JPS6386831A - Manufacture of working stock of aluminum-base sintered alloy - Google Patents
Manufacture of working stock of aluminum-base sintered alloyInfo
- Publication number
- JPS6386831A JPS6386831A JP23058586A JP23058586A JPS6386831A JP S6386831 A JPS6386831 A JP S6386831A JP 23058586 A JP23058586 A JP 23058586A JP 23058586 A JP23058586 A JP 23058586A JP S6386831 A JPS6386831 A JP S6386831A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- aluminum
- green compact
- sintering
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 34
- 239000000956 alloy Substances 0.000 title claims abstract description 34
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 239000000843 powder Substances 0.000 claims abstract description 87
- 238000005245 sintering Methods 0.000 claims abstract description 23
- 229910052751 metal Inorganic materials 0.000 claims abstract description 20
- 239000002184 metal Substances 0.000 claims abstract description 20
- 239000002994 raw material Substances 0.000 claims abstract description 17
- 238000005275 alloying Methods 0.000 claims abstract description 16
- 238000005056 compaction Methods 0.000 claims abstract description 11
- 229910052802 copper Inorganic materials 0.000 claims abstract description 9
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 8
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 8
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 8
- 229910052742 iron Inorganic materials 0.000 claims abstract description 7
- 229910052745 lead Inorganic materials 0.000 claims abstract description 7
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 7
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 7
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 6
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 5
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 4
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 3
- 229910052759 nickel Inorganic materials 0.000 claims abstract 2
- 239000000463 material Substances 0.000 claims description 17
- 238000012545 processing Methods 0.000 claims description 17
- 229910052782 aluminium Inorganic materials 0.000 claims description 13
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 13
- 238000010438 heat treatment Methods 0.000 claims description 9
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 239000011261 inert gas Substances 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims 1
- 238000007789 sealing Methods 0.000 abstract description 4
- 239000000654 additive Substances 0.000 abstract description 2
- 230000000996 additive effect Effects 0.000 abstract description 2
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 238000000034 method Methods 0.000 description 14
- 238000005096 rolling process Methods 0.000 description 10
- 239000002245 particle Substances 0.000 description 8
- 238000007796 conventional method Methods 0.000 description 7
- 239000010949 copper Substances 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 239000011651 chromium Substances 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 239000011701 zinc Substances 0.000 description 6
- 238000007872 degassing Methods 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000007731 hot pressing Methods 0.000 description 5
- 238000005098 hot rolling Methods 0.000 description 5
- 238000005242 forging Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 208000009205 Tinnitus Diseases 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 206010014025 Ear swelling Diseases 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000000109 continuous material Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- CZZYITDELCSZES-UHFFFAOYSA-N diphenylmethane Chemical compound C=1C=CC=CC=1CC1=CC=CC=C1 CZZYITDELCSZES-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 239000008207 working material Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0408—Light metal alloys
- C22C1/0416—Aluminium-based alloys
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
この発明はアルミニウム基焼結合金からなる圧延材や押
出材等の展伸材または鍛造材を製造するために、その加
工用素材を作成する方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a method for producing a material for processing in order to produce a rolled or forged material such as a rolled or extruded material made of an aluminum-based sintered alloy. It is something.
従来の技術
一般にアルミニウム焼結合金の圧延材や押出何などの展
伸材または鍛造材を製造する場合、従来は、空気中もし
くは不活性カス雰囲気においてアトマイズ法により合金
向末を作り、必要に応じて分、汲した後、その合金粉末
をプレス等で圧1分して圧粉体とし、次いでその圧粉体
を予め用意されたアルミニウム合金)ツの容器(缶)内
に封入し、容器内を減圧して真空に保ったまま加熱して
脱ガスを行ない、ざらにホラ1ヘプレスによりカロ圧し
て力り下用ヒレットを作り、その後このヒレットの外面
を覆う容器を切削除去してから押出や圧延や鍛造等の加
工を行なうのが通常であった。Conventional technology In general, when manufacturing aluminum sintered alloys such as rolled materials, extruded materials, or forged materials, conventionally, an alloy powder is created by an atomization method in air or an inert gas atmosphere, and then processed as necessary. After pumping, the alloy powder is compressed for 1 minute using a press to form a compact, and then the compact is sealed in a pre-prepared aluminum alloy container (can), and Depressurize the fillet and heat it to degas while keeping it in a vacuum, press it with a rough press to make a fillet for straining, then cut off the container covering the outer surface of this fillet, and then extrude it. Usually, processing such as rolling or forging was performed.
