JPH01301801A - Production of ti-al intermetallic compound powder - Google Patents

Production of ti-al intermetallic compound powder

Info

Publication number
JPH01301801A
JPH01301801A JP63133124A JP13312488A JPH01301801A JP H01301801 A JPH01301801 A JP H01301801A JP 63133124 A JP63133124 A JP 63133124A JP 13312488 A JP13312488 A JP 13312488A JP H01301801 A JPH01301801 A JP H01301801A
Authority
JP
Japan
Prior art keywords
powder
mixture
intermetallic compound
temp
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63133124A
Other languages
Japanese (ja)
Inventor
Shigenori Yamauchi
重徳 山内
Kazuhisa Shibue
渋江 和久
Minoru Makimura
牧村 実
Koichi Tsurumi
浩一 鶴見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Sumitomo Light Metal Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd, Sumitomo Light Metal Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP63133124A priority Critical patent/JPH01301801A/en
Publication of JPH01301801A publication Critical patent/JPH01301801A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce Ti-Al intermetallic compd. powder having high quality at a low cost by mixing Al powder and Ti powder at a specific ratio, then calcining and pulverizing the mixture at a specific temp. CONSTITUTION:The Al powder and the Ti powder or the alloy powder thereof are so mixed as to contain 14 to 63wt.% Al and the balance Ti. About 0.005 to 3% B, about 1 to 5% Zr, about 0.1 to 5% Ni, about 1 to 30% Nb, about 0.1 to 5% Mn, about 0.05 to 5% Si, about 1 to 5% V, about 1 to 10% W, and about 1 to 5% Mo are added to the mixture at need at this time. The whole or part of the mixture is then heated and calcined at the temp. of >=550 deg.C and below the solidus line temp. of the mixture in a vacuum or inert gas. Further, the mixture is crushed to about 100mu grain size with a ball mill, etc., and is pulverized to several mu by a gaseous flow pulverization method. The Ti-Al intermetallic compd. powder which is less stained and has good purity is thereby obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、射出成形等による粉末焼結体の製造に供され
るTi−Al系金金属間化合物粉末製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a Ti-Al based gold intermetallic compound powder that is used for producing a powder sintered body by injection molding or the like.

[従来の技術] 従来、Ti−Al系金金属間化合物 1’ i A Q
、T l 3A Q等)は、優れた高温強度及び耐酸化
性を有することが知られている。しかし、この部材は、
常温および高温で展延性に乏しいので、従来の加工技術
では成形することが困難であり、実用材料に供すること
ができないという問題点があった。
[Prior art] Conventionally, Ti-Al based gold intermetallic compound 1' i A Q
, T 1 3A Q, etc.) are known to have excellent high temperature strength and oxidation resistance. However, this member
Since it has poor malleability at room temperature and high temperature, it is difficult to mold using conventional processing techniques, and there is a problem in that it cannot be used as a practical material.

これを解決する手段として、たとえば、Ti −37%
(以下、%は重量%を示す。)へ〇合金部材を側圧付加
押出法等の特別な押出加工方法により実現しようとする
試みがなされているが、実用化に至っていない。
As a means to solve this problem, for example, Ti -37%
(Hereinafter, % indicates weight %.) Attempts have been made to produce alloy members using special extrusion processing methods such as lateral pressure extrusion methods, but they have not been put to practical use.

また、このようなTi−Al系金金属間化合物部材製造
方法の1つとして、Ti−A(1!系金金属化合物の粉
末を用いて射出成形から焼成工程を経ることにより焼結
体を製造する方法があり、NearNet 5hape
が可能であることから、とくに注目されている。
In addition, as one of the methods for manufacturing such Ti-Al based gold intermetallic compound members, a sintered body is manufactured by using powder of Ti-A (1! based gold metal compound) through injection molding and firing steps. There is a way to do this, NearNet 5hape
It is attracting particular attention because it is possible.

