JPS63140049A - Forming method for ti-al intermetallic compound member - Google Patents

Forming method for ti-al intermetallic compound member

Info

Publication number
JPS63140049A
JPS63140049A JP61288074A JP28807486A JPS63140049A JP S63140049 A JPS63140049 A JP S63140049A JP 61288074 A JP61288074 A JP 61288074A JP 28807486 A JP28807486 A JP 28807486A JP S63140049 A JPS63140049 A JP S63140049A
Authority
JP
Japan
Prior art keywords
powder
mixture
intermetallic compound
temp
pores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61288074A
Other languages
Japanese (ja)
Other versions
JPH0791603B2 (en
Inventor
Kazuhisa Shibue
渋江 和久
Shigenori Yamauchi
重徳 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP61288074A priority Critical patent/JPH0791603B2/en
Publication of JPS63140049A publication Critical patent/JPS63140049A/en
Publication of JPH0791603B2 publication Critical patent/JPH0791603B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To easily compact a Ti-Al intermetallic compound member free from occurrence of pores, by subjecting a powder mixture consisting of specific percentages of Al, Mn, and Ti to vacuum deaeration, by making the above dense, and then by applying heating and sintering under high pressure under specific temp. conditions. CONSTITUTION:One or more kinds among Al powder, Al-Mn alloy powder, and Mn powder are selected and mixed with Ti powder by means of a mixer so that proportions of Al, Mn, and Ti are regulated, by weight, to 14-63%, 0.1-5%, and the balance, respectively. This mixture is subjected to vacuum deaeration, and successively, while vacuum is maintained, the mixture is made dense to a density of >=about 95% of true density by means of hot pressing, and the like. The resulting dense mixture is heated and sintered under high pressure without being covered with a hermetically sealed capsule. At this time, temp.-raise rate in a range of 550-650 deg.C where alloying proceeds most rapidly is controlled to 0.01-20 deg.C/min, and further, the above mixture is held at a temp. between 700 deg.C and the solidus temp. of the mixture for about 10 min-100hr. In this way, the Ti-Al intermetallic compound member of required shape free from occurrence of pores can be easily formed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、粉末冶金法によるTi−Al系金属間化合物
部材の成形法に関するもので、詳しくはカプセルを用い
ない熱間静水圧圧縮処理(以下、HIP処理と称する。
Detailed Description of the Invention [Industrial Field of Application] The present invention relates to a method for forming Ti-Al intermetallic compound members using a powder metallurgy method, and more specifically, a hot isostatic pressing process ( Hereinafter, this will be referred to as HIP processing.

)を施した成形法に関する。).

[従来の技術および 発明が解決しようとする問題点] 従来、Ti−Al系金属間化合物(TiAli、T i
 3A Q等)は、優れた高温強度及び耐酸化性を有す
ることが知られている。しかし、この部材は、常温およ
び高温で展延性に乏しいので、従来の加工技術では成形
することが困難であり、実用材料に供することができな
いという問題点があった。
[Prior art and problems to be solved by the invention] Conventionally, Ti-Al based intermetallic compounds (TiAli, Ti
3A Q, etc.) are known to have excellent high temperature strength and oxidation resistance. However, since this member has poor malleability at room temperature and high temperature, it is difficult to mold using conventional processing techniques, and there is a problem in that it cannot be used as a practical material.

これを解決する手段として、たとえば、T i 37%
(以下、%はfflfi%を示ず、)−Al合金部材を
側圧付加押出法等の特別な押出加工方法により実現しよ
とする試みがなされているが、実用化に至っていない。
As a means to solve this problem, for example, T i 37%
(Hereinafter, % does not indicate ffflfi%.) Attempts have been made to realize -Al alloy members using special extrusion processing methods such as lateral pressure extrusion methods, but they have not been put to practical use.