このような従来の方法において、圧粉体を容器に封入し
た後の脱ガスは、加工後の熱処理時に材事斗(こふくれ
(ブリスター)を生ぜしめないとともに、ホットプレス
時の粉末同士の結合を促進して充分な強度を与えるため
に必要とされている。すなわち、脱ガスを行なわなけれ
ば、例末の表面に形成された酸化物に化合もしくは吸着
されている水分が除去されず、加工後の材料内に水素の
形で残留し、熱処理時にふくれを生じてしまう。また脱
カスを実施しなければ、粉末の表面酸化物が強固でおる
ため、その表面酸化物がホットプレスにおいて粉末同士
の結合(焼結)を妨げてしまう。In such conventional methods, degassing after the green compact is sealed in a container prevents blistering during heat treatment after processing, and also prevents the powder from bonding with each other during hot pressing. In other words, without degassing, the moisture combined with or adsorbed on the oxide formed on the surface of the grain will not be removed, making it difficult to process. It remains in the form of hydrogen in the material afterwards, causing blistering during heat treatment.Also, unless descaling is performed, the surface oxide of the powder will remain strong, and the surface oxide will cause the powder to bond with each other during hot pressing. This prevents the bonding (sintering) of the
一方前述のような従来の方法においてiζツ1〜プレス
を適用している目的は、゛粉末を光分に圧縮変形ざけて
粉末表面の酸化物を破壊し、粉末同士の結合(焼結)を
充分に進行させて、次の加工時の変形に耐え得る強度を
材料に与えることに柄る。On the other hand, the purpose of applying iζ1~press in the conventional method described above is to ``deform the powder by compressing it into light to destroy the oxides on the powder surface, and to prevent the bonding (sintering) of the powders. The aim is to allow sufficient progress to give the material the strength to withstand deformation during subsequent processing.
発明が解決すべき問題点
前述のような従来の方法では、圧(分体を容器に封入す
る工程を必要とするため、その容器によって最終的にj
qられる製品のサイズか制約されてしまい、製品の大型
化が困難であるとともに、容器内に圧粉体を挿入する工
程やホラ1〜プレス後に容器を切削除去する工程が必要
であって、その工程数が多く、必然的にコスト上胃を招
いている。また上述のように容器によってナイスか制約
されるため、加工時には1個ずつ押出し、圧延また(よ
鍛造する必要かあり、そのため作業性が低く、特に圧延
のような連続プロセスには不適当て必った。Problems to be Solved by the Invention In the conventional method as described above, pressure (because it requires a step of sealing the fragments in a container, the container ultimately
This limits the size of the product that can be pressed, making it difficult to make the product larger, and requires a process to insert the green compact into the container and a process to cut and remove the container after pressing. The number of steps involved is large, which inevitably leads to high costs. In addition, as mentioned above, the container limits whether it is nice or not, so during processing, it is necessary to extrude, roll, or forge one by one, which results in low workability and is particularly unsuitable for continuous processes such as rolling. It was.
この発明は以上の事情に鑑みてなされたもので、圧粉体
の容器への封入を省略し、これによって製品サイズの大
型化、工程数の減少、作業(生の向上およびコストの低
減を図り(qるようにしたアルミニウム基焼結合金のh
u工開用素材製造方法を提供することを目的とするもの
である。This invention was made in view of the above circumstances, and aims to increase the size of the product, reduce the number of steps, improve work efficiency, and reduce costs by omitting the need to enclose the compacted powder in a container. (h of aluminum-based sintered alloy made to
The purpose of this invention is to provide a method for producing materials for U-tech development.
問題点を解決するための手段
前述のように圧粉体の容器への封入を省略してアルミニ
ウム基焼結合金の加工用素材を製造する場合、従来法と
同程度またはそれ以上の性能、特に良好な熱間hO工性
能を有する材料を如何にして得るかが問題となる。すな
わち従来法では既に述べたように圧粉体を容器に封入し
た状態での脱ガス、およびそれに続いてのホットプレス
が、熱処理時のふくれの発生を防止するとともに粉末同
士の結合を充分に行なわせて熱間7Jロ工時の変形に耐
え(qる強度を与えるに大きく奇与しているが、容器へ
の圧粉体の封入を省略した場合にこのような脱ガスおよ
びホットプレスを如何にして行なうか、あるいはそれら
による作用と同等の作用を如何にして(昇るかが重要な
問題となる。Means for Solving the Problems As mentioned above, when manufacturing materials for processing aluminum-based sintered alloys without enclosing the green compact in a container, it is possible to achieve the same or better performance than the conventional method, especially The problem is how to obtain a material that has good hot HO processability. In other words, in the conventional method, as mentioned above, degassing while the green compact is sealed in a container, followed by hot pressing, prevents the occurrence of blisters during heat treatment and sufficiently bonds the powders together. It has a great strength to withstand deformation during hot 7J rolling process (q), but how can such degassing and hot pressing be done if the sealing of the green compact in the container is omitted? The important issue is whether to do so, or how to achieve an effect equivalent to the effect caused by them.
そこで本発明者等が種々実験・検討を重ねた結末、添加
すべき合金元素の種類に応じて圧1分用原料粉末の配合
形態、すなわら純金属粉末として用いるかあるいは合金
粉末として用いるかを適切に選択するとともに、圧粉後
に圧粉体のまま真空雰囲気もしくは不活性雰囲気で焼結
すれば、従来法における脱ガスおよびホットプレスを行
なった場合と同等以上の熱間θ0工性能か1野られるこ
とを見出し、この発明をなすに至ったのである。Therefore, the inventors of the present invention have conducted various experiments and studies, and as a result, the blending form of the raw material powder for pressure 1 minute is determined depending on the type of alloying element to be added, that is, whether it is used as a pure metal powder or as an alloy powder. If the powder is properly selected and the green compact is sintered in a vacuum or inert atmosphere after compaction, the hot θ0 machining performance is equal to or higher than the conventional method of degassing and hot pressing. He discovered that this could be done in a variety of ways, and came up with this invention.