この製造方法に使用されるTi−Al系金金属間化合物
粉末を製造するのに、Ti−Alの鋳造により鋳塊を製
造し、これを粉砕する方法を採った場合には、Tiを含
有しているために鋳造時の汚染で純粋な組成の粉末を製
造することが困難であり、また汚染を防止するためには
高価な錆造設備を要するという問題がある。
In order to produce the Ti-Al based gold intermetallic compound powder used in this production method, if a method is adopted in which an ingot is produced by casting Ti-Al and the ingot is pulverized, Ti-based gold intermetallic compound powder is produced. Because of this, it is difficult to produce powder with a pure composition due to contamination during casting, and expensive rust forming equipment is required to prevent contamination.

また、他の粉末製造方法として、REP法(R。In addition, as another powder manufacturing method, REP method (R.

tating Electrode Process)
あるいはPREP?去(Plasma Rotatin
g Electrode Process)等がある0
この方法は、TiとkQ’ji:?iJ解・鋳造し、切
削加工することにより丸棒の電極部材を製造し、この電
極部材を回転させながらアークにより溶融することによ
り粉末を形成するものである。
tating Electrode Process)
Or PREP? Plasma Rotatin
g Electrode Process) etc.0
This method uses Ti and kQ'ji:? A round bar electrode member is manufactured by iJ melting, casting, and cutting, and powder is formed by melting the electrode member with an arc while rotating the electrode member.

しかし、この方法でも電極を製造するのに鋳造を用いて
いるために、汚染をさけることができず、鋳造設備等が
大型化したり、また、REP法等の高価な設備を必要と
するほか工程が長くなるとともに、原料の歩留りが悪く
、得られた粉末が著しく高価になるという問題もあった
However, since this method also uses casting to manufacture the electrodes, contamination cannot be avoided, the casting equipment becomes larger, and expensive equipment such as the REP method is required. There was also the problem that as the time became longer, the yield of raw materials was poor and the resulting powder became extremely expensive.

[発明が解決しようとする課題] 本発明は、上記従来の技術の問題を解決することを課題
とし、高品質でかつ経済的なTi−Al系金金属間化合
物粉末製造する方法を提供することを目的とする。
[Problems to be Solved by the Invention] An object of the present invention is to solve the above-mentioned problems of the conventional technology, and to provide a high-quality and economical method for producing Ti-Al based gold intermetallic compound powder. With the goal.

[課題を解決するための手段] 上記課題を達成するためになされた本発明のTi−A(
2系金属間化合物粉末の製造方法は5、l!14重量%
重量%型63重量%Tiの割合になるように、Al粗粉
末またはTi粉末、またはこれらの合金粉末を混合し、
この混合物の全部または一部を550℃以上で該混合物
の固相線以下の温度で加熱焼成し、この焼成物を粉砕す
ることを特徴とする。
[Means for Solving the Problems] The Ti-A (
The manufacturing method of the binary intermetallic compound powder is 5.l! 14% by weight
Coarse Al powder, Ti powder, or alloy powder thereof are mixed so that the proportion of Ti is 63% by weight,
The method is characterized in that all or part of this mixture is heated and calcined at a temperature of 550°C or higher and lower than the solidus line of the mixture, and the calcined product is pulverized.

以下、本発明によるTi−Al系金金属間化合物粉末製
造するための各工程について第1図に基づいて詳細に説
明し、さらにこれに他の工程を付加することにより一層
優れた粉末を製造できる方法について第2図を用いて説
明する。
Hereinafter, each process for producing Ti-Al based gold intermetallic compound powder according to the present invention will be explained in detail based on FIG. 1, and by adding other processes to this, even more excellent powder can be produced. The method will be explained using FIG. 2.