また、他の手段として、特願昭60−213386号に
記載されているような、粉末冶金法によるTi−Al系
金属間化合物部材の成形法、およびこの改良としてガラ
スカプセルを用いた[(I P処理を利用することによ
り、Ti−Al系金属間化合物を製造する方法が本発明
者らにより提案されている、しかし、前者では成形体内
に空孔が多く発生することがあり、一方、後者では空孔
を無くずことができるが、カプセリングの工程が煩雑で
あり、また、コストアップを招く。
In addition, as another means, a method of forming a Ti-Al intermetallic compound member by a powder metallurgy method, as described in Japanese Patent Application No. 60-213386, and an improvement thereof using a glass capsule [(I The present inventors have proposed a method for producing Ti-Al intermetallic compounds by using P treatment. However, the former may generate many pores in the molded body, while the latter Although the pores can be eliminated, the encapsulation process is complicated and costs increase.

本発明は、上記した先の出願発明の改良および検討の結
果なされたもので、カプセルをしなくても空孔の発生を
無くすことができるTi−Al系金金属間化合物部材成
形法を提供することを目的とする。
The present invention has been made as a result of improvements and studies on the above-mentioned previously filed invention, and provides a method for molding Ti-Al based gold intermetallic compound members that can eliminate the generation of pores without encapsulation. The purpose is to

し問題点を解決するための手段および作用]上記問題点
を解決するためになされた本発明は、Al14〜63重
斌%、M n 0.1〜5重量%、残部Tiの割合で、
All粉末、Al−Mn合金粉末、Mn粉末のうちいず
れかを2以上選択してTi粉末に混合し、またはAl−
Mn合金粉末にTi粉末を混合し、この混合物を密閉容
器に収納して脱気し、混合物の固相線以下の温度で加熱
焼成してTi−Al系金金属間化合物形成する成形法で
あって、 550℃〜650℃までの昇温条件を、0.01〜20
°C/winに設定することを特徴とするTi−Al系
金金属間化合物部材成形法を要旨とする。
[Means and operations for solving the problems] The present invention, which was made to solve the above problems, has a composition in which the proportions of Al are 14 to 63% by weight, Mn is 0.1 to 5% by weight, and the balance is Ti.
Select two or more of All powder, Al-Mn alloy powder, and Mn powder and mix with Ti powder, or Al-
This is a molding method in which Ti powder is mixed with Mn alloy powder, this mixture is stored in a closed container, degassed, and heated and fired at a temperature below the solidus line of the mixture to form a Ti-Al based gold intermetallic compound. Then, the temperature increase condition from 550℃ to 650℃ was set to 0.01 to 20℃.
The gist of this article is a method for forming a Ti-Al based gold intermetallic compound member, which is characterized by setting the temperature at °C/win.

ここで、昇温速度の温度範囲は、少なくとも、550℃
〜650℃までを制9gする必要があるが、本発明の効
果を一層向上させるには、450℃〜700℃を制御す
ることが望ましい、また、M n、■、Zr、B、Nb
の1種または2種以上を以下の割合で、Tiとの合金粉
末、Al−Mnとの合金粉末、Alとの合金粉末、ある
いはそれらの元素の単独粉末として添加して、延性効果
を付加してもよい。
Here, the temperature range of the heating rate is at least 550°C
It is necessary to control the temperature up to 650°C, but in order to further improve the effects of the present invention, it is desirable to control the temperature between 450°C and 700°C.
One or more of these elements are added in the following ratios as an alloy powder with Ti, an alloy powder with Al-Mn, an alloy powder with Al, or a single powder of these elements to add a ductility effect. You can.

1≦MO≦5.1≦■≦5 1≦Zr≦5 .0.005≦B≦3 1≦Nb≦30 以下、本発明の主たる工程を、第1図、さらに、その変
形例を第2図に示す。
1≦MO≦5.1≦■≦5 1≦Zr≦5 . 0.005≦B≦3 1≦Nb≦30 Below, the main steps of the present invention are shown in FIG. 1, and a modified example thereof is shown in FIG.