具体的には、この発明のアルミニウム基焼結合金の加工
用累(A製造方法は、:Mg、Zn、3iおよびCuの
うちから選ばれlこ1平重または2種以上の元素と、F
e、Cr、Co、[\11.\=In、Ti、Zr、V
、Ce、Sn、PbおよびLlのうらから選ばれた1種
または2種以上の元素とをそれぞれ合金元素として含有
するアルミニウム基焼結合金の熱間加工用素材を製造す
るにあたり、圧′防用の原料粉末のうちの一部として、
MCI、Zn、Si、およびCuのうちから選ばれた1
平小または2種以上の元素の純金属粉末を用いるととも
に、Fe、Cr、Co、N:、〜In、Ti、Zr、V
、Ce、Sn、PbおよびLlのうらの添1叫すρ\き
合金元素は、予めAlと合金化した合金粉末として圧j
分用原1116)米中に添カロし、その原料(4)末を
圧粉して圧粉体を作成した後、その圧粉体を真空中もし
くは不活性ガス中で7J[]熱して焼結することを特徴
とするものである。Specifically, the aluminum-based sintered alloy of the present invention is manufactured by: A method for producing an aluminum-based sintered alloy containing one or more elements selected from among Mg, Zn, 3i, and Cu;
e, Cr, Co, [\11. \=In, Ti, Zr, V
, Ce, Sn, Pb, and Ll as alloying elements. As part of the raw material powder,
1 selected from MCI, Zn, Si, and Cu
In addition to using pure metal powder of flat or two or more elements, Fe, Cr, Co, N:, ~In, Ti, Zr, V
, Ce, Sn, Pb and Ll.
Separation source 1116) Calories are added to rice, and the raw material (4) powder is pressed into powder to create a green compact, and then the green compact is heated to 7 J[] in a vacuum or in an inert gas to sinter it. It is characterized by tying.
ここで、圧粉は密度比(真密度に対する比)が9QC3
6以上となるように行なうことが望ましい。また焼結は
、500〜600°Cの範囲内の温度で行なうことか好
ましい。Here, the density ratio (ratio to true density) of the compacted powder is 9QC3
It is desirable to perform this so that the number is 6 or more. Further, sintering is preferably carried out at a temperature within the range of 500 to 600°C.
作 用
この発明においては、先ず圧粉用の原料粉末の形態を、
添加合金元素の種類に応じて適切に選択することか必要
である。すなわち従来一般には1、添加すぺさ゛合金元
素を予めすべてへ2等と合金化しておぎ、ア1〜マイズ
等で得られたその合金粉末を圧粉用原料南米とすること
が多かったが、このような合金粉末では、合金濃度がど
の粉末粒子でも同じであり、そのため焼結時に合金温度
差を利用した拡散による(:分末同士の結合が行なわれ
にくい。そこでこの発明では、特に拡散速度が速い元素
については、純金属粉末として元素の形で用ハして圧粉
用の原料粉末の一部として使用し、均一に混合して圧粉
した後、焼結することによって焼結を促進させることを
図っている。すなわら、アルミニウム合金に通常使用さ
れている合金元素のうち、N・iQ(マグネジ1クム)
、Zn(亜鉛)、Si(ケイ素)、Cu(銅)はいずれ
も拡散速度が速いから、これらを純金属粉末として、A
l 111)末やへ2合金物末と混合して圧粉するこ
とにより、焼結時にその純金属粉末の元素がAl粉末粒
子やA1合金粉末粒子内に速やかに拡散するとともに、
その純金属粉末を介してのAl粉末粒子やへ!合金粉末
粒子相互間の結合も速やかに進行する。Function In this invention, first, the form of the raw material powder for powder compaction is
It is necessary to select the alloying element appropriately depending on the type of alloying element added. In other words, in the past, it was common practice to first alloy all of the alloying elements 1 and 2 with the alloying elements 2 and 2, and then use the alloy powder obtained from A1 to Mize as the raw material for powder compaction. In such an alloy powder, the alloy concentration is the same in all powder particles, and therefore, during sintering, it is difficult to bond the particles together by diffusion using the alloy temperature difference.Therefore, in this invention, in particular, the diffusion rate For elements that have a fast rate of oxidation, they can be used in the elemental form as pure metal powder, used as part of the raw material powder for powder compaction, mixed uniformly and compacted, and then sintered to promote sintering. Among the alloying elements normally used in aluminum alloys, N・iQ (magnetic screw 1 cum)
, Zn (zinc), Si (silicon), and Cu (copper) all have fast diffusion rates, so they can be used as pure metal powders to form A
l 111) By mixing powder and powder with 2 alloy powder and compacting, the elements of the pure metal powder quickly diffuse into Al powder particles and A1 alloy powder particles during sintering, and
Al powder particles through pure metal powder! Bonding between alloy powder particles also progresses rapidly.