(Ti粉末またはTi合金粉末の製造工程I)これらの
粉末には、常法の粉末冶金法により製造されたものを用
いることができ、例えは、スポンジチタン、(NaCQ
またはM g CQ 2を2000ppm以内含有して
いる。)、ガスアトマイズ法、PREP法、REP法等
で製造されたもの、錆塊、板、棒等を切削したものを用
いることができ、その粒度を50001Lm以下に調製
する。また、Tiを他の元素との冶金粉末として加える
場合には、Tiを主成分として、必要に応じてAl、B
、Z「、N i、 Nb、 Mn、 S i、 v、 
W、 Moのうち1種以上を後述する割合となるように
添加する。
(Manufacturing process I of Ti powder or Ti alloy powder) For these powders, those manufactured by the conventional powder metallurgy method can be used. For example, sponge titanium, (NaCQ
Or it contains M g CQ 2 within 2000 ppm. ), gas atomization method, PREP method, REP method, etc., or cut rust lumps, plates, rods, etc. can be used, and the particle size is adjusted to 50001 Lm or less. In addition, when adding Ti as a metallurgical powder with other elements, Ti is the main component, and if necessary Al, B
, Z ", N i, Nb, Mn, S i, v,
One or more of W and Mo are added in the proportions described below.

(Al粗粉末たはAlQ金粉末の製造工程■)Al粗粉
末、常法の粉末製造方法、例えは、ガスアトマイズ法、
PREP法、REP法等で製造されたものを用いること
ができ、その粒度を5000μm以下に調製する。
(Manufacturing process of Al coarse powder or AlQ gold powder ■) Al coarse powder, conventional powder manufacturing method, for example, gas atomization method,
Those manufactured by PREP method, REP method, etc. can be used, and the particle size is adjusted to 5000 μm or less.

また、八〇を他の元素との合金粉末として加える場合に
は゛、八〇を主成分として、必要に応じてTi5B、 
 Zr5Ni、  Nb、 Mn、  Si、  V、
W、Moのうち、1種以上を後述する割合となるように
添加する。
In addition, when adding 80 as an alloy powder with other elements, use 80 as the main component and optionally add Ti5B,
Zr5Ni, Nb, Mn, Si, V,
One or more of W and Mo are added in the proportions described below.

(混合工程■) 次に、Al214%〜63%、残部Tiの割合になるよ
うにTim末またはTi合金粉末、A Q yJ末また
はAlQ金粉末を適宜選択して、V型混合機等で均一に
混合する。
(Mixing process ■) Next, appropriately select Tim powder or Ti alloy powder, AQ yJ powder or AlQ gold powder so that the proportion of Al2 is 14% to 63% and the balance is Ti, and mix uniformly with a V-type mixer etc. Mix with

上記のような混合割合にするのは、Alが14%〜63
%の範囲外では、Ti3Al、T iAl、およびTi
AL系の金属間化合物の単相あるいは2相とならないか
らである。
The above mixing ratio is achieved when Al is 14% to 63%.
%, Ti3Al, TiAl, and Ti
This is because the AL-based intermetallic compound does not form a single phase or two phases.

また、TiおよびAl以外の添加元素の割合は、0.0
05%≦B≦3%、  1%≦Zr≦5%0.1%≦N
1≦5%、   1%≦Nb≦30%0.1%≦Mn≦
5%、 0.05%≦Si≦5%  1%≦V≦5%0.1%≦
W≦10%   1%≦Mo≦5%となるように調整す
る。
Furthermore, the proportion of additive elements other than Ti and Al is 0.0
05%≦B≦3%, 1%≦Zr≦5%0.1%≦N
1≦5%, 1%≦Nb≦30% 0.1%≦Mn≦
5%, 0.05%≦Si≦5% 1%≦V≦5%0.1%≦
Adjust so that W≦10% and 1%≦Mo≦5%.

ここで、B、  Zr、  N i、  Nb、 Mn
、  V、Moの元素を上記範囲とするのは、該範囲内
において常温あるいは高温における延性の改良効果が得
られ、すなわち、下限値未満では、延性の改良の効果が
得られず、また、上限値を超えると延性の改良が飽和す
るからである。
Here, B, Zr, Ni, Nb, Mn
The reason why the elements of , V, and Mo are set in the above range is that the effect of improving ductility at room temperature or high temperature is obtained within the range, that is, the effect of improving ductility cannot be obtained below the lower limit, and This is because if the value is exceeded, the improvement in ductility will be saturated.

