invention of claim 1, a deaeration and densification treatment step is added, and a high temperature pressurization treatment is further performed.

[実施例] 以下本発明の実施例を図面に基づいて説明する。[Example] Embodiments of the present invention will be described below based on the drawings.

第1図は第1実施例のFe−Al系金金属間化合物部材
成形方法を表す工程図である。
FIG. 1 is a process diagram showing a method of forming a Fe-Al based gold intermetallic compound member according to a first embodiment.

図に示すように本実施例のFe−Al系金金属間化合物
部材成形方法は、次のような工程からなっている。
As shown in the figure, the method for forming the Fe--Al based gold intermetallic compound member of this example includes the following steps.

(Fe粉末の製造工程・・・1) Fe粉末としては、従来の粉末製造方法や鋳塊等の切削
で製作されたものを用いることができ、その粒度を1μ
mから1000μmに調整したものを用いる。尚、Fe
粉末以外にも、例えば520C等のFe合金の粉末を用
いることもできる。
(Manufacturing process of Fe powder...1) Fe powder manufactured by conventional powder manufacturing methods or cutting of ingots etc. can be used, and the particle size is 1 μm.
Use one adjusted from m to 1000 μm. Furthermore, Fe
In addition to powder, for example, Fe alloy powder such as 520C can also be used.

(Al粉末の製造工程・・・11) Al粉末としては、Fe粉末と同様に従来の粉末製造方
法により製造されるが、望ましくは、価格の点からガス
アトマイズ法を用いるのがよい。
(Manufacturing process of Al powder...11) As with the Fe powder, the Al powder is manufactured by a conventional powder manufacturing method, but it is preferable to use the gas atomization method from the viewpoint of cost.

粒度は1μmから1000μmに調整したものを用いる
。尚、AlQ末以外にも、例えばA6061等のAl合
金の粉末を用いることもできる。
The particle size is adjusted to 1 μm to 1000 μm. In addition to AlQ powder, for example, Al alloy powder such as A6061 can also be used.

(混合工程・・・111) 次にFe粉末とAl粉末とを、Al12〜60重量%、
残部Feの割合になるように、V形混合機等で混合する
(Mixing step...111) Next, Fe powder and Al powder were mixed with 12 to 60% by weight of Al,
Mix using a V-type mixer or the like so that the remaining proportion is Fe.

この様な混合割合にするのは、Alが12〜60重量%
の範囲外では、製造する部材の全体を所定(7)Fe−
Al系金金属間化合物Fe3AI2.FeAl2.Fe
2AI25.FeAU3)とすることが困難となるから
である。
To achieve such a mixing ratio, Al should be 12 to 60% by weight.
Outside the range of (7) Fe-
Al-based gold intermetallic compound Fe3AI2. FeAl2. Fe
2AI25. This is because it becomes difficult to obtain FeAU3).

(熱処理工程−・・IV) 次に、前記混合工程111により所定の割合で調整され
た混合物の全体または一部を、500℃以上で、かつ固
相線以下の温度で、加熱することにより、FeとAlと
の合金化反応を生じさせ、Fe−Al系金金属間化合物
部材成形する。
(Heat treatment step - IV) Next, by heating the whole or a part of the mixture adjusted at a predetermined ratio in the mixing step 111 at a temperature of 500 ° C. or higher and a solidus temperature or lower, An alloying reaction between Fe and Al is caused to form a Fe-Al based gold intermetallic compound member.

尚、このときの雰囲気は、真空中又は不活性ガス(He
、Ar等)中とする。
The atmosphere at this time is a vacuum or an inert gas (He
, Ar, etc.).

上述した様な方法でAlとFeの混合物を熱処理して成
形することにより、容易に、高温強度及び耐食性に優れ
たFe−Al系金金属間化合物部材製造することができ
た。
By heat-treating and molding a mixture of Al and Fe in the manner described above, it was possible to easily produce a Fe-Al-based gold intermetallic compound member with excellent high-temperature strength and corrosion resistance.

次に、第2実施例について、第2図に基づいて説明する
Next, a second embodiment will be described based on FIG. 2.