(Ti粉末の製造工程り 第1図において、Ti粉末は、常法の粉末冶金法による
製造手段や、鋳塊等の切削で製作されたものを用いるこ
とができ、その粒度を1μm〜1000μmに調整した
ものを用いる。
(Manufacturing process of Ti powder In Fig. 1, Ti powder can be manufactured by a conventional powder metallurgy method or by cutting an ingot, etc., and the particle size is set to 1 μm to 1000 μm. Use the adjusted one.

この場合、必要に応じて、Tiと、A11.V、Nb、
Bなどの合金粉末を用いてもよい。
In this case, Ti and A11. V, Nb,
An alloy powder such as B may also be used.

(A11.Mn粉末の製造工程■) Al粉末は、常法の粉末製造法により作られ、望ましく
は、価格の点からガスアトマイズ法がよい0粒度は0.
1μmから1000μmに調整する。
(A11. Manufacture process of Mn powder ■) Al powder is made by a conventional powder manufacturing method, and desirably, the gas atomization method is preferable from the viewpoint of cost.
Adjust from 1 μm to 1000 μm.

Mnは、Alと合金化して合金粉末とするが、Mnを単
独の粉末として形成する。
Although Mn is alloyed with Al to form an alloy powder, Mn is formed as a single powder.

なお、必要に応じて、Alと、■、Mn、Nb、Bなど
の合金粉末を用いてもよい。
Note that alloy powders of Al, Mn, Nb, B, etc. may be used as necessary.

(混合工程■) つぎに、Al14〜63%、M n 0.1〜5%、残
部Tiの割合になるようにTi粉末、All粉末、Al
−Mn合金粉末、Mn粉末を適宜選択して、混合機で混
合する。
(Mixing process ■) Next, Ti powder, All powder, Al
-Mn alloy powder and Mn powder are appropriately selected and mixed in a mixer.

上記のような混合割合にするのは、Alが14%〜63
%の範囲外では、Ti5Al、TiAl、およびT i
 A Q 3系の金属間化合物の単相あるいは2相とな
らないからであり、また、Mnが0.1%以下では、カ
ーケンドル効果による空孔の発生を抑制できず、Mn5
%以上では成形体の延性を低下させるからである。
The above mixing ratio is achieved when Al is 14% to 63%.
%, Ti5Al, TiAl, and T i
This is because the A Q 3 type intermetallic compound does not form a single phase or two phases. Also, if Mn is less than 0.1%, the generation of vacancies due to the Kirkendall effect cannot be suppressed, and Mn5
% or more, the ductility of the molded article decreases.

上記混合割合は、より一層強度、耐熱性、および空孔の
抑制を増大させるには、望ましくはAl25%〜45%
、M n 0.5%〜4%、Ti 51%〜74.5%
で、特に望ましくは、Al 30%〜42%、Mn1%
〜3%、Ti 55%〜69%である。
The above mixing ratio is desirably 25% to 45% Al in order to further increase strength, heat resistance, and suppression of pores.
, Mn 0.5% to 4%, Ti 51% to 74.5%
Particularly preferably Al 30% to 42%, Mn 1%
3%, Ti 55% to 69%.

(脱気工程■) つぎに、混合物を容器に収納して真空ポンプ等により脱
気処理を行う、これは、粉末表面の吸着ガス、吸着水を
除去するとともに、後の工程における酸化を防止するこ
とにある。この脱気後の真空状態は、後のHIP処理■
まで保持する必要がある。
(Degassing process ■) Next, the mixture is stored in a container and degassed using a vacuum pump, etc. This removes adsorbed gas and water on the powder surface and prevents oxidation in the subsequent process. There is a particular thing. This vacuum state after degassing is the result of the subsequent HIP process.
need to be held until

(高温高圧処理■) つぎに、高温高圧処理としてHIP処理を行なう。(High temperature and high pressure treatment■) Next, HIP processing is performed as high temperature and high pressure processing.