また、W、  S i、  N b、 Moの成分範囲
を上記の範囲とするのは、該範囲内において耐酸化性を
向上させることができ、すなわち、下限値未満では耐酸
化性の向上がみられず、また、上限値を超えると、耐酸
化性が飽和するからである。
Furthermore, the reason why the component ranges of W, Si, Nb, and Mo are set to the above ranges is that the oxidation resistance can be improved within the ranges, that is, the oxidation resistance cannot be improved below the lower limit. Moreover, if the upper limit is exceeded, the oxidation resistance will be saturated.

(D処理■) 次に、混合工程■により所定の割合で調整された混合物
の全体または一部を550℃以上で固相線以下の温度で
加熱することにより、Tiと八〇の合金化反応を生じさ
せ、Ti−Al系金金属間化合物形成する。この反応は
、発熱反応であるために、その温度が1500℃近くま
でなることがある。この反応は数分間で終了し、その後
、処理物の温度は雰囲気温度まで低下する。このときの
雰囲気は、真空中または不活性ガス(He、Ar等)中
とする。なお、Mg、 N a、 CQ等を含んだスポ
ンジTiを使用した場合、真空においては、反応開始と
同時にこれらの物質が気化し、雰囲気の圧力が上昇する
が、反応終了とともにすみやかに元の真空に戻り、焼結
体への汚染を低減できる。
(D treatment ■) Next, by heating the whole or part of the mixture adjusted at a predetermined ratio in the mixing step ■ at a temperature of 550°C or more and below the solidus line, an alloying reaction of Ti and 80 is carried out. to form a Ti-Al based gold intermetallic compound. Since this reaction is exothermic, the temperature may reach nearly 1500°C. This reaction is completed in a few minutes, after which the temperature of the treated material is lowered to ambient temperature. The atmosphere at this time is a vacuum or an inert gas (He, Ar, etc.). Note that when Ti sponge containing Mg, Na, CQ, etc. is used in a vacuum, these substances vaporize as soon as the reaction starts, and the pressure of the atmosphere rises, but as soon as the reaction ends, it returns to the original vacuum. The contamination of the sintered body can be reduced.

さらに、熱処理■により、焼結体が多孔質になることが
あり、この場合、次工程Vでの粉砕が容易となる。
Furthermore, the heat treatment (1) may cause the sintered body to become porous, and in this case, pulverization in the next step (V) becomes easier.

(粉砕工程V) 続く工程では、焼成体を所定の粒径に粉砕する。(Crushing process V) In the subsequent step, the fired body is pulverized to a predetermined particle size.

粉砕の手法としては、通常の粉砕法、例えは、ボールミ
ル等の機械的な粉砕機を用いたり、気流粉砕法を適用す
ることができる。
As the pulverization method, a conventional pulverization method, for example, a mechanical pulverizer such as a ball mill, or a pneumatic pulverization method can be applied.

ここで、好適な粉砕法としては、例えは、ボールミル等
を使用して粒径を100μm程度に粗粉砕し、その後、
気流粉砕法を用いて粉砕し数μmの粉末を得るものが適
用できる。このように気流粉砕法では、粉末が球状とな
り、さらに不活性ガス中で粉砕することにより、他の粉
砕法に比べて、粉末への汚染が少なく、例えば、射出焼
結用微粉末の製造に適している。
Here, as a suitable pulverization method, for example, use a ball mill etc. to coarsely pulverize the particle size to about 100 μm, and then
It is possible to use a method that obtains a powder of several micrometers by pulverization using an air flow pulverization method. In this way, in the air flow pulverization method, the powder becomes spherical, and by pulverizing it in an inert gas, there is less contamination of the powder compared to other pulverization methods, and it is suitable for producing fine powder for injection sintering, for example. Are suitable.

本発明の主たる工程は以上であるが、必要に応じて、第
2図に示す処理を加えてもよい。
The main steps of the present invention have been described above, but the processing shown in FIG. 2 may be added if necessary.