本実施例(上前記第1実施例に更に緻密化のための工程
を加えたものである。即ち、固相間の拡散によるカーケ
ンドルボイドによって、通常多数の空洞が発生するが、
この様な空洞を潰して緻密化を促進するために、次に説
明する第2実施例のFe−Al系金金属間化合物部材成
形方法を採用した。
This example (this example is one in which a step for densification is added to the above-mentioned first example). That is, a large number of cavities are normally generated due to Kirkendall voids due to diffusion between solid phases.
In order to collapse such cavities and promote densification, a method for forming a Fe-Al based gold intermetallic compound member according to a second embodiment described below was employed.

第2図に示すように、第2実施例のFe−Al2系金属
間化合物部材の成形方法は、前記第1実施例の混合工程
111に引き続き、次のような工程の処理を行う。
As shown in FIG. 2, the method for forming the Fe--Al2 intermetallic compound member of the second embodiment includes the following steps subsequent to the mixing step 111 of the first embodiment.

(脱気工程・・・■) 前記混合工程111で調製した混合物を、Fe、T等か
らなる密閉した容器に収納して、真空ポンプにて脱気処
理を行う。
(Degassing step...■) The mixture prepared in the mixing step 111 is placed in a sealed container made of Fe, T, etc., and degassed using a vacuum pump.

これは、粉末表面の吸着ガス、吸着水を除去すすると共
に、後の工程に於けるFe−Al系金金属間化合物部材
酸化を防止するためである。このため真空度は]O−2
気圧以下とするのが好ましい。
This is to remove adsorbed gas and adsorbed water on the powder surface and to prevent oxidation of the Fe-Al based gold intermetallic compound member in the subsequent process. Therefore, the degree of vacuum is ]O-2
It is preferable that the pressure be below atmospheric pressure.

また、脱気処理温度は、常温〜550°Cで行う。Further, the deaeration treatment temperature is from room temperature to 550°C.

特に400〜500℃で脱気処理を行うと、吸着ガス、
吸着水の除去がより効果的である。
In particular, when deaeration treatment is performed at 400 to 500°C, adsorbed gas,
Removal of adsorbed water is more effective.

尚、脱気処理温度が550℃を超える場合には、Feと
Alとの急激な合金化反応(急激な合金化反応二合金化
反応の生成熱によりこの反応が次々と伝播していく現象
)が生じることがあり好ましくない。
If the degassing temperature exceeds 550°C, a rapid alloying reaction between Fe and Al (a phenomenon in which this reaction propagates one after another due to the heat generated by the rapid alloying reaction and the alloying reaction). may occur, which is undesirable.

また、前記脱気工程■を行う前に、混合工程111で調
製した混合物を、冷間静水圧プレス(CI P:Co1
d 1sostatic Press)や−軸プレスに
より圧縮すると、相対密度が上昇し取り扱いが容易にな
るので好適である。ここで、相対密度とは混合物の密度
を完全に緻密化した場合の密度に対する割合(%)とし
て表したものである。
Furthermore, before performing the degassing step (1), the mixture prepared in the mixing step 111 is subjected to a cold isostatic press (CI P: Co1
It is preferable to compress using a d 1sostatic press or a -axial press because the relative density increases and handling becomes easier. Here, the relative density is expressed as a ratio (%) of the density of the mixture to the density when it is completely densified.

(緻密化工程・・・V+) 前記脱気工程■で脱気された混合物を、ホットプレス、
押出、圧延、鍛造CI P、 或いはHP (Hot 
1sostatic Press)等により、相対密度
が95%以上になるように圧縮し、粉末圧縮体(緻密体
)とする。
(Densification process...V+) The mixture degassed in the degassing process (■) is hot pressed,
Extrusion, rolling, forging CI P, or HP (Hot
The powder is compressed to a relative density of 95% or more using a 1sostatic press or the like to form a compressed powder body (dense body).

この緻密化は、後述する処理である高温高圧処理工程V
ll+において合金化をより容易にするためと、最終製
品の相対密度を95%以上にするために行うものである
This densification is achieved in the high temperature and high pressure treatment step V, which will be described later.
This is done to make alloying easier in ll+ and to increase the relative density of the final product to 95% or more.

また、この緻密化工程■1は、「eとAlとの急激な合
金化反応を防止するため550’C以下で実施される。
Further, this densification step (1) is carried out at 550'C or lower in order to prevent a rapid alloying reaction between e and Al.