但し、M CJ、Zn、Si、Cuのうらの添加すべき
元素の全ての元素の全量を純金属粉末として用いる必要
はなく、一部の元素のみ純金属粉末として用いたり、あ
るいは一部の元素の全添加量のうち一部の添力Duに相
当する量のみを純金属粉末として用い、残りはAlとの
合金粉末として使用することが許容される。但し純金属
粉末として使用する粉末の量か多いはど゛0末同士の結
合を促進する効果が大きくなるから、通常は〜1g、Z
n、Si、Cuのうちの添加すべき元素の仝恒を純金属
)の禾として用いることが望ましい。However, it is not necessary to use the entire amount of all the elements to be added behind M CJ, Zn, Si, and Cu as pure metal powder, and it is possible to use only some of the elements as pure metal powder, or It is permissible to use only an amount corresponding to a part of the additive force Du as a pure metal powder out of the total addition amount, and use the rest as an alloy powder with Al. However, the larger the amount of powder used as pure metal powder, the greater the effect of promoting the bonding between Z0 ends, so usually ~1 g, Z
It is desirable to use the permanent elements of n, Si, and Cu to be added as pure metals.
また、Fe(鉄)、Cr (クロム)、Go(コバルト
)、Niにラブル)、〜In<マンガン)、Ti(ヂタ
ン>、Zr(ジルコニウム)、■(バナジウム)、Ce
(セリウム)、Sn(スズ)、pb<狙))等のような
拡散速度の遅い元素は、純金属(分末として使用しても
焼結時に充分に拡散せず、またLi(リチウム)は活性
であるため純金属粉末として使用するのは危険であり、
したがってこれらの元来を含有ブるアルミニウム基焼結
合金を製造する場合は、これらの元素について予めAl
と合金化した合金粉末として使用する。In addition, Fe (iron), Cr (chromium), Go (cobalt), ~In <manganese), Ti (ditane>), Zr (zirconium), ■ (vanadium), Ce
Elements with a slow diffusion rate such as (cerium), Sn (tin), pb < target), etc., do not diffuse sufficiently during sintering even if they are used as pure metals (lithium), and Li (lithium) Because it is active, it is dangerous to use it as a pure metal powder;
Therefore, when producing an aluminum-based sintered alloy containing these elements, Al
It is used as an alloy powder alloyed with.
以上のように本願発明では〜ICI、zn、s rおよ
びCUのうらの1仔以上の合金元素と、Fe、Cr、C
o、N i 、〜1n、T + 、Zr、V、Ce。As described above, in the present invention, one or more alloying elements behind ICI, zn, sr, and CU, and Fe, Cr, and C
o, N i , ~1n, T + , Zr, V, Ce.
Sn、Pbおよびliのうちの1種以上の合金元素とを
同時に含有するアルミニウム基焼結合金熱間加工用素材
を製造するにあたって、110石の合金元素については
その少なくとも一部は純金属粉末として用い、後者の合
金元素は予めΔノと合金化した合金元素として用いるこ
とが必要である。In producing an aluminum-based sintered alloy hot working material that simultaneously contains one or more alloying elements among Sn, Pb, and Li, at least a portion of the 110 alloying elements is prepared as pure metal powder. The latter alloying element must be used as an alloying element that has been previously alloyed with Δ.
以上のような原料粉末は、容器(山)に1q人すること
なく、そのまま圧粉成形し、圧粉体を一部る。The raw material powder as described above is compacted as it is without putting 1q in a container (heap), and a part of the powder compact is formed.
この圧粉成形方法としては、プレスを用いて金型内で粉
末を圧粉する方法、あるいはポツパーから粉末を直接ロ
ール間に落下させてロールによりシート状の圧粉体を得
る方法のいずれを用いても良い。前者の金型プレス法は
加工方法として押出もしくは鍛造を適用する場合に適当
でおり、また後者のロール圧、扮法は加工方法として圧
延を通用する場合に最適である。ここで、圧粉後の焼結
時において粉末同士の結合を促進させるためには、圧粉
工程において圧粉体の密度が真密度の90?6以上、好
ましくは95%以上となるように密に圧粉することが望
ましい。This powder compacting method can be either a method of compacting the powder in a mold using a press, or a method of directly dropping the powder from a popper between rolls and obtaining a sheet-shaped powder compact with the rolls. It's okay. The former die press method is suitable when extrusion or forging is used as a processing method, and the latter roll press method is optimal when rolling is used as a processing method. Here, in order to promote the bonding between powders during sintering after compaction, the density of the compact should be 90-6 or more, preferably 95% or more of the true density in the compaction process. It is desirable to compact the powder into powder.