(他の金属、合金の粉末製造工程■) Ti−Al系金金属間化合物部材有効な添加元素、たと
えば、延性改良に効果のあるB、Zr、N i、  N
b、 Mn、  V、 Mo、または耐酸化性に効果が
あるW、Siは、上述した工程I、■ではTi合金また
はへ〇合金として所定の混合割合になるように添加した
が、これに限らず、これらの単体金属粉、合金粉または
Ti50%以下またはAl50%以下を含む合金粉とし
て上記A(2粉末およびTi粉末等と混合してもよい。
(Powder production process for other metals and alloys ■) Effective additive elements for Ti-Al based gold intermetallic compound members, such as B, Zr, Ni, N, which are effective in improving ductility
b, Mn, V, Mo, or W and Si, which are effective in oxidation resistance, were added at a predetermined mixing ratio as a Ti alloy or a 〇 alloy in the above-mentioned steps I and ①, but they are not limited to this. First, these single metal powders, alloy powders, or alloy powders containing 50% or less of Ti or 50% or less of Al may be mixed with the above A(2 powder, Ti powder, etc.).

(脱気工程■) 上記混合工程■に続いて脱気工程■および後述する緻密
化処理■を行うことにより、Ti粉末やへ〇粉末等め原
料粉末として粗粒(200um以上)のものを用いるこ
とができる。
(Degassing process ■) Following the above mixing process ■, a degassing process ■ and a densification process ■ described below are performed to use coarse grains (200 um or more) as the raw material powder such as Ti powder or He〇 powder. be able to.

まず、脱気工程■では、混合物を容器に収納して真空ポ
ンプ等により脱気処理を行う。これは、粉末表面の吸着
ガス、吸着水を除去するとともに、後の厳密化処理■等
における酸化を防止するためである。この脱気処理■は
、粉末の酸化を防止するために真空度10Torr以下
で行うことが好ましい。また、脱気処理は、常温〜55
0℃、さらに望ましくは、400℃〜500℃で行うと
、吸着ガス・吸着水の除去が容易となり好ましい。なお
、550℃を越える場合には、TiとAlとの合金化反
応が生じるので好ましくない。
First, in the degassing step (2), the mixture is placed in a container and degassed using a vacuum pump or the like. This is to remove adsorbed gas and adsorbed water on the powder surface, as well as to prevent oxidation in subsequent strict processing (2), etc. This degassing treatment (1) is preferably carried out at a vacuum level of 10 Torr or less in order to prevent oxidation of the powder. In addition, deaeration treatment is performed at room temperature to 55%
It is preferable to carry out the reaction at 0° C., more preferably at 400° C. to 500° C., because it facilitates the removal of adsorbed gas and water. Note that if the temperature exceeds 550°C, an alloying reaction between Ti and Al will occur, which is not preferable.

(m密化処理■) 次に、脱気後の混合物をホットプレス、押出、CI P
 (Cold 1sostatic Press)また
はHIP(Hot 1sostatic Press)
等で相対密度で95%以上になるように圧縮し、粉末圧
縮体とする。ここで、相対密度とは、混合物の密度を完
全に緻密化した場合の密度に対する割合を%として表示
したものである。
(m-densification treatment■) Next, the degassed mixture is subjected to hot pressing, extrusion, and CI P.
(Cold 1sostatic Press) or HIP (Hot 1sostatic Press)
etc. to obtain a powder compact with a relative density of 95% or more. Here, the relative density is expressed as a percentage of the density of the mixture when it is completely densified.

この緻密化処理■は、後に行われる上述した熱処理■に
おいて合金化反応をより容易にするために行われるもの
である。本緻密化処理■は、この段階でのTiとAlと
の合金化反応を防止するために550℃以下で行う必要
がある。よって、水撒密化処理■後の緻密体には、未だ
Ti−Al系金金属間化合物形成されていない。
This densification treatment (2) is carried out in order to facilitate the alloying reaction in the above-mentioned heat treatment (2) which will be carried out later. This densification treatment (3) needs to be carried out at 550° C. or lower in order to prevent an alloying reaction between Ti and Al at this stage. Therefore, the Ti-Al based gold intermetallic compound has not yet been formed in the dense body after the water densification treatment (1).