このため、本工程の緻密化では、殆どFe−Al系金金
属間化合物形成されない。
Therefore, during the densification in this step, almost no Fe-Al based gold intermetallic compound is formed.

尚、前記脱気工程■と緻密化工程v1とを、真空ホット
プレスを用いて同時に行ってもよい。
Incidentally, the degassing step (1) and the densification step v1 may be performed simultaneously using a vacuum hot press.

(成形工程・・・Vll) 前記緻密化工程■1によって形成された緻密体に、塑性
加工或いは機械加工などを行って、はぼ最終の製品形状
に仕上げる。
(Forming process...Vll) The dense body formed in the densification process (1) is subjected to plastic working or machining to form the final product shape.

前記緻密体は、殆どFe−Al系金金属間化合物形成さ
れていないので展延性に富み、このため、塑性加工或い
は機械加工などが容易に行える。
The dense body has high malleability since almost no Fe-Al based gold intermetallic compounds are formed therein, and therefore can be easily subjected to plastic working or machining.

尚、この成形工程■1の処理は、混合工程II+の後に
、粉末鍛造などで行ってもよい。
Incidentally, this molding step (1) may be performed by powder forging or the like after the mixing step II+.

(高温高圧処理工程・・・■11) 前記緻密化工程v1、或いは成形工程■1で得た緻密体
を高温高圧処理する。
(High-temperature, high-pressure treatment step...■11) The dense body obtained in the densification step v1 or molding step (1) is subjected to high-temperature and high-pressure treatment.

このとき、圧力は少なくとも200気圧以上望ましくは
500気圧〜7000気圧に設定し、処理温度は550
°CからFe−AΩ系金属間化合物の同相線温度までと
する。
At this time, the pressure is set to at least 200 atm or more, preferably 500 atm to 7000 atm, and the treatment temperature is set at 550 atm.
°C to the in-phase temperature of the Fe-AΩ intermetallic compound.

これ未処理温度が550°C未満であるとFeとAlと
の急激な合金化反応が進行せず、一方、本化合物の固相
点温度より高いと、材料が一部溶解し、部材としての形
状が保てないからである。
If the untreated temperature is less than 550°C, the rapid alloying reaction between Fe and Al will not proceed. On the other hand, if it is higher than the solidus point temperature of this compound, part of the material will melt and it will not work as a member. This is because the shape cannot be maintained.

(仕上げ成形工程・・・IX) 前記高温高圧処理工程■1の後1ミ機械加工な−により
最終製品の形状に仕上げる。
(Final molding process...IX) After the high temperature and high pressure treatment process (1), the shape of the final product is finished by machining.

上述したような工程で処理されたFe−Al、1金属間
化合物部材に(よ空洞が殆どないので和文密度が高い。
The Fe-Al, 1 intermetallic compound member processed through the process described above has a high Japanese density because there are almost no cavities.

(実験例) 次に、前記各実施例における実験例についてB明する。(Experiment example) Next, experimental examples in each of the above embodiments will be explained.

この実験で(よ原料として、粒径748℃以1のFe粉
末と粒径149μm以下のAl粉末とを用い、V型混合
機を使用して所定の割合の混合物を調製した次いで、そ
の混合物を用いて、前記第1実施例及び第2実施例の成
形方法で、Fe−Al系金金属間化合物部材成形、し、
それとともに他の条件で比較例部材を成形した そして
、X線解析により、Fe−Al系金金属間化合物部材状
態を調べ更に相対密度も調べた 下記の表1に、その成形の条件及び実験の結果を示す。
In this experiment, Fe powder with a particle size of 748°C or more and Al powder with a particle size of 149 μm or less were used as raw materials to prepare a mixture at a predetermined ratio using a V-type mixer. to form a Fe-Al-based gold intermetallic compound member using the molding methods of the first and second embodiments,
At the same time, a comparative example member was molded under other conditions. Then, the state of the Fe-Al based gold intermetallic compound member was investigated by X-ray analysis, and the relative density was also investigated. Table 1 below shows the molding conditions and experimental results. Show the results.