HIP処理条pトについては、合金化が進行する温度範
囲、すなわち、550〜650℃の温度範囲における昇
温速度を0.01〜20°C/+sinに設定し、その
後、700℃以上で固相線以下の温度に、10分間〜1
00時間程度保持する。
For the HIP treated strip, the temperature increase rate in the temperature range where alloying progresses, that is, the temperature range of 550 to 650°C, is set to 0.01 to 20°C/+sin, and then the temperature is set at 700°C or higher. At a temperature below the phase line for 10 minutes ~ 1
Hold for about 00 hours.

このような加熱条件としたのは、上記温度範囲では、合
金化が促進されるためであり、また、昇温速度の範囲を
上記のように設定したのは、0.01°C/■inでは
、長時間かかり、不経済であり、20℃/win以上で
は、空孔が多く発生ずるからである。
The heating conditions were set in this manner because alloying is promoted in the above temperature range, and the heating rate range was set as 0.01°C/in. This is because it takes a long time and is uneconomical, and at temperatures above 20° C./win, many pores are generated.

なお、0.01〜b 囲を、450〜700℃の範囲に広げることで、一層空
孔の抑制効果を促進することができる。
Note that by widening the 0.01 to b range to a range of 450 to 700°C, the effect of suppressing pores can be further promoted.

また、700℃以上で、かつ、固相線以下の温度に保持
するのは、化合物反応および焼結を促進するには、70
0℃以上にすることが必要である一方で、液相線以上で
は、材料が溶解し、・部品としての形状が保てないから
である。
In addition, maintaining the temperature at 700°C or higher and below the solidus line is necessary to promote compound reaction and sintering.
While it is necessary to keep the temperature above 0°C, if the temperature is above the liquidus line, the material will melt and the shape of the part will not be maintained.

HI P処理の圧力は、空孔を押しつぶすために、少な
くとも、200 kgf/cボに設定する。
The pressure of the HIP process is set to at least 200 kgf/c to crush the pores.

上記HIP処理で、Ti中にAlを拡散させることによ
りTi−Al系金金属間化合物形成する。
In the above HIP process, a Ti-Al based gold intermetallic compound is formed by diffusing Al into Ti.

このとき、カーケンドル効果、つまりAllの拡散によ
り空孔が発生し易い状態になるが、Mnを添加し、昇温
速度を上記のように設定することにより、空孔の発生が
抑制されて、僅かに発生した空孔も高圧処理によりつぶ
される。
At this time, vacancies are likely to be generated due to the Kirkendall effect, that is, diffusion of All, but by adding Mn and setting the temperature increase rate as described above, the generation of vacancies is suppressed, and only a small amount of vacancies are generated. The pores generated in the process are also crushed by high-pressure treatment.

上述したlから■の処理工程により、TiA(1および
T13Aliの金属間化合物が形成されるが、このとき
、Tiの割合が大きい場合に、Ti3Alをマトリクス
としてTiAlが分散状態になり、一方、Tiの割合が
少ない場合に逆になる。
Through the treatment steps 1 to 2 described above, an intermetallic compound of TiA(1 and T13Ali) is formed. At this time, when the proportion of Ti is large, TiAl becomes dispersed with Ti3Al as a matrix; The opposite is true when the proportion of is small.

本発明の主たる工程は以上であるが、必要に応じて、第
2図に示す処理を加えてもよい。
The main steps of the present invention have been described above, but the processing shown in FIG. 2 may be added if necessary.

(他の金属、合金の粉末製造工程■) Ti−Al系金金属間化合物部材必要な添加元素、たと
えば、延性改良に効果のある、Mo、■、Zr、B、N
bのうち1種以上を、それらの単体または合金粉末とし
てTi粉末およびAl粉末と同時に混合する。
(Powder production process for other metals and alloys ■) Ti-Al based gold intermetallic compound members Necessary additive elements, such as Mo, ■, Zr, B, N, which are effective in improving ductility
One or more of b are mixed together with the Ti powder and the Al powder, either alone or as an alloy powder.