なお、脱気工程■、および緻密化処理■は、真空ホット
プレスを用いて同時に行ってもよい。
Note that the degassing step (1) and the densification treatment (2) may be performed simultaneously using a vacuum hot press.

緻密化処理■を加えることにより、粒径の太きい200
μm以上の粉末を使用できるようになり、このため、粉
末の単位質量あたりの表面積が小さく、酸化物が少なく
なるので、その結果低酸素のTi−Al2系金属間化合
物粉末を製造することができる。
By adding densification treatment■, the particle size is increased to 200%.
It is now possible to use powder with a particle diameter of μm or more, which means that the surface area per unit mass of the powder is small and the amount of oxides is reduced, making it possible to produce a low-oxygen Ti-Al2 intermetallic compound powder. .

[実施例コ 以下、本発明の一実施例について説明する。[Example code] An embodiment of the present invention will be described below.

まず、第1表および第2表に示すような組成および処理
を経て焼結体を形成し、その焼結体を粉砕して粉末を製
造し、そしてこの粉末にTi−Al系金金属間化合物形
成されているか否かについて判定を行った。
First, a sintered body is formed through the composition and treatment shown in Tables 1 and 2, the sintered body is crushed to produce a powder, and a Ti-Al based gold intermetallic compound is added to this powder. A determination was made as to whether or not it was formed.

すなわち、Ti粉末、Al粗粉末たはそれらの合金粉末
の粒径を200am以下、297μm以下、500am
以下、100011m以下、5000um以下に調整し
たものを適宜選択し、混合し、ざらに緻密化処理■(ホ
ットプレス)の有無を絹み合わせ、570℃、10””
Torr以下またはArの雰囲気中にて熱処理を行い、
その後、機械的な粉砕等により粉末の製造を行った(試
料1〜試料9)。
That is, the particle size of Ti powder, Al coarse powder, or their alloy powder is 200 am or less, 297 μm or less, or 500 am or less.
Below, those adjusted to 100,011 m or less and 5,000 um or less were appropriately selected, mixed, roughly densified (hot press) or not, and heated at 570°C for 10"
Heat treatment is performed in an atmosphere of less than Torr or Ar,
Thereafter, powders were manufactured by mechanical pulverization or the like (Samples 1 to 9).

その結果、第1表の試料1から試料3までは、Ti−A
l2系金属間化合物が形成され、試料4から試料5まで
は該化合物が形成されなかった。
As a result, samples 1 to 3 in Table 1 are Ti-A
A 12-based intermetallic compound was formed, but this compound was not formed in samples 4 to 5.

このことから、200um以下の粒径のTi粉末および
A(2粉末を用いた場合には、緻密化処理■を行ねなく
ても、Ti−A2系金属間化合物が形成されることが分
かる。なお、第3図に本粉末のX線回折結果を示す。
From this, it can be seen that when Ti powder and A(2 powder) having a particle size of 200 um or less are used, a Ti-A2 intermetallic compound is formed even if the densification treatment (1) is not performed. Note that FIG. 3 shows the results of X-ray diffraction of this powder.

また、Al粗粉末粒径を1000μm以下まで大きくし
た場合も、ホットプレスにより緻密化処理■を行った場
合には化合物が形成されたが(試料2)、緻密化処理を
行わなかったときには金属間化合物が形成されなかった
(試料4)。
In addition, even when the Al coarse powder particle size was increased to 1000 μm or less, a compound was formed when densification treatment ■ was performed by hot pressing (sample 2), but when no densification treatment was performed, a compound was formed between metals. No compound was formed (Sample 4).

さらに、Ti粉末およびAl扮粉末粒径を5000μm
まで大きくした場合には、試料3と試料5から明らかな
ように、ホットプレスにより¥!!!密化処理■を行っ
た場合のみ金属間化合物が形成された。
Furthermore, the particle size of Ti powder and Al powder was 5000 μm.
As is clear from Samples 3 and 5, when the size is increased to ¥! ! ! Intermetallic compounds were formed only when densification treatment (■) was performed.