圧粉後の焼結は、真空もしくは不活性雰囲気で行なうこ
とか必要でおる。真空もしくは不活性雰囲気で焼結する
ことにより、焼結開始初期に圧粉体中の粉末粒子間の水
分の除去を行なわせ、焼結体の熱間h[[工後の熱処理
時におけるふくれの発生を防止することができる。不活
性雰囲気としては、窒素、アルゴン、ヘリウム、水系、
あるいはそれらを混合したものなどを用いることが望ま
しい。Sintering after compaction must be performed in a vacuum or in an inert atmosphere. By sintering in a vacuum or inert atmosphere, moisture between the powder particles in the green compact is removed at the beginning of sintering, and the sintered body undergoes hot heating [[[blistering] during post-processing heat treatment. Occurrence can be prevented. Inert atmospheres include nitrogen, argon, helium, aqueous,
Alternatively, it is desirable to use a mixture of them.
また焼M温磨は、低過ぎれば拡散が不充分となって均一
に合金化せず、一方高過ぎれば液相が多量に発生し一〇
、粉末冶金の特徴である急冷効果による晶出物の微細化
、固溶但の増加などが達成できなくなる。そこで一般的
には500〜600℃の範囲内の焼結温度を適用するこ
とが好ましい。In addition, if the heating temperature is too low, diffusion will be insufficient and the alloy will not be uniformly formed, while if the temperature is too high, a large amount of liquid phase will occur. It becomes impossible to achieve finer particles and increase in solid solution. Therefore, it is generally preferable to apply a sintering temperature within the range of 500 to 600°C.
以上のようにして得られた焼結体は、熱間または冷間加
工用素材となるものでおって、この焼結体に押出、圧延
、鍛造等の任意の加工を施して最終製品とする。ここで
熱間加工のための加熱も、焼結体の再酸化や水分の吸着
を防止するため、焼結時と同じ雰囲気で行なうことが望
ましく、したがってその意味から、焼結工程に引続いて
材料を冷却せずに熱間hロエを行なうことが好ましい。The sintered body obtained in the above manner is a material for hot or cold processing, and the sintered body is subjected to arbitrary processing such as extrusion, rolling, and forging to produce a final product. . Here, it is desirable to perform heating for hot processing in the same atmosphere as during sintering in order to prevent re-oxidation of the sintered body and adsorption of moisture. It is preferable to carry out hot loe without cooling the material.
また焼結後、−旦冷却してから再加熱して熱間加工する
場合は、その再bO熱の雰囲気を焼結時の雰囲気と同様
に真空もしくは不活性雰囲気とする。なあ押出、圧延、
鍛造等の熱間加工作業自体においては”焼結体は大気に
ざらされるか、これらの作業は短時間で終了するから、
再酸化等の問題は少ない。In addition, after sintering, when hot working is performed by cooling once and then reheating, the atmosphere of the re-BO heat is set to be a vacuum or an inert atmosphere similar to the atmosphere during sintering. Hey, extrusion, rolling,
During hot processing operations such as forging, the sintered body is exposed to the atmosphere, or these operations are completed in a short period of time.
There are few problems such as re-oxidation.
以上のように、圧粉用原料粉末の配合形態を週明に選択
して、待に〜1g、Zn、Si、Cuのうちの1種以上
を純金属粉末として用いるとともに、Fe、 Cr、C
o、N i 、〜1n、r*、zr、v、Ce、Sn、
Pbおよびliのうち添110すべき合金元素は予め八
!と合金化した合金粉末として用い、しかも焼結を真空
中もしくは不活性雰囲気で行なうことにより、従来法の
ような容器へのI′i扮体の封入とそれに続いての脱カ
スおよびホットプレスを省略しても、焼結時における(
5末同士の結合を充分に促進させて加工時の変形に耐え
1■る強度を与えることかでき、また加工後の熱処理口
、1のふくれの発生をも防止できる。As mentioned above, the blending form of the raw material powder for compacting was selected at the beginning of the week, and one or more of Zn, Si, and Cu was used as pure metal powder, and Fe, Cr, and C were used as pure metal powder.
o, N i , ~1n, r*, zr, v, Ce, Sn,
Of Pb and li, 8 alloying elements should be added in advance! By using the powder as an alloy powder alloyed with I'i and performing sintering in a vacuum or in an inert atmosphere, it is possible to encapsulate the I'i substitute body in a container and then remove the scum and hot press as in the conventional method. Even if omitted, (
It is possible to sufficiently promote the bonding between the 5-terminals and provide strength equivalent to 1.1 to withstand deformation during processing, and also to prevent the occurrence of blistering at the heat treatment opening after processing.