この実験例のうち、試料N11l〜5が第1実施例であ
り、試料Nα6〜]1が第2実施例であり、試料Nα]
2〜14が比較例である。
Among these experimental examples, samples N11l~5 are the first example, samples Nα6~]1 are the second example, and samples Nα]
2 to 14 are comparative examples.

表1の脱気処理の条件としては、]]0−6気の状態で
400℃で1時間加熱を採用し、加熱した例を「○」で
示した また、表1の判定において、「○J或いは「◎
」(よ実験の結果、Fe−Al系金金属間化合物認めら
れたものを示し、この内「◎」は、相対密度が95%以
上のものを示し、一方「○」は相対密度が95%以下の
ものを示す。
The conditions for the deaeration treatment in Table 1 are heating at 400°C for 1 hour in a state of ]]0-6 air, and examples of heating are indicated by "○". J or “◎
(Indicates that a Fe-Al-based gold intermetallic compound was observed as a result of the experiment. Among these, "◎" indicates a compound with a relative density of 95% or more, while "○" indicates a compound with a relative density of 95%. Indicates the following:

また「×」は、主にFe−Al系金金属間化合物はなく
α−Fe或いはAlが認められたものを示す。
Moreover, "x" indicates that no Fe-Al based gold intermetallic compound was present but α-Fe or Al was observed.

表 この表から、第1実施例及び第2実施例の成形方法では
、明らかにFe−Al系金金属間化合物形成されている
ことがわかるが、特に第2実施例の成形方法では、相対
密度の高いFe−Al系金金属間化合物形成されるので
好適である。それに対して比較例のものILFe−Al
系金金属間化合物主に形成されておらず不適である。
Table From this table, it can be seen that Fe-Al based gold intermetallic compounds are clearly formed in the molding methods of the first and second examples, but especially in the molding method of the second example, the relative density This is preferable because it forms a Fe-Al based gold intermetallic compound with a high content. In contrast, ILFe-Al of the comparative example
It is unsuitable because gold intermetallic compounds are not mainly formed.

[発明の効果] 以上詳述したように、請求項1の発明のFe−Al系金
金属間化合物部材成形方法によれば、Fe粉末とAl粉
末とを所定の割合で混合して、所定温度範囲で熱処理を
するだけでFe−、l!系金金属間化合物部材、容易に
成形することができる。
[Effects of the Invention] As described in detail above, according to the method for forming a Fe-Al based gold intermetallic compound member of the invention of claim 1, Fe powder and Al powder are mixed at a predetermined ratio and heated to a predetermined temperature. Fe-, l! just by heat treatment in the range! Gold intermetallic parts can be easily formed.

更に、請求項2のFe−Al系金金属間化合物部材成形
方法にょれ(戯脱気−緻密化−高温高圧の処理を加える
ことにより、より緻密なFe−Al系金金属間化合物部
材容易に成形することができる。
Furthermore, by adding a process of dry degassing, densification, and high temperature and high pressure to the method for forming a Fe-Al based gold intermetallic compound member of claim 2, it is possible to easily form a more dense Fe-Al based gold intermetallic compound member. Can be molded.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第1実施例のFe−Al系金属間化合物部材の
成形方法を表す工程図、第2図は第2実施例のFe−A
l系金金属間化合物部材成形方法を表す工程図である。
Figure 1 is a process diagram showing the method for forming the Fe-Al intermetallic compound member of the first embodiment, and Figure 2 is the Fe-A
FIG. 2 is a process diagram showing a method for forming an I-based gold intermetallic compound member.

Claims (1)