したがって、緻密化処理■を加えることにより、粒径の
大きい(200μm以上)粉末を原料としても金属間化
合物が一形成できる。粒径の大きい試料3を使用できる
ことにより、以下の効果がある。
Therefore, by adding the densification treatment (1), an intermetallic compound can be formed even if a powder with a large particle size (200 μm or more) is used as a raw material. By being able to use the sample 3 with a large particle size, the following effects can be obtained.

すなわち、第3表において、試料1(TIの粒径200
μm以下)、試料3(同5000μm以下)について熱
処理の前後の成分分析値を示す。同表から分かるように
、粒径の大きいもの(試料3)を使用すると、低酸素濃
度のTi−AC系金属間化合物粉末が製造できることか
ら、この粉末を用いて焼成体を形成した場合には、展延
性の高いものを製造することができ、さらに、他の元素
(CQ、Na等)も減らすことができるから強度も高め
ることができる。
That is, in Table 3, sample 1 (TI particle size 200
(μm or less) and sample 3 (5000 μm or less) before and after heat treatment. As can be seen from the table, when a large particle size (sample 3) is used, a Ti-AC intermetallic compound powder with a low oxygen concentration can be produced, so when a fired body is formed using this powder, , it is possible to manufacture products with high malleability, and furthermore, since other elements (CQ, Na, etc.) can be reduced, strength can also be increased.

また、第3表から分かるように、熱処理■を真空雰囲気
で行うことにより不純物の低減効果もある。
Furthermore, as can be seen from Table 3, performing heat treatment (1) in a vacuum atmosphere also has the effect of reducing impurities.

また、第2表に示す例は、TIとAlの他にMn、  
N i、  BをAl合金粉末として添加し、さらに緻
密化処理の方法、熱処理条件や雰囲気を変えたものであ
る。同表から明らかなように、500μm以下の粒径の
Ti粉末およびA Q −N i −8合金粉末を用い
た場合には、m密化処理■による相対密度を95%にし
た場合には、金属間化合物が形成されたが、CIPによ
り85%程度の相対密度では金属間化合物が形成されな
かった。したがって、Mn、Ni等を添加した場合でも
同様に金属間化合物粉末製造が可能であり、しかも相対
密度を高めることにより粗粒の粉末を用いることができ
る。
In addition, in the example shown in Table 2, in addition to TI and Al, Mn,
Ni and B were added as Al alloy powder, and the densification treatment method, heat treatment conditions, and atmosphere were changed. As is clear from the same table, when Ti powder and A Q -N i -8 alloy powder with a particle size of 500 μm or less are used, when the relative density is set to 95% by m-densification treatment (■), Although an intermetallic compound was formed, no intermetallic compound was formed at a relative density of about 85% by CIP. Therefore, even when Mn, Ni, etc. are added, it is possible to produce intermetallic compound powder in the same way, and by increasing the relative density, coarse-grained powder can be used.

[発明の効果コ 以上説明したように、本発明によれは、引出成形等を用
いた粉末冶金に適するTi−A(1!系金金属化合物粉
末を経済的に製造できる。
[Effects of the Invention] As explained above, according to the present invention, it is possible to economically produce Ti-A (1! system gold metal compound powder) suitable for powder metallurgy using pultrusion molding or the like.

しかも、鋳造等を行わないので汚染が少なく、原料粉末
の純度と同等以上の純度のTi−Al系金金属間化合物
粉末製造することができる。
Moreover, since no casting or the like is performed, there is little contamination, and Ti-Al based gold intermetallic compound powder can be produced with a purity equal to or higher than that of the raw material powder.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるl’1−Al1!系金属間化合物
粉末を製造する過程を示す工程図、第2図は第1図の変
形例を示す工程図、第3図はT i −A Q系金属間
化合物粉末のX線回折図である。 代理人  弁理士  定立 勉(ばか2名)第1図
FIG. 1 shows l'1-Al1! according to the present invention. FIG. 2 is a process diagram showing a modification of FIG. 1, and FIG. 3 is an X-ray diffraction diagram of the Ti-AQ intermetallic compound powder. . Agent Patent Attorney Tsutomu Setate (2 idiots) Figure 1