このとき、各元素の添加量は、Mo1〜5%、■1〜5
%、Zr1〜5%、Bo、005〜3%、Nb1〜30
%、であり、いずれの元素においても下限値以下では延
性改良の効果がみちれず、上限値以上では、延性改良の
効果がほぼ飽和し、強度特性も低下する。
At this time, the amount of each element added is Mo1-5%, ■1-5%
%, Zr1-5%, Bo, 005-3%, Nb1-30
%, and below the lower limit of any element, the effect of improving ductility is not noticeable, and above the upper limit, the effect of improving ductility is almost saturated, and the strength properties also deteriorate.

(圧縮工程■) 混合工程■後の混合体を冷間静水圧プレスや一軸プレス
を行い、真密度を60%〜95%にする。
(Compression step (■)) The mixture after the mixing step (■) is subjected to cold isostatic pressing or uniaxial pressing to bring the true density to 60% to 95%.

このとき、真密度が60%以下では、圧縮後に圧m体と
しての形状が保てなく、また、95%以上では、脱気処
理■の実効を得られない。
At this time, if the true density is less than 60%, the shape of the compressed body cannot be maintained after compression, and if it is more than 95%, the degassing treatment (2) cannot be effectively achieved.

(真空封入工程■) 脱気処理■後の圧縮体を缶などの容器に真空状態で封入
する。
(Vacuum Encapsulation Process ■) The compressed body after the degassing treatment ■ is sealed in a container such as a can in a vacuum state.

(繊密1ヒ処理工程■;押出) 脱気工程■後の混合体または圧縮体を常法の押出加工や
ポットプレスにて緻密化して100%の真密度にする。
(Detailed 1st processing step (■; Extrusion)) The mixture or compressed body after the degassing step (2) is densified by conventional extrusion processing or pot press to achieve 100% true density.

(Near  Net  5hape成形工程X)緻密
化処理工程■を経た圧縮体を所望の部品形状又はそれに
近い形状に、冷間または熱間鍛造、あるいは、m械加工
にて成形する。
(Near Net 5hape forming process

この処理は、脱気工程■後に、所望により、粉末鍛造等
でNear  Net  5hapeしてもよい。
In this treatment, after the degassing step (1), if desired, Near Net 5hape may be performed by powder forging or the like.

(仕上成形工程XI)    ’ 高温、高圧処理工程v後に、機械加工等により最終製品
の形状に仕上げる。
(Final forming process XI) 'After the high temperature and high pressure treatment process v, the final product shape is finished by machining etc.

[発明の効果] 以上説明したように、本発明によれば、Ti−Al系金
金属間化合物部材優れた高温強度および耐酸化性を活か
すとともに、粉末冶金法により所望の形状に容易に成形
することができる。しかも、HIP処理におけるガラス
カプセルによる封入工程を省略しても、空孔の発生を抑
制することができるので、製造を容易にすることができ
る。
[Effects of the Invention] As explained above, according to the present invention, Ti-Al based gold intermetallic compound members can take advantage of their excellent high temperature strength and oxidation resistance, and can be easily formed into a desired shape by powder metallurgy. be able to. Moreover, even if the encapsulation step using a glass capsule in the HIP process is omitted, the generation of pores can be suppressed, so that manufacturing can be facilitated.

[実施例] 以下、本発明の一実施例について説明する。[Example] An embodiment of the present invention will be described below.