実施例
[実施例1]
第1表に示すように、粉末全体としての成分比がほぼ同
じでおるが配合形態が異なる3種の粉末(〜α1〜Nα
3)を圧粉用原料粉末として用意し、これらをそれぞれ
圧粉体の匣度比が85%、90%、95%となるように
プレスを用いて金型で板厚6mInのシート状に圧粉成
形した。次いて各密度比の圧粉体について、焼結温度を
450°C1500℃1550°C1600℃1625
°Cの各種の温度として窒素気流中で各1時間焼結した
。そして各焼結体を、同じ窒素気流中にて410〜44
0°Cの温度に加熱し、板厚6mから2#まで熱間圧延
した。なお熱間圧延にあける1回の圧下率は各10%と
した。Examples [Example 1] As shown in Table 1, three types of powder (~α1~Nα
3) was prepared as a raw material powder for compacting, and pressed into a sheet with a thickness of 6 mIn using a press using a mold so that the compactness ratio of the compact was 85%, 90%, and 95%, respectively. Powder molded. Next, for the green compacts of each density ratio, the sintering temperature was set to 450°C, 1500°C, 1550°C, 1600°C, 1625°C.
Sintering was carried out at various temperatures of °C for 1 hour each in a nitrogen stream. Then, each sintered body was heated to 410 to 44 mm in the same nitrogen stream.
It was heated to a temperature of 0°C and hot rolled from a plate thickness of 6 m to 2#. Note that the rolling reduction rate during each hot rolling was 10%.
熱間加工性を評価するため、熱間圧延時の耳割れの発生
の程度を調べた結果を各粉末\01〜NQ3について、
圧粉体密度比および′FA拮温度に対応して第2表〜第
4表に示す。なお第2表〜第4表中において、)A」、
「B」、[CJはそれぞれ熱間圧延時の耳割れの程度を
次のようにあられす。In order to evaluate the hot workability, the results of investigating the degree of edge cracking during hot rolling are shown for each powder\01 to NQ3.
Tables 2 to 4 show the green compact density ratio and the FA temperature. In addition, in Tables 2 to 4, )A'',
"B" and [CJ] respectively indicate the degree of edge cracking during hot rolling as follows.
A:耳割れほとんど無し
B:耳割れ中程度
C:耳υ1れ大
第1表
□°独釡属m eura 1 1
.6 1第2表:粉末N091を用いた焼結体の熱間加
工i生第3表:粉末N0.2を用いた焼結体の熱間加工
性第4表:粉末NQ3を用いた焼結体の熱間h00工性
品出物租大化
第2表〜第4表から明らかなように、7n、Mg、CL
Jを純金属扮として用い、Coは合金(分として用いた
Nα3粉末の場合には、焼結体の2!)間圧延時の耳割
れの発生が少なく、他の粉末\α1、Nα2の場合と比
較して熱間h0工性が良好で必った。A: Hardly any ear cracking B: Moderate ear cracking C: Ear cracking 1 large Table 1 □° German pot m eura 1 1
.. 6 1 Table 2: Hot workability of sintered body using powder N091 Table 3: Hot workability of sintered body using powder N0.2 Table 4: Sintering using powder NQ3 As is clear from Tables 2 to 4, 7n, Mg, CL
J is used as a pure metal, and Co is an alloy (in the case of Nα3 powder used as a sintered body, there is less edge cracking during rolling), and in the case of other powders\α1 and Nα2. This was necessary because the hot H0 workability was better compared to the previous one.
待にNα3粉末について圧粉体の密度比を90%以上と
し、500〜600°Cで焼結した場合には、著しく優
れた熱間加工i生を示した。First, when the density ratio of the green compact was set to 90% or more for Nα3 powder and the powder was sintered at 500 to 600°C, it showed extremely excellent hot working performance.
[実施例2]
第5表に示す\04〜N011の粉末を斤均用原料粉末
として用意し、それぞれ圧粉体の密度比か95%となる
ようにロール(こより)反厚2.5mのシー]へ状に圧
粉した。次いで各圧將)体について、真空中にて560
℃で1時間焼結し、1nられた焼結体を真空中にて41
0〜440℃の18度に加だ;し、板厚2.5mから1
171mまで熱間圧延した。なお熱間圧延における1回
の圧下率は各10%とした。[Example 2] The powders \04 to N011 shown in Table 5 were prepared as raw material powders for loaf leveling, and each was rolled with a cross-thickness of 2.5 m so that the density ratio of the green compact was 95%. [Shi] was pressed into a flat powder. Then, for each pressure body, 560
The sintered body was sintered at ℃ for 1 hour and then heated at 41℃ in vacuum.
It is heated to 18 degrees from 0 to 440℃;
It was hot rolled to 171 m. Note that the rolling reduction rate in each hot rolling was 10%.
熱間圧延にあける各焼結体の耳υ]れの!’1度を調へ
たところ、第5表中に示す結果が得られた。なお第5表
中の「耳υ]れの発生程度」の評価A、B、Cは、第2
図〜第4図の場合と同じである。この結果からも圧粉用
の原料粉末としてこの発明の配合形態のものを用いた場
合に熱間加工性か良好となることが判る。The ear υ of each sintered body made during hot rolling] Reno! The results shown in Table 5 were obtained. In addition, evaluations A, B, and C of “degree of occurrence of ear swelling” in Table 5 are based on the second
This is the same as in the case of FIGS. This result also shows that when the blended form of the present invention is used as the raw material powder for powder compacting, the hot workability is good.