【特許請求の範囲】 1 Al12〜60重量%、Fe40〜88重量%の割
合で、Al又はAl合金の粉末とFe又はFe合金の粉
末とを混合し、この混合物をFe−Al系金属間化合物
を形成する温度以上でかつ該化合物の固相線以下の温度
で熱処理することを特徴とするFe−Al系金属間化合
物部材の成形方法。 2 前記請求項1のFe−Al系金属間化合物部材の成
形方法において、前記混合物を真空脱気し、その後緻密
化する処理を行い、更に前記熱処理の温度範囲でかつ2
00気圧以上で加熱焼成することを特徴とするFe−A
l系金属間化合物部材の成形方法。
[Claims] 1. Al or Al alloy powder and Fe or Fe alloy powder are mixed in a proportion of 12 to 60% by weight of Al and 40 to 88% by weight, and this mixture is used to form a Fe-Al based intermetallic compound. 1. A method for forming an Fe-Al intermetallic compound member, the method comprising heat-treating at a temperature higher than the temperature at which the Fe-Al intermetallic compound member is formed and lower than the solidus line of the compound. 2. In the method for forming an Fe-Al intermetallic compound member according to claim 1, the mixture is vacuum degassed and then densified, and further within the temperature range of the heat treatment and 2.
Fe-A characterized by heating and firing at 00 atmospheres or more
A method for forming an l-based intermetallic compound member.
JP2134578A 1990-05-24 1990-05-24 Method for compacting fe-al series intermetallic compound member Pending JPH0428833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2134578A JPH0428833A (en) 1990-05-24 1990-05-24 Method for compacting fe-al series intermetallic compound member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2134578A JPH0428833A (en) 1990-05-24 1990-05-24 Method for compacting fe-al series intermetallic compound member

Publications (1)

Publication Number Publication Date
JPH0428833A true JPH0428833A (en) 1992-01-31

Family

ID=15131636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2134578A Pending JPH0428833A (en) 1990-05-24 1990-05-24 Method for compacting fe-al series intermetallic compound member

Country Status (1)

Country Link
JP (1) JPH0428833A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100425320C (en) * 2006-03-14 2008-10-15 安泰科技股份有限公司 Method of preparing iron-aluminum based metal compound microporous filter element, and its application
JP5665037B2 (en) * 2007-03-26 2015-02-04 独立行政法人物質・材料研究機構 Binary aluminum alloy powder sintered material and method for producing the same
CN113584402A (en) * 2021-08-03 2021-11-02 西部宝德科技股份有限公司 Preparation method of iron-aluminum-chromium filtering material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100425320C (en) * 2006-03-14 2008-10-15 安泰科技股份有限公司 Method of preparing iron-aluminum based metal compound microporous filter element, and its application
JP5665037B2 (en) * 2007-03-26 2015-02-04 独立行政法人物質・材料研究機構 Binary aluminum alloy powder sintered material and method for producing the same
CN113584402A (en) * 2021-08-03 2021-11-02 西部宝德科技股份有限公司 Preparation method of iron-aluminum-chromium filtering material
CN113584402B (en) * 2021-08-03 2022-11-08 西部宝德科技股份有限公司 Preparation method of iron-aluminum-chromium filtering material

Similar Documents

Publication Publication Date Title
JPH0130898B2 (en)
JPS63169340A (en) Production of ceramic dispersion strengthened aluminum alloy
JPH0428833A (en) Method for compacting fe-al series intermetallic compound member
JP2588889B2 (en) Forming method of Ti-Al based intermetallic compound member
US4536234A (en) Method for refining microstructures of blended elemental powder metallurgy titanium articles
JPH0730418B2 (en) Forming method of Ti-Al intermetallic compound member
JP2588890B2 (en) Forming method of Ti-Al based intermetallic compound member
JPS63255331A (en) Formation of ti-al intermetallic-compound member
EP0221746B1 (en) Activated sintering of metallic powders
JPH0643628B2 (en) Method for manufacturing aluminum alloy member
JP2549116B2 (en) Method for forming Ti-A (1) type alloy electrode member
JPS63243234A (en) Molding method for member of ti-al intermetallic compound
Wang Properties of high density powder forged iron based alloy
JPS62199703A (en) Hot hydrostatic compression molding method for al-si powder alloy
JPH04131304A (en) Manufacture of al-si alloy sintered forging member
JPS62278240A (en) Compacting method for ti-al intermetallic compound member
KR100218658B1 (en) Manufacturing method of ti-al intermetallic compound
JPS63140049A (en) Forming method for ti-al intermetallic compound member
JPH0368724A (en) Manufacture of aluminide-base composite material
JPH0791602B2 (en) Method for manufacturing aluminum sintered material
JPH02221303A (en) Manufacture of forging raw material in a special form using metal powder
JPS63243233A (en) Molding method for member of ti-al intermetallic compound
JP2936695B2 (en) Aluminum alloy powder forging method
JPH0429842A (en) Preparation of clad material and aluminide
JPH0375321A (en) Manufacture of oxide dispersion strengthened copper alloy