まず、ハンター法による48メツシユ以下のスポンプT
iと、アルゴンを用いたガスアトマイズ法による100
メツシユ以下のIll粉末、Al−Mn合金粉末、Al
−V合金粉末とを製造しTi系とAl系の粉末の割合を
重址分率で64: 36にして、■型混合機によって混
合した。この粉末を一軸プレスにて圧縮成形し、その真
密度を80%にした。
First, the spump T of 48 mesh or less by the hunter method
i and 100 by gas atomization method using argon.
Ill powder below mesh, Al-Mn alloy powder, Al
-V alloy powder was prepared, and the ratio of Ti-based powder and Al-based powder was adjusted to a weight fraction of 64:36, and mixed using a ■ type mixer. This powder was compression molded using a uniaxial press to give a true density of 80%.

つぎに、第3図に示すように、圧縮成形体10をアルミ
ニウム製の直径68 m mの缶11に装入し、缶端部
11aに脱気用バイブ12を溶接した。
Next, as shown in FIG. 3, the compression molded body 10 was placed in an aluminum can 11 having a diameter of 68 mm, and a degassing vibrator 12 was welded to the can end 11a.

この後、パイプ12に真空ポンプ(図示省略)を接続し
、450℃で1時間加熱した状態で1O−3Torr以
下の真空度まで脱気処理を行った。
Thereafter, a vacuum pump (not shown) was connected to the pipe 12, and the tube was heated at 450° C. for 1 hour to perform deaeration treatment to a degree of vacuum of 1 O −3 Torr or less.

つぎに、上記脱気用パイプ12を圧着することにより圧
縮成形体10を缶11内で真空封入した。
Next, the compression molded body 10 was vacuum-sealed in the can 11 by compressing the deaeration pipe 12 .

この封入後の圧縮成形体11を押出温度400℃、押出
比15で押出加工を行い、直径18mmの押出棒を得た
。この押出棒は、Ti相とAl1相とが混合状態にあり
、Ti−Alの金属間化合物相が殆どみあたらず、また
、組織中に空洞はI[ll察されなかった。
This encapsulated compression molded body 11 was extruded at an extrusion temperature of 400° C. and an extrusion ratio of 15 to obtain an extruded rod having a diameter of 18 mm. In this extruded rod, the Ti phase and the Al1 phase were in a mixed state, almost no Ti-Al intermetallic compound phase was observed, and no cavities were observed in the structure.

つぎに、押出棒の外周部を被覆しているアルミニウム部
材を切削除去した後に、冷却鍛造により完成品に近い形
状への成形(Near  NetS h a p e 
)を行った。
Next, after cutting and removing the aluminum member covering the outer periphery of the extruded rod, it is cooled and forged into a shape close to the finished product (Near NetShape).
) was carried out.

つぎに、鍛造部材をHIP処理した。このときのHIP
処理条件として、第4図に示すようなプログラムを採用
した。
Next, the forged member was subjected to HIP treatment. HIP at this time
As the processing conditions, a program as shown in FIG. 4 was adopted.

すなわち、常温〜450℃までを30°C/+ain(
01→Al、02 →A 2.03 →A 3、o4→
A4)の昇温速度で加熱し、さらに450°C〜700
°Cまでを4つの異なった昇温速度、0.1℃/ ll
l1n (A l−”B)、4℃/ +win (A 
2 →B )、15℃/ win (A 3−B)、3
0℃/ win (A 4 →B )の昇温速度で加熱
し、さらに、1800にgf/crrfの加圧下におい
て1300℃で2時間保持した(C→D)、次に、13
00°Cから常温まで降温速度を30°C/winで冷
却した(D→E)。
In other words, from room temperature to 450°C at 30°C/+ain (
01 → Al, 02 → A 2.03 → A 3, o4 →
Heat at the temperature increase rate of A4) and further heat to 450°C to 700°C.
4 different heating rates up to °C, 0.1 °C/ll
l1n (A l-”B), 4℃/ +win (A
2 → B), 15℃/win (A 3-B), 3
It was heated at a temperature increase rate of 0°C/win (A 4 →B ), and further held at 1300°C for 2 hours under a pressure of 1800 gf/crrf (C → D), then 13
The temperature was lowered from 00°C to room temperature at a rate of 30°C/win (D→E).