Claims (1)

【特許請求の範囲】[Claims] Al14重量%〜63重量%、残部Tiの割合になるよ
うに、Al粉末、またはTi粉末、またはこれらの合金
粉末を混合し、この混合物の全部または一部を550℃
以上で該混合物の固相線以下の温度で加熱焼成し、この
焼成物を粉砕することを特徴とするTi−Al系金属間
化合物粉末の製造方法。
Al powder, Ti powder, or an alloy powder thereof is mixed so that the proportion of Al is 14% by weight to 63% by weight and the balance is Ti, and all or part of this mixture is heated at 550°C.
A method for producing a Ti-Al intermetallic compound powder, which comprises heating and firing the above mixture at a temperature below the solidus line, and pulverizing the fired product.
JP63133124A 1988-05-31 1988-05-31 Production of ti-al intermetallic compound powder Pending JPH01301801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63133124A JPH01301801A (en) 1988-05-31 1988-05-31 Production of ti-al intermetallic compound powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63133124A JPH01301801A (en) 1988-05-31 1988-05-31 Production of ti-al intermetallic compound powder

Publications (1)

Publication Number Publication Date
JPH01301801A true JPH01301801A (en) 1989-12-06

Family

ID=15097350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63133124A Pending JPH01301801A (en) 1988-05-31 1988-05-31 Production of ti-al intermetallic compound powder

Country Status (1)

Country Link
JP (1) JPH01301801A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH073355A (en) * 1991-06-20 1995-01-06 Natl Res Inst For Metals Production of ti/al intermetallic compound
CN104439261A (en) * 2014-12-25 2015-03-25 哈尔滨工程大学 Preparation method for ultrapure Al3Ti intermetallic compound powder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH073355A (en) * 1991-06-20 1995-01-06 Natl Res Inst For Metals Production of ti/al intermetallic compound
CN104439261A (en) * 2014-12-25 2015-03-25 哈尔滨工程大学 Preparation method for ultrapure Al3Ti intermetallic compound powder

Similar Documents

Publication Publication Date Title
JP5855565B2 (en) Titanium alloy mixed powder containing ceramics, densified titanium alloy material using the same, and method for producing the same
JP5889786B2 (en) Titanium alloy mixed powder blended with copper powder, chromium powder or iron powder, method for producing the same, and method for producing titanium alloy material
US3950166A (en) Process for producing a sintered article of a titanium alloy
JP2005533182A (en) Method for producing sputtering target doped with boron / carbon / nitrogen / oxygen / silicon
JP2008280570A (en) METHOD FOR PRODUCING MoNb BASED SINTERED SPUTTERING TARGET MATERIAL
JP2012237056A (en) METHOD FOR PRODUCING MoCr TARGET MATERIAL AND THE MoCr TARGET MATERIAL
JPH0237402B2 (en)
JPH0730418B2 (en) Forming method of Ti-Al intermetallic compound member
JPH01301801A (en) Production of ti-al intermetallic compound powder
WO2021019991A1 (en) Sputtering target
JPS62224602A (en) Production of sintered aluminum alloy forging
JPH03173704A (en) Production of target for sputtering
JPH02259029A (en) Manufacture of aluminide
JP2549116B2 (en) Method for forming Ti-A (1) type alloy electrode member
JPH0688153A (en) Production of sintered titanium alloy
JPH09111363A (en) Production of sintered alloy containing ta and si
JP2002332508A (en) Method for producing thermoelectric material
JP3252481B2 (en) Tungsten alloy having fine crystal grains and method for producing the same
JPH09202901A (en) Production of sintered compact of titanium-nickel alloy
JPH0688104A (en) Production of titanium powder
JPH06306513A (en) Production of high fatigue strength sintered titanium alloy
JPH0633165A (en) Manufacture of sintered titanium alloy
JPH04371536A (en) Production of tial intermetallic compound powder
JPS62188735A (en) Manufacture of tini alloy wire or plate
JPH03173705A (en) Production of high density sintered body