第 5 表
■U
口
□□□□□□□□□■
□□1
□−4
JtU+U(9U士(24N11%Ll19 1100
.OI Ci発明の効果
以上の説明で明らかなように、この発明の方法によれば
、圧粉体の容器(缶)への封入を省折iして、熱間また
は冷間加工性に擾れたアルミニウム島焼結合金加工用素
j才を得ることかでき、シ!=かつて容器に制約される
ことなく製品を大型化することができるとともに、圧粉
体の容器への封入工程および焼結後の容器の除去工程が
不要となるため、工程数が従来よりも格段に少なくなっ
て生産性の向上およびコスト低減を図ることがでさ、さ
らに連続素材の製造が可能となるため次工程の如工方法
として圧延のようなI’J2 hEプロセスの適用か可
能となる等の効果か)昇られなる。Table 5 ■U Mouth □□□□□□□□□■ □□1 □-4 JtU+U (9U (24N11%Ll19 1100
.. Effects of the OI Ci Invention As is clear from the above explanation, according to the method of this invention, it is possible to save the sealing of the compact into a container (can) and improve hot or cold workability. It is possible to obtain the basic skills for processing aluminum sintered alloys. = Products can be made larger without being limited by containers, and the process of enclosing the green compact in the container and removing the container after sintering is no longer necessary, so the number of steps is significantly greater than before. This makes it possible to improve productivity and reduce costs, and it also makes it possible to manufacture continuous materials, making it possible to apply I'J2 hE processes such as rolling as a method for the next process. (Is it because of the effect of something like that?)
Claims (3)
1種または2種以上の元素と、Fe、Cr、Co、Ni
、Mn、Ti、Zr、V、Ce、Sn、PbおよびLi
のうちから選ばれた1種または2種以上の元素とをそれ
ぞれ合金元素として含有するアルミニウム基焼結合金の
加工用素材を製造するにあたり、 圧粉用の原料粉末のうちの一部として、Mg、Zn、S
i、およびCuのうちから選ばれた1種または2種以上
の元素の純金属粉末を用いるとともに、Fe、Cr、C
o、Ni、Mn、Ti、Zr、V、Ce、Sn、Pbお
よびLiのうちの添加すべき合金元素は、予めAlと合
金化した合金粉末として圧粉用原料粉末中に添加し、そ
の原料粉末を圧粉して圧粉体を作成した後、その圧粉体
を真空中もしくは不活性ガス中で加熱して焼結すること
を特徴とするアルミニウム基焼結合金の加工用素材の製
造方法。(1) One or more elements selected from Mg, Zn, Si, and Cu, and Fe, Cr, Co, and Ni
, Mn, Ti, Zr, V, Ce, Sn, Pb and Li
When manufacturing materials for processing aluminum-based sintered alloys containing one or more elements selected from the following as alloying elements, Mg is used as part of the raw material powder for compaction. ,Zn,S
Using pure metal powder of one or more elements selected from i, and Cu, as well as Fe, Cr, C
The alloying elements to be added among O, Ni, Mn, Ti, Zr, V, Ce, Sn, Pb, and Li are added to the raw material powder for compaction as an alloy powder alloyed with Al in advance, and the A method for producing a material for processing an aluminum-based sintered alloy, which comprises: creating a compact by compacting powder, and then heating and sintering the compact in a vacuum or in an inert gas. .
ように行なう特許請求の範囲第1項記載のアルミニウム
基焼結合金の加工用素材の製造方法。(2) The method for producing a material for processing an aluminum-based sintered alloy according to claim 1, wherein the compacting is performed so that the density ratio of the compact is 90% or more.