上記した工程で、第1表に示す試料1から12のように
、成分、昇温時間を変えて、Ti−Al系金金属間化合
物部材形成し、該部材について画像解析装置にて、空孔
率の測定を行ない、この結果を比較例ともに、第1表に
併記する。なあ、空孔率1%以下を良好(○)し、それ
以上を不良(×)として判定した。
In the above steps, Ti-Al based gold intermetallic compound members were formed by changing the components and heating time as in Samples 1 to 12 shown in Table 1, and the members were analyzed using an image analysis device to form pore-filled parts. The results are listed in Table 1 together with comparative examples. Incidentally, a porosity of 1% or less was judged as good (◯), and a porosity of 1% or less was judged as bad (x).

第1表から明らかなように、Mnを添加し、かつ、40
0℃から750℃の昇温速度を15℃/+sin以下に
することにより、空孔率を1%以下に抑制できる。
As is clear from Table 1, Mn is added and 40
By setting the temperature increase rate from 0° C. to 750° C. to 15° C./+sin or less, the porosity can be suppressed to 1% or less.

すなわち、TiとAlとが金属間化合物を形成するに際
して、Mnの添加、昇温速度の制御により、カーケンド
ル効果によって生じ易い空孔は抑制され、僅かに発生し
た空孔は、加圧により押しつぶされて観察されず、緻密
な組織となっていた。
That is, when Ti and Al form an intermetallic compound, by adding Mn and controlling the temperature increase rate, vacancies that are likely to be generated due to the Kirkendall effect are suppressed, and the few vacancies that are generated are crushed by pressure. It was not observed that it had a dense structure.

上記処理により得られた製品について検査した結果、高
温強度では、室温にて、39kgf/−の引っ張り強さ
が得られた。
As a result of testing the product obtained by the above treatment, a tensile strength of 39 kgf/- was obtained at room temperature in terms of high temperature strength.

また、第2表に示すように、Mnとともに、■、Mo、
Zr、Bを添加することによっても、同様に空孔率を抑
制することができる。
In addition, as shown in Table 2, along with Mn, ■, Mo,
Porosity can be similarly suppressed by adding Zr and B.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の成形法を示す工程図、第2図は第1図
の変形例を示す工程図、第31Jは本発明の一実施例に
よる工程を説明する説明図、第4図は同実施例による高
温高圧処理における加熱工程を示ず線し1である、
FIG. 1 is a process diagram showing the molding method of the present invention, FIG. 2 is a process diagram showing a modification of FIG. 1, FIG. The heating process in the high temperature and high pressure treatment according to the same example is not shown and is 1.

Claims (1)

【特許請求の範囲】[Claims] (1)Al14〜63重量%、Mn0.1〜5重量%、
残部Tiの割合で、Al粉末、Al−Mn合金粉末、M
n粉末のうちいずれかを2以上選択してTi粉末に混合
し、またはAl−Mn合金粉末にTiを混合し、この混
合物を密閉容器に収納して脱気し、混合物の固相線以下
の温度で加熱焼成してTi−Al系金属間化合物を形成
する成形法であって、 550℃〜650℃までの昇温条件を、0.01〜20
℃/minに設定することを特徴とするTi−Al系金
属間化合物部材の成形法。
(1) Al 14-63% by weight, Mn 0.1-5% by weight,
Al powder, Al-Mn alloy powder, M
Select two or more of n powders and mix them with Ti powder, or mix Ti with Al-Mn alloy powder, store this mixture in a closed container and degas it, and make the mixture below the solidus line. A forming method in which a Ti-Al based intermetallic compound is formed by heating and baking at a temperature of 0.01 to 20
A method for forming a Ti-Al intermetallic compound member, characterized in that the molding rate is set at ℃/min.
JP61288074A 1986-12-03 1986-12-03 Method for forming Ti-Al intermetallic compound member Expired - Lifetime JPH0791603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61288074A JPH0791603B2 (en) 1986-12-03 1986-12-03 Method for forming Ti-Al intermetallic compound member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61288074A JPH0791603B2 (en) 1986-12-03 1986-12-03 Method for forming Ti-Al intermetallic compound member