行なう特許請求の範囲第1項記載のアルミニウム基焼結
合金の加工用素材の製造方法。(3) The method for producing a material for processing an aluminum-based sintered alloy according to claim 1, wherein the sintering is performed at a temperature within a range of 500 to 600°C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23058586A JPS6386831A (en) | 1986-09-29 | 1986-09-29 | Manufacture of working stock of aluminum-base sintered alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23058586A JPS6386831A (en) | 1986-09-29 | 1986-09-29 | Manufacture of working stock of aluminum-base sintered alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6386831A true JPS6386831A (en) | 1988-04-18 |
Family
ID=16910047
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23058586A Pending JPS6386831A (en) | 1986-09-29 | 1986-09-29 | Manufacture of working stock of aluminum-base sintered alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6386831A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5902943A (en) * | 1995-05-02 | 1999-05-11 | The University Of Queensland | Aluminium alloy powder blends and sintered aluminium alloys |
WO2003064710A1 (en) * | 2002-01-29 | 2003-08-07 | Gkn Sinter Metals Gmbh | Sinterable metal powder mixture for the production of sintered components |
WO2003064083A3 (en) * | 2002-01-29 | 2003-12-24 | Gkn Sinter Metals Gmbh | Method for producing sintered components from a sinterable material |
JP2011021218A (en) * | 2009-07-14 | 2011-02-03 | Kinki Univ | Powder material for laminate molding, and powder laminate molding method |
CN111549245A (en) * | 2020-05-27 | 2020-08-18 | 河南中钻新材料有限公司 | Preparation method of powder metallurgy ultrahigh-strength aluminum alloy |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53125205A (en) * | 1977-04-09 | 1978-11-01 | Showa Denko Kk | Preparation of sintered product of aluminum base |
JPS53128512A (en) * | 1977-04-15 | 1978-11-09 | Showa Denko Kk | Process for producing high silicon-aluminum alloy sintered material |
JPS61257450A (en) * | 1985-05-08 | 1986-11-14 | Nissan Motor Co Ltd | Heat resistant aluminum alloy |
JPS62235455A (en) * | 1986-04-04 | 1987-10-15 | Nissan Motor Co Ltd | Aluminum bearing alloy and its production |
JPS62287026A (en) * | 1986-06-04 | 1987-12-12 | Showa Denko Kk | Manufacture of aluminum-alloy sintered and forged product |
-
1986
- 1986-09-29 JP JP23058586A patent/JPS6386831A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53125205A (en) * | 1977-04-09 | 1978-11-01 | Showa Denko Kk | Preparation of sintered product of aluminum base |
JPS53128512A (en) * | 1977-04-15 | 1978-11-09 | Showa Denko Kk | Process for producing high silicon-aluminum alloy sintered material |
JPS61257450A (en) * | 1985-05-08 | 1986-11-14 | Nissan Motor Co Ltd | Heat resistant aluminum alloy |
JPS62235455A (en) * | 1986-04-04 | 1987-10-15 | Nissan Motor Co Ltd | Aluminum bearing alloy and its production |
JPS62287026A (en) * | 1986-06-04 | 1987-12-12 | Showa Denko Kk | Manufacture of aluminum-alloy sintered and forged product |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5902943A (en) * | 1995-05-02 | 1999-05-11 | The University Of Queensland | Aluminium alloy powder blends and sintered aluminium alloys |
WO2003064710A1 (en) * | 2002-01-29 | 2003-08-07 | Gkn Sinter Metals Gmbh | Sinterable metal powder mixture for the production of sintered components |
WO2003064083A3 (en) * | 2002-01-29 | 2003-12-24 | Gkn Sinter Metals Gmbh | Method for producing sintered components from a sinterable material |
JP2011021218A (en) * | 2009-07-14 | 2011-02-03 | Kinki Univ | Powder material for laminate molding, and powder laminate molding method |
CN111549245A (en) * | 2020-05-27 | 2020-08-18 | 河南中钻新材料有限公司 | Preparation method of powder metallurgy ultrahigh-strength aluminum alloy |
CN111549245B (en) * | 2020-05-27 | 2021-07-09 | 河南中钻新材料有限公司 | Preparation method of powder metallurgy ultrahigh-strength aluminum alloy |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5889786B2 (en) | Titanium alloy mixed powder blended with copper powder, chromium powder or iron powder, method for producing the same, and method for producing titanium alloy material | |
US3950166A (en) | Process for producing a sintered article of a titanium alloy | |
WO2011152359A1 (en) | Titanium alloy composite powder containing ceramics and manufacturing method thereof, and densified titanium alloy and manufacturing method thereof using the same | |
WO2007111342A1 (en) | High-strength high-toughness magnesium alloy and method for producing the same | |
JP2009074127A (en) | Sintered sputtering target material and manufacturing method therefor | |
CN114959615A (en) | TiAlCrSiY alloy target and preparation method thereof | |
WO2012147998A1 (en) | α+β-TYPE OR β-TYPE TITANIUM ALLOY AND METHOD FOR MANUFACTURING SAME | |
JPS6386831A (en) | Manufacture of working stock of aluminum-base sintered alloy | |
CN116804265B (en) | CrAlCuFe alloy target and preparation method thereof | |
JPH0730418B2 (en) | Forming method of Ti-Al intermetallic compound member | |
JPS62224602A (en) | Production of sintered aluminum alloy forging | |
JP2588889B2 (en) | Forming method of Ti-Al based intermetallic compound member | |
JPS63303017A (en) | Production of w-ti alloy target | |
JPH0635602B2 (en) | Manufacturing method of aluminum alloy sintered forgings | |
JPH05148568A (en) | High density powder titanium alloy for sintering | |
JP2588890B2 (en) | Forming method of Ti-Al based intermetallic compound member | |
JPS5891140A (en) | High tensile metal alloy material and production thereof | |
JPH0688153A (en) | Production of sintered titanium alloy | |
JP2549116B2 (en) | Method for forming Ti-A (1) type alloy electrode member | |
JPH032335A (en) | Manufacture of titanium powder or titanium alloy powder sintered product | |
JP2654982B2 (en) | Fe-Al-Si alloy and method for producing the same | |
JPS6360265A (en) | Production of aluminum alloy member | |
JPS63140049A (en) | Forming method for ti-al intermetallic compound member | |
JPS62199703A (en) | Hot hydrostatic compression molding method for al-si powder alloy | |
JPH01301801A (en) | Production of ti-al intermetallic compound powder |