Publications (2)

Publication Number Publication Date
JPS63140049A true JPS63140049A (en) 1988-06-11
JPH0791603B2 JPH0791603B2 (en) 1995-10-04

Family

ID=17725473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61288074A Expired - Lifetime JPH0791603B2 (en) 1986-12-03 1986-12-03 Method for forming Ti-Al intermetallic compound member

Country Status (1)

Country Link
JP (1) JPH0791603B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2653783A1 (en) * 1989-10-27 1991-05-03 Mtu Muenchen Gmbh PROCESS FOR THE METALLURGY PRODUCTION OF POWDERS OF MOLDED PIECES FROM INTERMETALLIC COMPOUNDS.
US5370839A (en) * 1991-07-05 1994-12-06 Nippon Steel Corporation Tial-based intermetallic compound alloys having superplasticity

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2653783A1 (en) * 1989-10-27 1991-05-03 Mtu Muenchen Gmbh PROCESS FOR THE METALLURGY PRODUCTION OF POWDERS OF MOLDED PIECES FROM INTERMETALLIC COMPOUNDS.
US5370839A (en) * 1991-07-05 1994-12-06 Nippon Steel Corporation Tial-based intermetallic compound alloys having superplasticity
US5518690A (en) * 1991-07-05 1996-05-21 Nippon Steel Corporation Tial-based intermetallic compound alloys and processes for preparing the same
US5648045A (en) * 1991-07-05 1997-07-15 Nippon Steel Corporation TiAl-based intermetallic compound alloys and processes for preparing the same
US5846351A (en) * 1991-07-05 1998-12-08 Nippon Steel Corporation TiAl-based intermetallic compound alloys and processes for preparing the same

Also Published As

Publication number Publication date
JPH0791603B2 (en) 1995-10-04

Similar Documents

Publication Publication Date Title
US3950166A (en) Process for producing a sintered article of a titanium alloy
JPH0130898B2 (en)
US4410488A (en) Powder metallurgical process for producing a copper-based shape-memory alloy
JP2737498B2 (en) Titanium alloy for high density powder sintering
JPH0730418B2 (en) Forming method of Ti-Al intermetallic compound member
JP2588889B2 (en) Forming method of Ti-Al based intermetallic compound member
JPS63140049A (en) Forming method for ti-al intermetallic compound member
JP2549116B2 (en) Method for forming Ti-A (1) type alloy electrode member
JPS63255331A (en) Formation of ti-al intermetallic-compound member
JPH0149765B2 (en)
JP2588890B2 (en) Forming method of Ti-Al based intermetallic compound member
JPH05148568A (en) High density powder titanium alloy for sintering
JPH02259029A (en) Manufacture of aluminide
JP3252481B2 (en) Tungsten alloy having fine crystal grains and method for producing the same
JPS59157201A (en) Manufacture of molded body of zinc-aluminum alloy powder
JPS63243234A (en) Molding method for member of ti-al intermetallic compound
JPS6386831A (en) Manufacture of working stock of aluminum-base sintered alloy
JPS62188735A (en) Manufacture of tini alloy wire or plate
JPH04202736A (en) Hyper-eutectic al-si base alloy powder showing excellent deformability by hot powder metal forging
JPS61159539A (en) Manufacture of shape memory alloy
JP2679267B2 (en) Manufacturing method of brazing material
JP2636114B2 (en) Production of TiAl-based intermetallic compounds by diffusion synthesis
JPS62278240A (en) Compacting method for ti-al intermetallic compound member
JP3691399B2 (en) Method for producing hot-worked aluminum alloy powder
JPH0633165A (en) Manufacture of sintered titanium alloy